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In this study, we propose a quantitative technique to analyze and evaluate

microstructures of skin hair follicles based on Mueller Matrix transmission

microscopy. We measure the Mueller matrix polar decomposition (MMPD)

parameter images to reveal the characteristic linear birefringence

distribution induced by hair follicles in mouse skin tissue samples. The

results indicate that the Mueller matrix-derived parameters can be used to

reveal the location and structural integrity of hair follicles. For accurate hair

follicle location identification and quantitative structural evaluations, we

use the image segmentation method, sliding window algorithm, and image

texture analysis methods together to process the Mueller matrix-derived

images. It is demonstrated that the hair follicle regions can be more

accurately recognized, and their locations can be precisely identified

based on the Mueller matrix-derived texture parameters. Moreover,

comparisons between manual size measurement and polarimetric

calculation results confirm that the Mueller matrix parameters have

good performance for follicle size estimation. The results shown in this

study suggest that the technique based on Mueller matrix microscopy can

realize automatically hair follicle identification, detection, and quantitative

evaluation. It has great potential in skin structure-related studies and

clinical dermatological applications.
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Introduction

Skin health and structure detection have an extensive usage

value in various fields from cosmetics to disease diagnosis [1,2].

Many imaging methods have been developed for skin detection,

such as optical coherence tomography (OCT) [3], confocal laser

scanning microscopy [4], and dermoscopy [5–7]. Among all the

skin tissue structures, hair follicles play an important functional

role in regulating hair growth. Moreover, the shape, structure,

and quantity of hair follicles can indicate some diseases, such as

androgenetic alopecia [8], which is a common form of hair loss

occurring in both women and men. A recent study also shows

that stem cells in the hair follicle can lead tomelanoma, one of the

deadliest skin cancers [9]. Thus, hair follicle identification,

detection, and quantitative evaluation are important in studies

and clinical applications. Mueller matrix polarimetry is a

promising method for many studies [10], especially

biomedical and clinical applications [11–13], because it has

numerous advantages in tissue micro- and nano-structure

detection. As a non-contact and label-free imaging method,

Mueller matrix polarimetry can provide abundant quantitative

structural information on tissue samples. Also, traditional optical

equipment such as microscopes and endoscopes can be

conveniently upgraded to the Mueller matrix microscope and

endoscope by adding a polarization state generator (PSG) and

analyzer (PSA) to their optical path [14]. Recent studies have

demonstrated that the Mueller matrix microscope can be used to

acquire structural characteristics of various pathological tissue

samples and assist in diagnosis of skin cancer [15], liver fibrosis

and cancer [16,17], cervical cancer [18–20], colon cancer [21],

breast cancer [22–24], inflammatory bowel diseases [25], and

screening and evaluating β-amyloidosis in Alzheimer’s disease

[26]. Especially, Mueller matrix polarimetry is suitable for

detection of anisotropic structures, such as muscle fibers,

collagen fibers, and elastin fibers, with prominent linear

birefringence properties [11,13,27,28]. To obtain quantitative

information on fibrous structures in tissues and cells, in the

past decades, several Mueller matrix analyzing methods have

been proposed, such as the Mueller matrix polar decomposition

(MMPD) [29] and the Mueller matrix transformation (MMT)

[30], through which groups of parameters with clear physical

meaning can be derived. It has been shown that the MMPD and

MMT parameters can help us extract structural features of tissues

accurately. Considering that hair follicles usually contain

anisotropic structures such as root sheath, Mueller matrix

microscopy can be a potential method for their detection and

evaluation. In the practice of skin detection, Mueller matrix

microscopy, whose transmission mode is forward, is usually

used in trephine biopsy for skin histopathological diagnosis,

such as skin cancer [15].

In this study, for quantitatively analyzing and evaluating

microstructures of skin hair follicles, we first measure the

microscopic Mueller matrices of mouse skin tissue slices. We

calculate the MMPD parameter δ and θ (shown in Eq. 3) images,

which have been prevalently adopted to reveal the value and

angular distribution of linear birefringent micro- and nano-

structures of turbid medium samples [31]. For accurate hair

follicle location identification and quantitative structural

evaluations, we use the image segmentation method, sliding

window algorithm, and image texture analysis methods

together to process the MMPD parameter δ and θ images.

Moreover, we also try to extract the size information of hair

follicles after identifying their locations. Comparisons between

manual size measurement results and calculation results through

Mueller matrix-derived parameters are carried out. The

preliminary results shown in this study suggest that although

more studies are still needed, the technique based on Mueller

matrix microscopy can realize hair follicle identification,

detection, and quantitative evaluation. Combined with image

segmentation, sliding window algorithm, and image texture

analysis methods, it has great potential in skin structure-

related studies and clinical dermatological applications.

Recently, the transmission Mueller matrix microscopy has

been prevalently used for structural detection of various thin

tissue samples [15–25]. The observation of histological tissue

slices stained with a certain dye, which is the gold standard of

pathological diagnosis, can help us extract groups of Mueller

matrix parameters associated with microstructural features of

skin hair follicles. Also, a link between the transmission and

backward Mueller matrix parameters has been developed in our

previous study [32]. Specifically, it is found that the conclusions

drawn from transmission Mueller matrix microscopic imaging

based on retardance can also be helpful in guiding the in situ

backscattering Mueller matrix detection. Hence, based on the

transmission Mueller matrix parameter analysis in this study, we

can then apply the method and algorithm directly to in vivo

backscattering skin polarimetric detection, such as dermoscopy.

Methods and materials

Experimental setup

We used the dual rotating retarder polarimeter to measure

the Mueller matrix in this study [33]. Here, a commercial

transmission microscope (L2050, Liss Optical Instrument

Factory, Guangzhou, China) was upgraded to a Mueller

matrix microscope, whose schematic and photo are shown in

Figure 1. We added a polarization state generator (PSG) and a

polarization state analyzer (PSA) to the optical path [14]. The key

components of PSG and PSA are the fixed polarizers (P1 and P2,

extinction ratio 1000:1, Daheng Optics, China) whose axes are

placed along the horizontal direction and the rotatable quarter-

wave plates (R1 and R2, Daheng Optics, China). An LED lamp

(3W, 633 nm, Δλ = 20 nm, Cree, China) was adopted as the

illuminant for the microscope. The PSG generates light with
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different polarization states to transmit through the tissue section

and objective lens (Lens, Olympus, Japan). After modulated by

the tissue sample, the polarization states of transmitted light are

analyzed by the PSA, and the results are received and imaged by a

CMOS camera (MVCA023-10UM, 1920 × 1200 pixels,

Hikvision, China).

Before the Mueller matrix measurement, we calibrated the

microscope using the model based on Ref. [34] and the

eigenvalue calibration method to ensure the maximum errors

of the measured Mueller matrix elements are less than 1%. We

used polarizers and quarter-wave plates in different directions of

0°, 45°, 90°, and 135° as the reference samples for measurement

and calibrations. More details of the calibration procedure and

results can be found in Ref. [35].

During the measurement, as shown in Figure 1, the two

retarders (R1 and R2) rotate at constant rates, and the rotation of

R2 is five times faster than that of R1. In this configuration, the

two retarders are rotated harmonically and obtain 30 intensity

images at discrete intervals in rotation angle. The images can be

expanded in the Fourier series shown in Eq. 1, where I is the light

intensity captured by the CCD each time, αn and βn are the

Fourier coefficients, and ω is the rotating angle rate and set to 6°

in our experiment [36]. As the rotation ratio is set to be 5:1, the

Fourier expansion series are limited to 12 harmonics. There is a

coefficient of 2 before nω in Eq. 1 because of the repetition of

polarization elements during one complete revolution.

I � α0 +∑12
n�1

(αn cos 2nω + βn sin 2nω), (1)

After getting the Fourier coefficients, the Mueller matrix

elements of the sample can be obtained through the detailed

procedure described in Ref. [34].

Mueller matrix polar decomposition
(MMPD)

The Mueller matrix is a comprehensive description of

polarization properties of turbid media and an important tool

for revealing the microstructural and even nanostructural

information of biomedical samples [37–40]. However, the

Mueller matrix elements can be affected by multiple structures

simultaneously. Thus, the physical meaning and associations

with certain structural information of individual Mueller

matrix elements are unclear [11–13,28]. To deal with this

problem, several Mueller matrix analyzing methods have been

proposed to derive groups of polarization parameters, which can

reflect the specific structural characteristics of tissues. Among

those methods, the Mueller matrix polar decomposition

(MMPD) proposed by Lu and Chipman is widely

acknowledged [23,29,41,42], while the Mueller matrix

transformation (MMT) method has also shown broad

biomedical application prospects [30,41,42].

Previous studies demonstrated that the MMPD and

corresponding MMT parameters have a good correlation

[43–45]. Thus, they can be used to reveal characteristic

structural features, especially linear birefringent structures of

tissue samples [25,27,28]. In this study, for quantitative

FIGURE 1
Photo and schematic of the Mueller matrix microscope; lens: objective lens; P1 and P2: polarizers; R1 and R2: quarter-wave plates; PSA:
polarization state analyzer; PSG: polarization state generator. During themeasurement, the two quarter-wave plates rotate with constant rates (ω for
R1 and 5ω for R2).
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analysis of skin tissue samples, we used the MMPD technique,

whose basic idea is to decompose a Mueller matrix into the

product of three basic 4 × 4 matrices to represent basic light-

medium interaction processes, namely, depolarization (Δ),

retardance (R,) and diattenuation (D) shown in Eq. 2 [29]. In

Eq. 2,MD represents the diattenuation submatrix,MR represents

the retardance submatrix, and MΔ represents the depolarization

submatrix. In addition, D in submatrix MD is a 3 × 1 vector and

can be calculated directly from the Mueller matrix: D1 equals

M12, D2 equals M13, and D3 equals M14 (Di is the element of D

vector, Mij is the element in i row j column of Mueller matrix).

mD is 2 × 2 submatrix ofMD,mR is 2 × 2 submatrix ofMR andmΔ

is 2 × 2 submatrix ofMΔ. 0 is the 3 × 1 zero vector and PΔ is a 3 ×

1 vector in MΔ. More detailed calculation processes can be

referred to in [29].

M � MΔMRMD,MD � [ 1 �D
T

�D mD
],MR � [ 1 �0

T

�0 mR
],MΔ � [ 1 �0

T

PΔ
�→ mΔ ],

(2)

Considering that the main polarization property induced by

skin follicle structures is linear birefringence, we adopt the linear

retardance parameter δ and its orientation parameter θ for

further analysis. The two parameters can be calculated from

the total retardanceMRmatrix as shown in Eq. 3, where a1 and a2
are the vectorial elements of retardance [31].mR is the lower right

3 × 3 sub-matrix of MR, εijk is the Levi-Civita permutation

symbol, and MR(i,j) are the elements of MR.

R � cos−1[tr(MR)
2

− 1], ai � 1
2sinR

∑3
j,k�1

εijk(mR)jk

δ � cos−1{[(MR(2, 2) +MR(3, 3))2 + (MR(2, 3) −MR(3, 2))2] 1
2 − 1} ,

(3)

θ � 1
2
tan−1[a2

a1
]

Image texture analysis parameters

In a grayscale image, the regular gray value distributions of all

pixels compose the image texture. Each pixel has some correlation

with other pixels with a certain distance. Due to grayscale

discrepancy, the spatial correlation characteristics between pixels

are generated. We can obtain a series of image texture characteristic

values by analyzing the discrepancy of grayscale values among the

pixels. By combining the slidingwindowmethod and some prevalent

image texture analysis techniques, such as the Gray Level Co-

occurrence Matrix (GLCM) [46], we can obtain texture

information from the Mueller matrix parameter images.

Specifically, we use a sliding window with certain size on the

Mueller matrix-derived parameter images to calculate the image

texture parameter images, which retain both the position and image

texture information [47]. The sliding window method is similar to

convolution at a conceptual level. By sliding the image with a certain

length and width core, we can turn the image into a series of small

units for further processing. For instance, the GLCM is a square

matrix, but the images are usually rectangular arrays. The sliding

window method can transfer the rectangular image into a series of

square images with changeable size and step size for further texture

analysis.

The GLCMmethod proposed by Haralick et al has been widely

used for texture feature extraction and image texture analysis

[46,48–50]. The texture of a grayscale map is formed by repeated

occurrence of different grayscale values in a certain pattern. Thus,

there is a certain gray relationship between the two pixels that are

separated by a distance in the image space, which is the spatial

correlation between the gray values in the image. The GLCM

describes texture features by calculating the spatial correlation of

the image gray level. We select four representative parameters,

namely, contrast, energy, correlation, and inverse different

moment (IDM) for follicle structure detection.

(1) Contrast is defined as Eq. 4:

f 1 � ∑Ng

i�1
∑Ng

j�1
(i − j)2p(i, j) , (4)

in whichNg is the pixel number of one side of the square image, p

(i, j) is the relative probability of two pixels with grayscale i, j

appearing on the image. The contrast parameter reflects the

depth of the image texture groove.

(2) Energy is defined as Eq. 5:

f 2 � ∑
i

∑
j

p(i, j)2, (5)

The energy parameter can be obtained by summing the

square values of each element in the gray level co-occurrence

moment. The parameter reflects the image’s gray distribution

uniformity and texture fineness. If the texture in the original

image changes equably, that is, the gray scale changes equably,

the calculated energy has a large value.

(3) Correlation is defined as Eq. 6:

μi � ∑
Ng

i�1
∑
Ng

j�1
i · p(i, j), μj � ∑

Ng

i�1
∑
Ng

j�1
j · p(i, j)

σ2
i � ∑

Ng

i�1
∑
Ng

j�1
p(i, j)(i − μi)2, σ2

j � ∑
Ng

i�1
∑
Ng

j�1
p(i, j)(j − μj)2

f 3 �
∑i ∑j(ij)p(i, j) − μiμj

σiσ j
, (6)

The correlation reflects the consistency of the image texture

and the gray correlation between pixels. When the grayscale

difference between pixels is small, the calculated correlation value
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is large. On the contrary, if the gray values of adjacent elements

have a huge difference, the calculated correlation value is small.

(4) IDM is defined as Eq. 7:

f 4 � ∑
i

∑
j

1

1 + (i − j)2 p(i, j) , (7)

The IDM reflects the degree of local texture change. When

the gray values between pixels are equal, the minimum value of

the denominator in the formula mentioned above is 1, and the

calculated inverse moment is large. Therefore, a small IDM value

means a large change in the image texture, while a large value

shows a small change in the image’s local texture.

Another image texture analysis method used in this study is

the Tamura Image Processing Method (TIPM) proposed by

Tamura [51]. Compared with the GLCM, the Tamura texture

features are more in line with human texture visual perception.

The TIPM mainly includes six texture features: coarseness,

contrast, directionality, line-likeness, regularity, and roughness.

Here, we mainly used the contrast feature, whose calculation

procedure is shown in Eq. 8, where μ4 is the fourth-order

moment about the mean and σ2 is the variance.

Fcon � σ

α1/4
4

, α4 � μ4
σ4, (8)

Skin tissue samples

The skin tissue samples used in this study are the 6 μm thick,

dewaxed, unstained common, and healthy mouse dorsal skin

tissue sections provided by the Experimental Research Center,

China Academy of Chinese Medical Sciences. We selected

sagittal section samples of mouse skin tissue to obtain

complete skin hair follicle information. The sagittal section

surface is parallel to the skin surface, enabling better

visualization of the hair follicle structure. We prepared three

groups of mouse skin tissue samples as shown in Figure 2. Before

Mueller matrix imaging, the skin tissue sections were evaluated

by an experienced pathologist, and the locations of hair follicles

FIGURE 2
Mueller matrix microscopic imaging results of three mouse skin tissue sections and the original grayscale intensity images. (A–C) are the
microscopic grayscale images of the three samples, in which the hair follicles are identified and marked by red circles. (D–F) are the Mueller matrix
microscopic imaging results corresponding to (A–C). The color bar for diagonal elements is [0,1] and for other elements is [-0.2, 0.2]. All the elements
are normalized by m11. Here, we obtained three tissue slices from different mice as the samples.
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were identified. The study was approved by the Ethics Committee

of the China Academy of Chinese Medical Sciences.

Results and discussion

Mueller matrix imaging results of mouse
skin tissues

Figure 2 shows the imaging results of three mouse skin tissue

samples. We can observe from Figures 2A–C of grayscale light-

intensity images that the skin hair follicles have annulus

structures as marked by the red circles. However, there are

some other structures and dust that may also show similar

imaging results to those of the hair follicles, for instance, in

the lower left corner of (B), which can hardly be distinguished

using the unpolarized intensity images, whereas it can be noticed

from Figures 2D–F that the Mueller matrix elements, especially

the lower right 3 × 3 elements, show characteristic intensity

changes in the areas of hair follicles, suggesting the prominent

linear retardance generated by the hair follicle micro- and

nanostructures in the skin tissues [23,37,41].

To observe the birefringent hair follicle structures, we then

calculated theMMPD parameters δ and θ of the three mouse skin

tissue sections as shown in Figure 3 to represent the magnitude

and orientation distribution of the linear birefringence of the

sample, respectively [31]. Specifically, the MMPD δ parameter

images shown in Figures 3A–C demonstrate that the hair follicles

have circularly aligned structures around the center with larger

linear retardance values than other skin structures. It should be

mentioned that, as shown in Figure 3C, the hairs also represent

strong linear retardance properties. Meanwhile, in the MMPD θ

parameter images shown in Figures 3D–F, the hair follicles

represent periodically changed colors, confirming the

continuous orientation variations of the birefringent structures

around the center of skin hair follicles. These periodic

birefringent structures encircle the center of the follicle in

circular distribution, and each periodicity is filled with a

whole circle. Figures 3G–J also provide the zoom-in images of

parameters δ and θ of two selected hair follicle regions, marked by

the white squares in (A) and (B). Obviously, the values and

distribution behaviors of the linear retardance induced by the

characteristic microstructures can be used for hair follicle

location identification. In addition, we can see that the

structural integrity also contributes to retardance values,

indicating that the MMPD parameters can be used as

indicators for quantitative hair follicle health evaluations.

Polarization staining images of skin hair
follicles

In Polarization staining images of skin hair follicles, we

showed that the location and structure integrity information

FIGURE 3
MMPD parameter θ and δ images of threemouse skin tissue sections. (A–C) are the parameter δ results. (D–F) are the corresponding parameter
θ results. (G,H) show the zoom-in images of parameters δ, and (I,J) show the zoom-in images of parameter θ of two selected hair follicle regions
marked by the white squares in (A,B), respectively. All the scale bars in subfigures represent 20 μm.
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can be obtained by the MMPD parameter δ and θ images.

Previously, we proposed a polarization staining method to

combine different polarization parameter images into a single

one to provide multi-dimensional information conveniently [52].

Here, in this study, the parameters δ and θ are projected into the

HSV color space to generate polarization staining images shown

in Figure 4, in which the brightness intensity encoded by

parameter δ describes the linear retardance value, and the hue

encoded by parameter θ shows the fast axis orientation of the

linear birefringent structures. We can see from the results of all

three samples shown in Figures 4A–C that the skin hair follicle’s

locations are clearly revealed: The larger the value of linear

birefringence, the brighter the polarization staining images.

Compared to the parameter θ images as Figure 3 shows, the

hue weighted with the intensity images can more clearly

represent the circularly distributed orientation of the hair

follicles as shown in Figure 4. The results confirm that we can

observe the structural features more directly using polarization

staining images.

Follicle identification and quantitative
structural analysis based on polarization
images

In previous sections, we first demonstrated that the MMPD

parameter δ and θ images can be used to characterize the mouse skin

hair follicle microstructures, and then we visualized hair follicle

structural features by the polarization staining images based on

MMPD parameters. In this section, for hair follicle location

identification and quantitative structural evaluations, we apply the

image segmentation method, sliding window algorithm, GLCM, and

TIPM parameters [46,51] to process and analyze the polarization

images.

To identify the hair follicle locations, we extract their structural

features based on polarization parameter images first. Using the

traditional image segmentation method of double-down

sampling–binarization–etching–expanding–closing–hole filling, we

can obtain the corresponding hair follicle area from the MMPD δ

parameter image as Figure 5 shows. Figure 5 (D1)–(F1) are the

segmentation results using original MMPD δ parameter images of

three mouse skin samples shown as Figure 5 (A1)–(C1) at the

reduction rate of four-fold down-sampling. The white areas are the

segmented hair follicle regions whose pixel values are 1, while other

regions are with pixel values of 0. We can notice that by eliminating

the influence of the background noise in the polarization parameter

images using a relatively high reduction rate, the location and

number of the skin hair follicles can be identified using the

image segmentation method. More specifically, it is expected that

the size and number of the continuous areas in the images can be

used to locate and count the hair follicles in the skin tissue.

For better identification results, here, we also use the sliding

window method proposed in our previous study to show the local

texture feature of the polarization parameter images [47]. We select

TIPM and GLCM parameters as introduced in Polarization staining

images of skin hair follicles, which present prominent differences

between hair follicles and surrounding structures in MMPD δ and θ

images, as the typical texture feature parameters to show the sliding

window method results. The sliding window size was set to 30 ×

30 pixels, and the step size was 10 pixels. Figure 5 shows the sliding

window images of TIPM contrast (A2)–(C2), GLCM 1-energy

(A3)–(C3), GLCM contrast (A4)–(C4), GLCM correlation

(A5)–(C5), GLCM 1-IDM (A6)–(C6), and their corresponding

segmentation results after etching–expanding–closing–hole filling

processes. The sliding window method used here is based on a

threshold of 0.5. As shown in Figure 5, the textural parameter values

in each local region were calculated to build a new 2D image

according to their original spatial position. It can be noticed that

compared to the segmentation results using original MMPD δ

parameter images shown in Figure 5D1, F1), the sliding window

method based on different textual images can help suppress the

influence of background noise. Thus, the locations of hair follicle

regions can bemore accurately identified as shown in Figure 5. From

Figure 5D1, F1, we can see that the segmentation results based on the

original MMPD δ parameter images are not suitable for hair follicle

location, counting, and size calculating. It is supposed that since the

FIGURE 4
Polarization staining image of three mouse skin tissue samples, (A) sample 1, (B) sample 2, and (C) sample 3. Here, the intensity encoded by
parameter δ describes the linear retardance value, and the hue encoded by parameter θ shows the fast axis orientation of the linear birefringent
structures.
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contrast of the originalMMPD δ parameter images is low, it does not

fit the threshold. Thus, using different texture analysis methods to

extract image features and improve image contrast is necessary.

More specifically, among all the textural parameters, the

segmentation results based on TIPM contrast (A2)–(C2), GLCM

1-energy (A3)–(C3), GLCM contrast (A4)–(C4), and GLCM1-IDM

(A6)–(C6) show good identifications, and all the hair follicles can be

correctly recognized through these parameters, while those based on

GLCM correlation (A5)–(C5) have low accuracy. It is supposed that

the GLCM correlation is too sensitive to the texture changes; thus,

the results mixed with noise are unrelated to hair follicles. This leads

to lower accuracy here.

After obtaining the regions of hair follicles in the mouse

skin tissue samples using polarization texture parameter

image segmentation, we can then quantitatively evaluate

the size of the follicle structures. In this section, all the

hair follicles in the original images were confirmed and

manually measured by experienced researchers from China

Academy of Chinese Medical Sciences. It should be pointed

out that, in this study, we are trying to provide an automatic

polarimetric method for the researchers, who currently use

manual measurement to detect and evaluate skin hair follicles,

as a screening tool. Hence, here we compare our method to

that of the experienced researchers’ measurement as the

reference. Figure 6 shows the comparison between manual

size measurement (long axis diameter) and calculation based

on different polarization texture images of 23 randomly

selected hair follicles via correlation scatter plots. Here, we

chose the TIPM Contrast, GLCM Contrast, GLCM 1-DIM,

and GLCM 1-Energy, which show good structure

identification abilities in Figure 5, to acquire the size

information (long axis diameter) for hair follicle structures.

Specifically, in Figure 6, the manually measured hair follicle

size values were obtained from the original unpolarized

intensity images, and the calculated size values were

extracted based on the segmentation results of

FIGURE 5
Hair follicle region segmentation results of three mouse skin tissue samples. (A1,C1) are the original MMPD δ parameter images, (D1,F1) are the
corresponding segmentation results at the reduction rates of four times; (A2,C2) are the sliding window images of TIPM contrast, (D2,F2) are the
corresponding segmentation results; (A3,C3) are the sliding window images of GLCM 1-energy, (D3,F3) are the corresponding segmentation results;
(A4,C4) are the sliding window images of GLCM contrast, (D4,F4) are the corresponding segmentation results; (A5,C5) are the sliding window
images of GLCM correlation, (D5,F5) are the corresponding segmentation results; (A6,C6) are the slidingwindow images of GLCM 1-IDM, (D6,F6) are
the corresponding segmentation results. All the scale bars in subfigures represent 20 μm.
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corresponding sliding window polarization texture parameter

images. Figure 6 also gives the coefficient of determination

(R2) and the p value between the manually measured and

calculated values for each polarization parameter. From

Figure 6, we can observe that the sliding window images of

TIPM Contrast and GLCM 1-IDM based on the MMPD δ

parameter can provide relatively accurate size estimation

results, whose R2 are more than 0.25, which means their

Pearson’s correlation coefficients are larger than 0.5,

showing moderate correlation. Also, the p values of TIPM

Contrast and GLCM 1-IDM are less than 0.01, which

strengthens the correlation significance. However, the

results derived from sliding window images of GLCM

Contrast and GLCM 1-Energy can reach a determination

coefficient of less than 0.2, indicating they may not be

precise size indicators. The relatively low R2 values may

have resulted from the manual measurement. In the

manual measurement process, the artificial experience has

a prominent impact on the final measured values. The error

resulting from manual measurement would cause the

measured values of hair follicles of similar size to be

distributed in a large range, while the calculated values

from the algorithm are relatively stable. Thus, the results

obtained from TIPM Contrast and GLCM 1-IDM based on

the MMPD δ parameter have a lower standard deviation than

those of the measured value. This can also be seen in Figure 6

as the data points seem to be aligned along horizontal lines.

Moreover, in the case of a large distribution difference, there

is still a moderate correlation between measured values and

calculated TIPM Contrast values and GLCM 1-IDM values,

which shows the effectiveness of the two methods.

Table 1 provides the mean relative error between manually

measured size and calculated size values of 23 hair follicles for

polarization texture parameters TIPM Contrast, GLCM Contrast,

GLCM 1-DIM, and GLCM 1-Energy. The average relative error can

be used to determine accurate parameters for segmentation and

quantitative evaluation of hair follicle structure. The values shown in

Table 1 confirm that among the four parameters, the TIPMContrast

andGLCM1-DIMparameters have better performance thanGLCM

Contrast and GLCM 1-Energy, whose mean relative errors are

25 and 24.2%, respectively. It should be noted that to achieve

good hair follicle structure identification and evaluation using the

TIPM or GLCM parameters, the Mueller matrix microscope should

be calibrated and samples should be prepared carefully. The results

provided in Table 1; Figure 6 indicate that the Mueller matrix

imaging method combined with polarization image segmentation,

texture analysis, and calculation is expected to realize automatically

hair follicle identification, detection, and quantitative evaluation. The

information provided by Mueller matrix polarimetry shows great

potential in dermatological studies and applications.

Conclusion

Previously, we found that the conclusions drawn from

transmission Mueller matrix microscopic imaging based on

FIGURE 6
Correlation scatter plots between manually measured size value and calculated size value of 23 hair follicles for different polarization texture
images. (A) TIPM contrast with p < 0.01; (B) GLCM 1-IDM with p < 0.01; (C) GLCM contrast with p > 0.05; (D) GLCM 1-Energy with p > 0.05. The red
line in subfigures shows y = x, and the deviation of points from the line represents the error. The standard deviation of themeasured value is 6.09. The
standard deviation of TIPM contrast is 4.63. The standard deviation of GLCM 1-IDM is 4.92. The standard deviation of GLCMContrast is 7.28. The
standard deviation of GLCM 1-Energy is 6.37.

TABLE 1 Mean relative error between manually measured size value
and calculated size value of 23 hair follicles for different
polarization texture images.

Image texture Parameters Mean
relative error (%)

Contrast (TIPM) 12.2

1- IDM (GLCM) 14.7

Contrast (GLCM) 25.0

1-Energy (GLCM) 24.2
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retardance parameters can also be helpful in guiding the in

situ backscattering Mueller matrix detection. Hence, based on

the transmission Mueller matrix parameter analysis of skin

hair follicles in this study, we can next apply the method and

algorithm directly to in vivo backscattering skin polarimetric

detection, including the evaluation of hair follicle structures.

In this study, we proposed a quantitative technique to analyze and

evaluatemicrostructures of skin hair follicles based onMueller matrix

transmissionmicroscopy. First, wemeasured themicroscopicMueller

matrices of mouse skin tissue sections and then derived the MMPD

parameter δ and θ images to reveal the characteristic linear

birefringence distribution induced by skin hair follicles. The results

indicated that the MMPD parameters can be used to reveal the

location and structural integrity of hair follicles. Then, to more clearly

show the structural features of hair follicles, we applied the

polarization staining method to combine δ and θ parameter

images into a single one to provide multi-dimensional

information. Third, for accurate hair follicle location identification

and quantitative structural evaluations, we used the image

segmentation method, sliding window algorithm, GLCM, and

TIPM parameters together to process the Mueller matrix-derived

images. It has been demonstrated that compared to the segmentation

results using originalMMPD δ parameter images, the sliding window

method based on different textual images can help suppress the

influence of background noise. Here, the parameters are chosen to

achieve good and stable analyzing results. Thus, the hair follicle

regions can be more correctly recognized and their locations can be

more accurately identified based on the parameters. Last, for

quantitative evaluation of the follicle structure sizes, we compared

manual size measurement results and calculation results based on

TIPM Contrast, GLCM Contrast, GLCM Contrast, and GLCM 1-

Energy parameter images of mouse skin hair follicles. It was

confirmed that the TIPM Contrast and GLCM 1-DIM parameters

have good performance for follicle size estimation. The results shown

in this study suggest that, although more studies are still needed, the

technique based on Mueller matrix microscopy can realize

automatically hair follicle identification, detection, and quantitative

evaluation. Based on the analysis presented in this study, we believe

that the backscattering Mueller matrix polarimetry combined with

dermoscopy has the potential to be used for detection of hair follicle

size with good accuracy. This method can also show some details of

hair follicles as shown in Figure 3. Under the promotion of both, we

suppose that the method proposed in this study can be used for hair

follicle identification with more than 80% accuracy in real in vivo and

non-contact applications. It has great potential in skin structure-

related studies and clinical dermatological applications.
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