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In this work, micromagnetic simulations demonstrate that a steady oscillation mode
accompanied by magnetic domain splitting and the creation and annihilation of meron
can be excited by spin-polarized currents. It is found that the in-plane magnetic anisotropy
and Dzyaloshinskii-Moriya interaction (DMI) have a greater influence on the oscillation
frequency. The oscillation frequency can vary from 3 GHz to 31 GHz by controlling
anisotropy strength under a fixed current density. By changing DMI strength, the
oscillation frequency varies from 9 to 13.6 GHz and from 29.7 to 37 GHz. Compared
with ferromagnetic skyrmion-based spin-torque oscillators (STOs), the STOs based on this
magnetic domain and meron further increase the oscillation frequency. Our results may
provide theoretical support for the research and development of future high-
frequency STOs.

Keywords: spin-torque oscillator, micromagnetic simulation, domain structure, dzyaloshinskii-moriya interaction,
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INTRODUCTION

Spin orbit torque (SOT) originates from spin orbit coupling (SOC), which can generate spin transfer
torque by using the spin flow induced by charge flow [1–6]. According to the different nature of
symmetry breaking, SOC effects are classified as Dresselhaus effect [7–9], Rashba effect [10, 11],
Edelstein effect [12], and Dzyaloshinskii–Moriya interaction (DMI) [11, 13]. In materials lacking
inversion symmetry, DMI comes from chiral exchange interaction caused by the competition
between SOC and exchange interaction [11]. Previous experimental studies have shown that
magnetic skyrmions can be observed in systems with bulk or interfacial DMI [14–17]. The
magnetic skyrmions can be used to generate periodic magnetic oscillation signals which show
promise in spin-torque oscillators (STOs) [18–24]. The STOs hold potential applications for next-
generationmicrowave signal generators [25–43], in which the oscillating elements could use different
topologically nontrivial spin textures.

A typical stack of the STO is a trilayer structure that consists of twomagnetic layers (free layer and
fixed polarizer layer) separated by a non-magnetic space layer. From the viewpoint of practical
applications, one of the important performance indicators in STO devices is the tunability of
oscillation frequency. Intensive efforts have been devoted to manipulating the oscillation frequencies
by tuning the external in-plane magnetic field in the ferromagnetic nano contact spin-valve systems
[44–48]. The oscillation frequency is up to more than 60 GHz in a uniformly magnetized STO by
tuning the in-plane magnetic field [49]. However, for a ferromagnetic skyrmion-based STO, the
oscillation frequency usually is only a fewGHz.We have reported the frequency changing range of an
isolated edge skyrmion-based STO can be generated from 1 to 6.7 GHz [24]. Recent research results
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show that the oscillation frequency can be improved by adding an
annular groove to the free layer of ferromagnetic skyrmion-based
STOs [50]. After adding the annular groove, the frequency
tunability of the STO can reach ~16 GHz. In this paper,
combined with DMI, a microwave oscillation signal
accompanied by magnetic domain splitting is observed in a
nano-pillar structure that contains a free layer with an in-
plane uniaxial magnetic anisotropy and a spin polarizer with
perpendicular magnetic anisotropy. Using micromagnetic
simulations, we investigate the changing range of oscillation
frequency and the corresponding oscillation mode.

MODEL AND SIMULATION DETAILS

The STO nanopillar consists of a free layer with in-plane easy-axis
anisotropy and a perpendicular polarizer, as illustrated in
Figure 1A. The lateral dimension of the nanopillar is 100 nm
× 100 nm. The thickness of the free layer tF is 0.5 nm, and the cell
size is chosen to be 1 × 1 × 0.5 nm3. Micromagnetic simulations
were performed by using theMuMax3 [51]. Time evolution of the
free layer magnetization is modeled by the Landau-Lifshitz-
Gilbert-Slonczewski (LLGS) equation [25, 51].

dm
dt

� −γm × Heff + α(m ×
dm
dt

) − aJm × (m × mP)

− bJ(m × mP) (1)
where m = M/MS is the local magnetization of the free layer, MS

the saturation magnetization, γ is the gyromagnetic ratio, mp is
the unit vector of the spin polarizer along the +z direction, and α
the Gilbert damping constant. Heff stands for the effective field
including the exchange field, anisotropy field, demagnetization
field, and interfacial DMI effective field. Note that the thermal
fluctuation and the stray field from the polarizer are not
taken into account. The third and fourth terms of Eq. 1
describe the damping-like torque and the field-like torque in
the spin-transfer torque (STT) effect, respectively. The torque

factors are aJ � β(ε − αε′) and bJ � β(ε′ − αε) with
β � γZJ/μ0MsetF, ε � Pλ2/[(λ2 + 1) + (λ2 − 1)(m ·mP)], where
Z is the reduced Planck constant, J is the current density along
the z-axis, μ0 is the vacuum permeability constant, e is the
elementary charge, tF is the thickness of the free layer, P is the
spin polarization, λ is the Slonczewski parameter which
characterizes the spacer layer, ε′ is the secondary spin-torque
parameter. In our simulations, the positive current is defined as
electrons flowing from the polarizer to the free layer. The free layer is
considered a ferromagnetic film grown on a heavy-metal substrate.
The parameters adopted are as follows [52, 53]:MS is 5.8 × 105 A/m,
the exchange constant A is 1.5 × 10−11 J/m, the anisotropy constant
K is 8.0 × 105 J/m3. The Gilbert damping parameter α is 0.5 unless
specified. The interfacial Dzyaloshinskii-Moriya interaction (DMI)
strength is 3.5 mJ/m2. The spin polarization P is 0.5. The λ and ε′ is
set to 1 and 0 respectively. Since thermal fluctuation is not
considered, the temperature K is set to 0.

RESULTS AND DISCUSSION

First, we consider the free layer has a ferromagnetic ground state
with the magnetization along the +x direction as the initial state at

FIGURE 1 | (Color online) (A) Schematic diagram of the STO nano-pillar.
The free layer has an in-plane magnetic anisotropy. (B) Snapshot of the
ground state of the free layer, where the magnetization of the free layer is along
the +x direction. Gray is the background color. The central circular region
with 30 nm in diameter indicates the regime of applied current.

FIGURE 2 | (Color online) (A) The spin texture at different times for one
oscillation period, where MS = 5.8 × 105 A/m, A = 1.5 × 10−11 J/m, K = 8.0 ×
105 J/m3, α = 0.5. The current density is 36 × 1011 A/m2. DMI strength is
3.5 mJ/m2 (B) shows the <mz> as a function of time. (C) FFT amplitude
spectrum of <mz> in (B).
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α = 0.5 and DMI = 3.5 mJ/m2, as illustrated in Figure 1B. A
negative current is vertically injected into the nano-pillar by a
point contact electrode so that the STT generated by the negative
current drives the magnetization in the central circular region
towards the −z direction (mz < 0, downward direction). However,
under the influence of the DMI and in-plane easy-axis magnetic
anisotropy, a magnetic domain pair with opposite magnetization
orientations begins to appear in the central region at t = 270 ps, as
shown in Figure 2A. At t = 310 ps, the central magnetic
upward domain (mz > 0) is split up into two distinct
magnetic domains. The lower magnetic domain evolves into
a meron texture. We calculated the topological number
Q � −1/(4π)∫dxdy[m · (zxm × zym)], showing that for the
meron created at t = 310 ps, the topological number equals
about 0.52 which is slightly larger than the theoretical value
because of the influence of the magnetization distribution of
the adjacent domain. At t = 340 ps, a new magnetic domain
structure with +z direction appears and gradually stretches,
which is accompanied by the movement and the annihilation

of the meron texture. The evolution of these magnetic
structures generates a periodic oscillation mode
(Supplementary Video S1), as shown in Figure 2A.
Figure 2B shows the oscillation curves of the spatial
average magnetization <mz> in the free layer. The
corresponding frequency spectrum obtained by the fast
Fourier transform (FFT) shows a peak of the frequency of
12.22 GHz with a full width at half-maximal (FWHM) about
0.3 GHz, as shown in Figure 2C. It should be noticed that if the
current is switched off at ~310 ps the domain pair will be split
into two bimerons after the relaxation process [54, 55].

The oscillation frequency strongly depends on the current
density and the material parameters of nano-pillars. Therefore,
we firstly investigated the frequency dependence on current
density for different damping α, as shown in Figure 3A. Our
simulation results indicate that the oscillation mode is similar to
that in Figure 2A. In this case, the STT effect becomes stronger
with the increased current. This enhanced STTwill slow down the
downward expansion speed of the left part domain (mz > 0) while

FIGURE 3 | (color online) (A) Dependence on the oscillation frequency of the applied current density and the damping α, where MS = 5.8 × 105 A/m, A = 1.5 ×
10−11 J/m, K = 8.0 × 105 J/m3. DMI strength is 4.0 mJ/m2. (B) Dependence of the oscillation frequency on the anisotropy constant K, where the damping α = 0.5. The
current density is fixed to 36 × 1011 A/m2.

FIGURE 4 | (Color online.) (A)Dependence of the oscillation frequency on the DMI strength. The current density is fixed to 36 × 1011 A/m2. (B–E) The time evolution
of the magnetization mz for different oscillation modes corresponding to different frequencies marked in (A).
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the right-part of the domain (mz < 0) maintains its magnetization
texture. Consequently, the oscillation period is prolonged.
Therefore, the oscillation frequency is negatively correlated
with the current density, as shown in Figure 3A. In our
simulation work, it should be notated that ε′ is set to 0 in
order to make the coefficient of the damping-like torque
consistent with those used in other simulation work [50, 54].
In the case of λ = 1, the change of ε′ will change the strength of
spin transfer torque effect, which will affect the simulation results.

For example, when ε’ = 0.2, the coefficient of the damping-like
torque will decrease. The oscillation mode can be observed by
increasing the current density. When ε’ = 0.3, the strength of the
field-like torque is greater than that of the damping-like. The
precession mode of the magnetization in the central region will be
observed.

The domain pair oscillation results from the competition
among spin transfer torque, DMI, and in-plane anisotropy.
When the in-plane anisotropy increases, the out-of-plane
magnetic moments tend to be in-plane. This will reduce the
size of the domain pair, which can shorten the transient time for
the left part of the domain to expand downward until it is split.
On the other hand, after the splitting of the left domain (mz > 0),
the annihilation process of the meron structure at the lower-left
region will also be shortened. Therefore, the oscillation frequency
is positively correlated with the magnetic anisotropy strengths, as
shown in Figure 3B. It is important to note that the oscillation
frequency can be tuned from 3 GHz to 31 GHz for different
anisotropy strength at a fixed current density. Compared with
ferromagnetic skyrmion-based STOs, this magnetic domain and
meron-based STO could further increase the range of oscillation
frequency.

The DMI strength also has a great influence on the oscillation
frequency because the oscillation mode strongly depends on the
DMI strength. As shown in Figure 4A, the oscillation frequency
increases from 11.9 to 13.6 GHz when the DMI strength increases
from 2.0 × 10−3 J/m2 to 2.7 × 10−3 J/m2. The corresponding
oscillation mode is a periodic change process from creation to
the splitting of an upward magnetic domain, as shown in
Figure 4B. With the DMI strength further increasing to 3.5 ×
10−3 J/m2, the frequency gradually decreases to 12.17 GHz, and a
clear transient meron can be observed in the oscillation mode
after the left domain splitting, see Figure 4C. Then the frequency
drops to 9.1 GHz and remains around 9 GHz when the DMI
strength increases from 3.7 × 10−3 J/m2 to 4.5 × 10−3 J/m2. As
shown in Figure 4D, the corresponding oscillation mode is
similar to Figure 4C. However, due to the enhanced DMI
strength, the meron creation by the domain splitting process
will always exist until a new meron is generated by the next
splitting, which compresses the existing meron downward and
finally annihilates it. As the DMI strength increases to 4.7 ×
10−3 J/m2, a stable meron can be observed, as shown in Figure 4E.
In this case, the position of the meron is fixed, which can prevent
the upward domain from stretching and splitting due to the
strong current. Therefore, the upward domain starts to oscillate
left and right under the action of the resultant force. This
oscillation mode has a shorter period which suddenly
increases the frequency to 29.7 GHz for the DMI strength D =
4.7 × 10−3 J/m2, as shown in Figure 4A. When the DMI strength
increases to 5.0 × 10-3 J/m2, the frequency can increase to
37.1 GHz.

From the above discussion, we can see that the oscillation
frequency is related to the magnetic texture, which mainly
results from the competition among the spin transfer torque,
DMI and in-plane magnetic anisotropy. Since the anisotropy
and the DMI strength can affect the oscillation frequency, we
guess that the spin polarization direction also effect the

FIGURE 5 | (Color online.) (A,B) Dependence on the oscillation
frequency of the angle θ between the positive z axis and polarization direction
in x-z plane and in y-z plane. The current density is fixed to 36 × 1011 A/m2.
(C–G)The time evolution of the magnetization mz for different oscillation
modes corresponding to different frequencies marked in (A,B).
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oscillation frequency. To verify this idea, we have carried out a
series of simulations by changing the orientation of spin
polarizer P. From the Figure 5A, we can see that for the
case where the polarization deviates from the +z axis and tilts
toward +x axis (the easy axis of anisotropy), the oscillation
frequency changes a little with θ for θ < π/4. The corresponding
oscillation mode is shown in Figure 5C. However, in the case
of π/4 < θ < π/2, the oscillation mode changes, as shown in
Figure 5D. In the new oscillation mode, the frequency
decreases with θ. The oscillation mode evolves into a cluster
texture formed alternately by meron and domain, when the
spin polarization is parallel to the easy axis of anisotropy (θ =
π/2), as shown in Figure 5E. For the case where the
polarization deviates from the +z axis and tilts toward +y
axis, the frequency decreases with the increase of θ for θ < π/4,
as shown in Figure 5B. However, the reduction is relatively
small. The oscillation mode is the stretching and splitting
process of the domain, as shown in Figure 5F. With the
further increase of θ, the oscillation mode evolves into the
oscillation process in Figure 5G. The corresponding frequency
attenuation rate also becomes faster. It is noted that the
frequency disappears for larger θ, because in this case, the
magnetic texture evolves into a static magnetic domain for
θ > 70o.

In the above simulation results, the diameter d of the central
region remains unchanged. However, the previous results
show that the amplitude and period of the skyrmion
oscillation can be well manipulated by modifying the
dimension of the medium [56]. Using the parameters in
Figure 2, we study the influence of the diameter d of the
central circular region on the oscillation mode. The in-plane
dimension of the simulated sample is fixed to 100 nm ×
100 nm. The simulation results show that the magnetic
mode is different for various d, as shown in Figure 6.
When the diameter d is small (d = 15 nm), the
magnetization in the central circular region is only tilted at
a small angle due to the influence of the edge effect, as
shown in Figure 6A. When d increases to 20 nm, a static
stable domain pair structure appears, as shown in Figure 6B.
For 24 nm < d < 65 nm, the static stable domain pair will
evolve into an oscillation mode, as shown in Figure 2A.
The oscillation frequency is negatively correlated with d.

Once the magnetic upward domain (mz > 0) closes to
the left edge of the sample, this domain will be destroyed
due to the edge effect. Under the influence of the in-plane
anisotropy and DMI, a stable magnetic domain structure
is formed, as shown in Figure 6C. It is worth noting that,
when the current density increases above a critical value,
the stable magnetic domain pair for d = 20 nm can evolve
into an oscillating mode. Therefore, in terms of the factors
affecting the formation of magnetic oscillation, the small size
means large current. However, the increase of oscillation
frequency needs to reduce d and current density at the
same time.

CONCLUSION

In summary, we proposed an STO concept based on magnetic
domain and meron texture in the nanopillar that contains an
in-plane magnetized free layer and a perpendicularly
magnetized polarizer. Micromagnetic simulations show that
a steady oscillation mode with GHz frequencies can be excited
by spin currents, accompanied by magnetic domain splitting
and the creation and annihilation of the meron state. We
investigate the influence of the related parameters including
current strength, damping α, anisotropy K, DMI strength, and
polarization P on the frequency. The simulation results show
that the anisotropy K and DMI strength have a greater
influence on the oscillation frequency. The changing range
of the frequency is from 3 to 31 GHz for different K under a
fixed current. The oscillation frequency varies from 9 to
13.6 GHz and from 29.7 to 37 GHz by changing DMI
strength. The current density, damping α and polarization P
also affect the frequency, but the effect is relatively small. The
changing range of the frequency is only within 10 GHz. Our
results also show that the change of frequency is related to the
magnetic structure. The variation law of the oscillation
frequency will change accordingly when the magnetic
structure evolves from one structure to another. The
oscillation frequency of nano contact-based STOs observed
in the experiment is up to 46 GHz. Theoretically, the observed
oscillation frequency is as high as 68 GHz in a spin-torque
oscillator that consists of the in-plane magnetized free and

FIGURE 6 | (Color online) (A–C) The spin texture for different diameter d, whereMS = 5.8 × 105 A/m, A = 1.5 × 10−11 J/m, K = 8.0 × 105 J/m3, α = 0.5. The current
density is fixed to 36 × 1011 A/m2. DMI strength is 3.5 mJ/m2.
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pinned layers in the presence of in-plane magnetic field.
Therefore, the frequency of the domain-based STOs needs
to be further improved. In addition, the frequency tunability,
emission power, and line width also need to be improved. In future
research work, we will continue to carry out relevant research work
in these aspects to further improve the performance of domain-
based STOs. Our results may provide theoretical support for the
research and development of future high-frequency spin torque
nano-oscillators.
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