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This paper presents an analytical framework for the physical environment of cities using
fractal theory. The strength of the approach lies in its simplicity and precision. The
equations presented in this article comprise: the number of occupied sites in an area;
the population and the length of roads of a city; its fractal dimension; its number of average
and maximum levels (floors per building); the average density of population and roads;
what are the limits to growth as well as an analysis on some of the city’s scaling laws. These
equations describe to a high level of precision the real values measured in the system of the
United Kingdom, for every city above 5,000 people, which amounts to a sample size of
1,031 cities. This work will allow further research into the nature of cities, since it enables
the creation of synthetic cities, and further analytical derivations that can arise from these
building blocks. The paper shows as well how the same set of equations can be used to
characterise the internal distribution of cities from the perspective of its growth as a
possible example of an application of the framework.
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INTRODUCTION

The field of urban studies is a continuous pursuit for regularities that expand our capacity to describe
and understand cities. From its origins, the field has been intimately related to ideas and
methodologies in the field of statistical physics, and an overarching summary of the path and
main ideas of the application of statistical physics to urban environments is presented in [1].

We cannot claim that we understand how cities evolve as long as we do not have an exact set of
equations that relate every variable to each other allowing us to understand the effects of population
growth. This is paramount for a large number of fields, including research, urbanism and political/
economical science. The aim of this work is to create an analytical framework for the analysis of the
most important variables in a city from a geometrical standpoint.

This paper presents a theory of the physical aspect of the city using a fractal framework. Cities are
defined by their occupation of space, and I show over the next sections that cities increase their fractal
dimension as they grow in population, which is a fundamental property, and which was already
noted in [2]. In fact, the study of cities as fractals has a long tradition in the scientific literature [2–8].
This view is fundamental to understand cities, since it commands the occupation of space for a given
city, and therefore it is the only valid way to extract its geometric framework.

The work presented in this paper studies the population, the road network, the occupation of
space, the fractal dimension of the city, the average heights, the maximum heights and the
interactions or GDP of a city. I show how all these variables are related between each other and
how they were derived. This work is not the first to attempt to produce a set of equations that describe
the main variables of the city. Some previous work include [9, 10] which show how congestion
influence the growth of cities, the aforementioned [2] that presents a theory of growth of cities based
on scaling theory or several theories on the growth of cities [11–13].
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This work delves as well into how this fractal framework
affects and influence the scaling of a number of variables. Scaling
theory [14–17] in urban science [18–23] study how allometric
relations appear between variables such as the length of roads, the
number of gas stations, the cost of maintaining a city’s
infrastructure, its GDP and many other quantities to the size
of the city in terms of population. In previous work [24], it was
shown that those scaling exponents could be derived from a
simplified and approximated version of the equations that
governed those same variables. The current work presents an
improvement on the calculation of the scaling exponents going
beyond what was presented in [24], since we now account with
better and more precise equations to describe length of roads,
population and GDP.

The work also shows an application of the set of formulas to
develop an approximation of the internal distribution of a city,
derived from its growth. In order to do so, it assumes that the
same formulas that describe a city in its current state have to
remain meaningful to describe a city at any specific instant of its
history, meaning that this growth is ergodic.

FRAMEWORK

Cities begin to form with the construction of a single house,
slowly other houses join, percolating space, and soon the city’s
fractal dimension starts increasing. New occupied sites are
incorporated with a certain probability of occupation over the
territory that surrounds the city while the existing urban fabric
gets densified. This probability of occupation tends to a constant
value because of a self-optimization pattern. Going any lower
would break the city apart into different clusters and expand the
city over a long area, increasing travel times and decreasing
economies of scale. Going higher would increase traffic and
other problems derived from density, leading to an optimal
solution in which the probability of occupation is as low as
possible while still keeping the city as one single cluster. This
probability is very close to the critical probability of a percolation
over a squared lattice in two dimensions because the topology of
cities is in average similar to that lattice.

In its first stages the city densifies its road network,
subdividing the occupied sites which increases the density of
occupation. At some point in its growth, the density of people that
can live in a planar city saturates and in order to keep growing, the
city needs to extend into the third dimension increasing its height,
eventually pushing the fractal dimension of the population above
2. From its initial state, the density of population keeps on ever
increasing as the city first densifies and later grows further into
the third dimension.

The current section constructs the main framework of this
work, presenting the derivation of its equations for several
geometrical variables in a city. In order to simplify the
equations and reasoning, I will use along this section an
idealised system, in which I will avoid talking about
multipliers or characteristic scales that need to be fitted in
order to obtain realistic values, I will show how to calculate
those multipliers in the last section of the paper, where I will adapt

the equations to work with a real system and give the value for the
constants in the specific case of the United Kingdom which will
serve as an example throughout the paper.

As a city grows, the pre-existing city does not disappear,
meaning that it must maintain a minimum of the current
probability of occupation of sites where buildings are
constructed. Considering a squared city with a linear
dimension L, with a planar fractal dimension d and a certain
number of occupied sites n = Ld (shown in Figure 1B) coming
from a probability of occupation ρ over an area a = L2. Then we
have ρa = n which in turn means that Ld−2 = ρ so:

d � 2 + ln ρ( )
ln L( ) (1)

This equation means that the fractal dimension of a city needs
to increase as its linear dimension grows in order to avoid having
its preexisting city disappear, this was already noted in [2].
Otherwise, if it were to remain constant (or decrease) we see
that the only solution would be to decrease its probability of
occupation, meaning that in order to occupy sites in its outskirts
the city would need to vacate sites in its preexisting city. This
explains the behaviour observed in real systems (Figure 1A)
which shows a normal distribution of the error between the
predicted and real value with mean −0.0142 and standard
deviation of 0.0677.

Cities grow vertically above its two-dimensional footprint. In
fact, population becomes a fractal volume, that starts below
dimension 2 but as cities become larger it surpasses it.
Furthermore, the population has always a larger fractal
dimension than the footprint of a city. As it was shown on
[24] the fractal dimension of the population (dp) can be obtained
by adding a fractal vertical component η to the planar fractal
dimension of sites d, that is dp = d + η and therefore the
population (shown in Figure 1C) can be expressed as

p � Ld+η (2)
Throughout its growth, a city starts densifying its street

network increasing the quantity of people that can live within
it, and at some threshold xc the density of population per site in a
planar city saturates and cannot longer continue growing through
this process. In order to keep on growing above that critical
threshold xc it needs to start increasing its height. Therefore, the
growth of people per site p

n � Lη is absorbed either by the increase
in average length of roads 〈ℓ〉 in a site of the space of the city or by
the average number of vertical levels (floors) of the city 〈h〉. This
means that

p

n〈ℓ〉〈h〉 � k (3)

is a constant.
Numerically, at xc, the density of roads reaches its maximum

value of 1 (understood as the probability of finding a road
segment in a site) 〈ℓ〉c = 1 and the average number of levels
of the city is also 1, 〈h〉c = 1, since it was 1 from the beginning of
the growth of the city and it only starts increasing right after xc. So
we have that:
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〈ℓ〉c〈h〉c � 1 � pc

knc
� 1
k
Lη
c (4)

We also have that since ρa = n,

p

a〈ℓ〉〈h〉 � ρk (5)

This last equation means that at xc the population is
proportional to the area since 〈ℓ〉c = 1 and 〈h〉c = 1 and k
and ρ are constants. Therefore, the fractal dimension of the
population at xc is the same as the fractal dimension of the
area (dpc � dc + η � 2). In other terms, at the point in which the
population starts growing into the third dimension is the
threshold in which its fractal dimension grows above 2, as
expected. We can see that since at xc, dc = 2 − η and using
Eq. 1 we have that η is

η � − log ρ( )
log Lc( ) (6)

and since pc = L2 = ac and a/n = ρ−1 then Lηc � pc/nc � ρ−1,
therefore, we can see that our constant in Eq. 4 is k = ρ−1 which
means that,

p

n〈ℓ〉〈h〉 � ρ−1 (7)

for any city size. This is a constant for any city, the limit of
population density in each vertical floor belonging to a site per
meter of road (how dense is the network, how subdivided is the
system), the system cannot hold more people than this value per
site, per level. Furthermore, Eq. 5 becomes

p

a〈ℓ〉〈h〉 � 1 (8)

which means that at the critical threshold xc, when saturation is
reached and both the density of roads and the number of levels is
1, the population equals the area. Moreover, and as an indirect
consequence of Eq. 6 we also have that the threshold xc is reached
when the linear dimension of the city is Lc = ρ−1/η.

A city cannot grow without limit, the equations portrayed in
this work show that its density would go to impossible amounts,

the heights of its buildings would reach levels that are physically
unattainable and a large number of other issues such as
congestion and competition for space would arise. As we see
in Eq. 7, ρ−1 is the density limit for the night time population, how
many people can live in each site per level, and this is a hard limit,
no city outgrows this. As cities grow further than this threshold
(xc), the day-time population will spread over its area, people will
walk down the parks, the plazas, the avenues and will of course be
present in buildings. Since the area of the city cannot contain
several levels, it means that at some point in its growth, the
population spread over its area will also reach this same limit
p
a � ρ−1 and the city will be completely collapsed. This is
expectedly a hard limit for growth, and cities will not surpass
it. In fact, using our equations and the multiplying factors
measured for the United Kingdom, this only happens when
the population of a city reaches 36.1 million people, and the
largest city on Earth has a very similar level of population, of
course, this is a numerical result that is highly dependent on the
approximated value of η and ρ obtained through a genetic
algorithm as explained in the next section, and very slight
modifications to those values change greatly this specific value.
We call this maximum threshold xm.

If at xm we have that ρpm = am and for all cities ρa = n, then
pm

nm
� Lηm � ρ−2 which means that Lm = ρ−2/η and using Eq. 1, dm =

2 − η/2.
Regarding 〈ℓ〉 and 〈h〉 given that we know that both are

complementary, since at xc both are 1, and one cannot exist in the
numeric range of the other (one has to be less than 1 and the other
more than 1) then we have that 〈h〉〈ℓ〉 � p

a � ρ p
n � ρLη � ρ1+

η
d−2

and given that 〈ℓ〉 is a probability and cannot go above the
value 1:

〈ℓ〉 � min ρ1+
η

d−2, 1( ) � min Ld+η−2, 1( ) (9)
which is shown in Figure 2D, and since 〈h〉 � ρ p

n〈ℓ〉 then:

〈h〉 � max 1, ρLη( ) � max 1, ρ1+
η

d−2( ) � max 1, Ld+η−2( ) (10)
portrayed in Figure 2B.

We can also obtain from Eq. 9 the total length of roads (shown
in Figure 1D) which is:

FIGURE 1 | Comparison between real data and their corresponding equations. (A) fractal dimension as a function of linear dimension of the city. (B) number of
occupied sites as a function of the linear dimension of the city, measured using GHS data [26]. (C) population as a function of the linear dimension of the city from GHS
data. (D) total length of roads as a funcion of the linear dimension of the city taken fromOSMdata [28]. In blue real data, in black the equations derived with this approach.
The vertical dotted line corresponds with the critical threshold.
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ℓ � 〈ℓ〉n � min 1, ρ1+
η

d−2( )Ld � min 1, Ld+η−2( )Ld (11)
In order to calculate the maximum number of levels of the city

(�h�) we use an approximation from [24] where we obtained that
dp � d + η ~ d + ln 〈h〉

ln �h� using box counting analytically. Since this
was only an approximation and meant to work above the critical
threshold, we need to consider 〈h〉x = ρLη (without limiting its
lower bound to 1). Doing so we have that η ~ ln 〈h〉

ln �h� (Figure 2C)
which means that �h� ~ exp(ln(ρLn)η ) ~ khL. Because of the
approximated nature of the equation we can not obtain
directly the value of kh and to calculate the true value of this
multiplying constant we have to see that at the minimum possible
linear dimension, when the city is composed of a single house, the
average height and the maximum height should have the same
value. This happens when d = 0, and since L = ρ1/(d−2) then Ld=0 =
ρ−1/2, the average number of levels is 〈h〉d�0 � ρLηd�0 � ρ1−η/2 and
equating it to �h�d=0 = khLd=0 = khρ

−1/2 we obtain that kh = ρ1.5−η/2

therefore:

�h� � ρ1.5−η/2L � L
d 3−η( )+η−1

2 (12)
which is shown in Figure 2A.

We can also obtain equations that describe the average
number of population in a site projected to the floor
(collapsing all levels) 〈pp〉 (Figure 2E), the average number of
people per meter of road 〈pℓ〉 and the average number of people
per site and per level 〈ph〉

〈pp〉 � p

n
� Lη (13)

〈pl〉 � p

l
� max Lη, Ld−2+2η( ) (14)

〈ph〉 � p

n〈h〉 � min Lη, Ld−2( ) (15)

Over the next sections I will show how to adapt this framework
to real data and how to obtain the value of η and ρ to be able to get
the final values of our exponents.

SCALING THEORY

Originally a theory derived in the field of biology, scaling theory
studies the allometric scaling of variables in a city as it they relate to its
population growth. Some of those variables scale sub-linearly with the
size of the city, meaning that the larger a city gets the slower that
variable grows, this is the case for variables where economies of scale
arise, such as the length of roads needed to cover the city, the number
of gas stations, etc. Other variables grow linearly, because they
correspond to some fixed value per person, such as the amount
of water consumed. Finally, some other variables grow super-linearly,
meaning that they grow faster than the population, usually these arise
through feedback effects and include elements like traffic congestion,
criminality, interactions or the GDP of a city. In [24] we showed that
in fact, this relation to size was due to the fractal nature of cities, and
calculated the expected exponents from the fractal scaling of the
population and road network.

In that previous work [24] we reasoned that since the length of
roads was proportional to Ld and the population was proportional
to Ldp , the scaling exponent should be equal to γ � d

dp
� d

d+η. We
now have an improved formulation that describe both quantities

FIGURE 2 | Comparison between number of levels and densities in the system with their respective equations. (A)maximum number of levels as a function of the
linear dimension of the city. The number of levels is taken from data in Open Street Maps [28] (B) average number of levels as a function of the linear dimension of the city.
(C) approximation of η using ln 〈h〉

ln �h� which as we can see works only above xc and will only reach exactly the same value as the true η (horizontal dotted line) at infinity. (D)
average length of roads per site as a function of the linear dimension of a city. (E) planar density of the population per site as a function for the linear dimension of the
city. (F) summary of how every density evolves as a function of the linear dimension of the city. In blue real data, in black the equations derived with this approach. The
vertical dotted line corresponds with the critical threshold.
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and no longer need to make any approximations we can just solve
the scaling equation ℓ = pγ and calculate the exponent γ � ln ℓ

lnp.
This gives us that:

γ � min
d

d + η
, 1 + d − 2

d + η
( ) (16)

this means that the previous reasoning still stands, but only for
the largest cities (those above xc) but the small cities are better
represented by a different γ. The resulting length of roads fits the
data to a very high degree of precision (normal distribution of the
differences between the logged real and predicted values with μ =
0.01466 and σ = 0.1618) as shown in Figure 3A where Figure 3C
shows the value of γ.

In that same paper, we also reasoned that interactions occur
when people go to the street and that therefore it should be
proportional to the square of the quantity of people in the ground
level, multiplied by the number of locations in which that were
possible. In that work, the equations were approximated and we
used ℓ ~ n which gave us that i = (p/n) (p/n − 1)n, where i
represents the total possible interactions, but since in this work we
are distinguishing between the two values (ℓ and n), it is more
precise to say that the people in the street interacts, and the
number of possible locations is the length of the street network.
therefore:

i � p

ℓ

p

ℓ
− 1( )ℓ � p

p

ℓ
− 1( ) � max Ld+2η, L2+η( ) − Ld+η (17)

In order to obtain an approximation of the super-linear
exponent of interaction i ~ pγsup , we need to drop the exact
equation and approximate i ~ (p

ℓ
)2ℓ � p2

ℓ
� p2

pγ � p2−γ. Therefore
the approximate value of the super-linear exponent is:

γsup ~ 2 − γ � max
d + 2η
d + η

,
2 + η

d + η
( ) (18)

Similarly to what was done in [24], we assume that the GDP of
a city is a direct consequence of the interactions between
individuals, and use that quantity to showcase the validity of
the formulation as shown in Figure 3B while the super-linear
exponent is shown in Figure 3C.

FORMULATION, CONSTANTS AND UNITS
FOR REAL DATA

The current framework represents an idealised system, it is
unitless because everything is divided by an implicit
characteristic scale that we will make explicit in this section
and there are not any multiplying constants for the sake of
simplicity. This section completes the framework, by including
those factors and thus creating the final set of equations for the
system.

From this point on forward we will use the subindex r to refer
to real variables as measured from the data.

To determine the side of our real square (in meters) we use the
area of the city.

Lr � a
1
2
r (19)

The characteristic scale for the length of the side of our
squared area is called L0 and it is measured in meters.

L � Lr

L0
(20)

where for the United Kingdom L0 = 538.924 m. This value was
calculated through measuring the fractal dimension for all cities
and their areas. An approximation can be obtained through
performing those measurements for the largest city (max (dr),
max (Lr)) and calculating our theoretical max(L) = exp (ln(ρ)/
(max (dr) − 2)), to find L0 = max (Lr)/max(L). Of course, for this
we need to determine ρ, this can be done either through directly
measuring occupied space (buildings and roads) against open
spaces in the city (parks, and plazas) or assuming our theoretical
value for ρ = 0.5991 taken from the next section. As an example,
London has an approximated 40% surface occupied by parks,
which means that its ρr = 0.60. I use this value for L0 as a starting
guess and perform a least square estimate of L0 using the
measured fractal dimension and area for all cities (I assumed
the theoretical ρ to be valid). Notice that we cannot use Lr and d to
directly calculate ρ because. ρr � (Lr/L0)d−2 ≠ Ld−2r

For completeness, we will show how to obtain the area as a
function of the side of the square.

FIGURE 3 | Relations between some of the variables and the scaling equations presented in this paper. (A) length of roads as a function of the population and the
sublinear exponent (ℓ = pγ). (B)GDP as a function of the population and the superlinear exponent (GDP � pγsuper ). The GDP data was obtained from the Eurostat dataset
[29] (C) values of both the sub-linear and super-linear exponents as calculated in this work. In blue real data, in black the equations derived using this approach. The
vertical dotted line corresponds with the critical threshold.
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ar � a0
Lr

L0
( )2

(21)

where a0 � L20 m2

d � 2 + ln ρ( )
ln Lr/L0( ) (22)

pr � p0
Lr

L0
( )d+η

(23)

where for the United Kingdom p0 = 1,207 people, which was
measured by adjusting the theoretical population to the real data
measured until their differences were minimised.

nr � n0
Lr

L0
( )d

(24)

where for the United Kingdom n0 = 7.85 sites, measured against
the real data.

ℓr � ℓ0 min
Lr

L0
( )d

,
Lr

L0
( )2d+η−2⎛⎝ ⎞⎠ (25)

where for the United Kingdom ℓ0 = 7,700 m, measured against
the real data.

〈ℓ〉r � ℓ0

n0
min 1,

Lr

L0
( )d+η−2⎛⎝ ⎞⎠ (26)

〈h〉r � h0 max 1,
Lr

L0
( )d+η−2⎛⎝ ⎞⎠ (27)

where for the United Kingdom h0 = 2 levels, measured against the
real data.

hmr � h0
Lr

L0
( )

d 3−η( )+η−1
2

(28)

The constant that limits growth becomes:

pr

ℓr〈h〉r
� ρ−1

p0

ℓ0h0

people
m level

(29)

and the densities:

〈ppr〉 � p0

n0

Lr

L0
( )η

(30)

〈plr〉 � p0

l0
max

Lr

L0
( )η

,
Lr

L0
( )d−2+2η⎛⎝ ⎞⎠ (31)

〈phr〉 � p0

n0h0
min

Lr

L0
( )η

,
Lr

L0
( )d−2⎛⎝ ⎞⎠ (32)

Regarding the scaling equations, we have that the real length of
the road network as a function of the real population becomes:

ℓr � ℓ0
pr

p0
( )γ

(33)

Notice that, the typical equation of a scaling ℓr ∝pγ
r is in fact

ℓr � (ℓ0/pγ
0)pγ

r , and since γ changes with the population size,
the multiplying factor is not constant, as the equation ℓr ∝pγ

r
assumes. The fact that both the exponent and the multiplying
factor vary with size explains a lot of the problematic that
exists around measuring precisely the scaling exponent,
although much of the variability becomes negligible if we
only use cities above xc.

For the GDP we have:

gr ~ g0
pr

p0
( )2−γ

(34)

where for the United Kingdom g0 = 2.3 · 107 euro, measured
against the real data. This is an approximation, and from my
perspective it is preferred to use the actual equation instead of an
approximated scaling law, whenever possible, even though both
equations look indistinguishable when presented against each
other or the data. The equation for the interaction of
population is:

ir � i0 max
Lr

L0
( )d+2η

,
Lr

L0
( )2+η⎛⎝ ⎞⎠ − Lr

L0
( )d+η⎛⎝ ⎞⎠ (35)

with a value i0 unknown, since there is no data to measure it. This
factor i0 represents the probability that a potential interaction
becomes a real one. Furthermore, if the assumption between
proportionality of interactions and GDP stands:

gr � g0 max
Lr

L0
( )d+2η

,
Lr

L0
( )2+η⎛⎝ ⎞⎠ − Lr

L0
( )d+η⎛⎝ ⎞⎠ (36)

One interesting side effect of this, is that given that L0, n0, p0, ℓ0
and h0 or even g0 are pure constants for a system of cities (the
variability is absorbed through the rest of the equation), they are
much better descriptors of a system, and when calculated for
other systems, they will allow us to make comparisons with less
noise between different countries.

THE VALUE OF ρ AND η

To render this analytical approach useful we need to be able to
obtain the values of our two constants η and ρ. My approach was
to use a genetic algorithm, whose inputs were the area (ar, from
where we obtain Lr), fractal dimension (dr) and population (pr)
for each city and the parameters to be optimised are ηp and ρp.
Using this, I apply a two steps approximation.

In the first step, in order to obtain the heuristic value for each
individual, I calculate L0 using the parameter ρp given by the
algorithm, and then after calculating the real density ρr �
(Lr/L0)dr−2 for each city, calculate an average density that
mixes the parameter and the measured density,
ρ̂ � (ρp + ρr)/2. I then calculate a theoretical fractal dimension
d � 2 + ln(ρ̂)/ ln(Lr/L0) and obtain the theoretical population for
each city using it p � (Lr/L0)d+ηp , where ηp is the second
parameter to be fitted by the algorithm. Then obtain the linear
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fit between the theoretical population p and the real one pr = ap +
b, discard b and return as the final heuristic the L1 norm between
the logarithms of pr and ap. In this phase we obtain the value of η
and an approximation of the value of ρ.

In the second step, we fix η and only optimize ρ, allowing the
search only in the neighborhood of the approximated value we
obtained in the first step. The only difference between the two, is
that we no longer use the real ρr and instead use directly the
parameter ρp at every step (to calculate L0 and d = 2 + ln (ρp)/ln
(Lr/L0)). From this second step we obtain our constant ρ.

The values obtained were:

η � 0.2092 (37)
ρ � 0.5991 (38)

were less significant digits were discarded. These values mean that
dm = 2 − η/2 = 1.8954 and dc = 2 − η = 1.7908. The measurements
of η and ρ were obtained from approximated processes and these
measurements could be improved in the future.

This is surprisingly close to the values for a site percolation in a
2d-lattice given in the literature, were η = 0.2083 is the exponent
for the function that controls the probability of two sites
belonging to the same cluster as a function of distance, pc =
0.5927 is the critical probability, df = 1.8958 is the fractal
dimension of the percolating cluster. Given that percolation
has been tied in the literature [25] to the formation of cities, I
expect that there exists a logical link between the two but the
reasoning behind this numerical coincidence falls outside the
scope of this paper and is left for future work.

Scaling studies have shown that different city systems across
the world have very similar scaling exponents [18]. Following our

derivation we see from Eq. 16, 18 that the scaling exponent
depends on d and η. Since d is a function of the linear size of the
city and ρ (Eq. 1) the scaling exponent is a function of ρ and η. If
the scaling exponents are truly universal it would then mean that
in fact ρ and η are universal and therefore these values should
remain stable for different systems.

In the following section we show a possible application of the
framework contained in this paper, in order to demonstrate its
expressiveness.

GROWTH OF A SINGLE CITY

We can apply the same reasoning presented above to obtain the
internal distribution of a single city, since at each stage of its
growth, the city has to follow the equations presented for fractal
dimension, population, number of sites, and length of roads if we
consider urban growth to be an ergodic process.

Upon growth, the city increases from a current linear length L
to L + dL. In this change of linear size, it modifies its fractal
dimension from dL to dL+dL, and its population change is dp �
(L + dL)dL+dL+η − LdL+η.

This population change will be partitioned between the
stripe of land added to the city and the existing urban tissue. I
assumed a simple formula for this, that uses a weight to
balance the two, w. We then consider a value δ that is the
density of population added at each step, which multiplied by
the respective areas gives us the increase of population in the
new area and the preexisting one. The basic formula for the
population at a certain stage of its growth is then:

FIGURE 4 | Internal growth of a city. (A) internal distribution of population per area of each stripe located at L distance from the center of the city. (B) number of
levels per stripe at L distance from the center. (C) internal distribution of number of occupied sites per area of each stripe located at L distance from the center of the city.
(D) comparison between expected population per site using our equations and the measured data from the GHS [26]. (E) comparison between the average number of
levels obtained from our equations andmeasured LIDAR data from London taken from Copernicus data [27], which is divided by 3 m as an average floor height. (F)
comparison between the expected density of sites and the measured data from the GHS. In blue real data, in black the equations derived with this approach.
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pL+dL � pL + δ wL2 + 1 − w( ) L + dL( )2 − L2( )( ) (39)
We can calculate pL+dL and pL using Eq. 1, 2 and their

difference is the increment of population dp. So we can
express δ as

δ � dp

L + dL( )2 1 − w( ) + L2 2w − 1( ) (40)

wherew is adjusted to fit the real distributions, in the modeling
process w has been made dependent on the step size, so variations
on the step size would not influence the final distribution, the
adjusted value was w � dL

25, of course this can only be valid as long
as w < 1, our step chosen for the model was dL = 1, the value used
in the modeling was w � 1

25.
Of course, as we add new population, each city stripe must

remain under the maximum possible population. This maximum
possible population can be calculated from Eq. 8, where max(p) =
max (a〈ℓ〉〈h〉) = amax〈ℓ〉max〈h〉 and since max〈ℓ〉 = 1 then
max(p) = a�h�. So each stripe must remain below its area multiplied
by the maximum height of the city for the current linear dimension.

When deciding where to locate in the city, a new inhabitant

only cares on the distance to the center, in order to simulate this

extent when distributing the population (δwL2) over the pre-

existing city, we weight each strip by howmany more people fit in

it, divided by its perimeter, max(pi)−pi

4Li
and use this factor to

distribute the population on the existing city.
We can repeat the same steps for the number of sites and the

length of roads, obtaining the most important variables. For
number of sites, we choose a maximum possible density of 0.9
(being 1 complete occupation), this value was obtained from the
data observed, while length of roads is limited by the number of
sites. From it we can calculate the heights of buildings expected
and the density of sites per area or of people per site.

The height of buildings for the real data is a direct measurement
taken from the LIDAR available at the Copernicus site [27] and no
transformation was applied other than dividing it by 3m, which is
taken as an average floor height, this is shown in Figure 4E. In order
to calculate the density of a site, we calculate how many occupied
sites (there exists population in that element of the grid using data
from the GHS [26]) are in the surrounding area of each site (with a
radius of 6.250 km) and divided it by themaximumpossible number
of sites in that circle, as shown in Figure 4F. The last comparison
(population per site) is more complicated, and we need to think how
this data was created. The population data is obtained from the
Global Human Settlement layer [26], this data has been produced by
taking the population in censal sections, determining the building
footprints from satellite data and interpolating the population with
the perceived density of buildings, also, most probably, since we do
not see any clear cuts from the censal sections, a spatial interpolation
averaging large discontinuities was performed. Both interpolations
(and even the data aggregated to a censal section) reduce the peaks of
population, softening the overall distribution. Therefore, in order to
create a fair comparison, we performed similar steps to our results.
In Figure 4C both the real distribution obtained (dotted points) and

the distribution obtained after a process of clustering and
interpolation is shown.

The correspondence of the distributions obtained using the
model with the real ones is fairly strong, indicating that this
process could be a valid model for the internal growth of a city.
However, and as we can notice in Figure 4Bwe can see that at the
outskirts of the city there is a strange behaviour, where the height
of buildings start growing again instead of decreasing, which
means that there is still room for improvement. This problematic
is created because the number of sites decreases faster than the
population for that range.

DISCUSSION

The analytical derivations that give rise to the equations
portrayed in this work, makes them exact functional forms of
many aspects of the city’s physical environment. This is of
extreme importance, since every derivation made from them,
every operation will still represent what they are meant to convey.
As it is often said, we stand on the shoulder of giants, and
approximated equations of similar quantities have been portrayed
before in the literature, and while these brought light to a lot of
issues they are of limited applicability, because of their
approximated nature.

I believe that following this text, new ideas will become easier
to test and derive, aiding the process of solving the puzzle of cities.

This work portrays the equations for fractal dimension,
population, area, length of roads, different densities of
population, average and maximum heights (levels) for a city,
and interactions (or GDP). Moreover, it shows how using this
framework we can study the internal distributions of those same
variables within the city.

DATA

The article uses population data from the Global Human
Settlement Layer (GHS) [26], height data from the
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data from OpenStreetMap [28] and GDP data from
Eurostat [29].
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