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After the reward of more than 2 decades of pursuit on the high-Tc cuprate analog with the
hope to obtain a better understanding of the mechanism of high-Tc superconductivity, the
discovery of superconductivity in the infinite-layer nickelate brings more mystery to the
picture than expected. Tops in the list of questions are perhaps 1) absence of
superconductivity in the bulk nickelate and limited thickness of the infinite-layer phase
in thin film, 2) absence of superconductivity in the La-nickelate despite it being the earliest
studied rare-earth nickelate, and the role of 4 f orbital in the recipe of superconductivity, 3)
absence of Meissner effect and suspect of the origin of superconductivity from the
interface, 4) whether nickelate hosts similar pairing symmetry to the single-band high-
Tc cuprates or multiband iron-based superconductor. In this perspective article, we will
discuss the following aspects: 1) stabilization of the infinite-layer phase on the SrTiO3(001)
substrate and the thickness dependency of observables; 2) rare-earth dependence of the
superconducting dome and phase diagram of the (La/Pr/Nd)- infinite-layer nickelate thin
film; 3) experimental aspects of the measurement of Meissner effect; 4) theoretical
framework and experimental study of the pairing symmetry of infinite-layer nickelate
superconductor.
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MAIN TEXT

Around 4 decades ago, the witness of superconductivity above 30 K redefined preexisting knowledge
on the mechanism of superconductivity and restructured the landscape of the playground on
superconductor materials [1, 2]. Understanding the high-temperature (high-Tc) superconductivity
has since been one of the holy grails in physics. Several characteristic properties were discussed in the
cuprate superconductor: 1) quasi-2D CuO2 square-planar lattice, 2) antiferromagnetic order and
superexchange interaction, 3) spin S � 1

2 half-filling state, 4) Cu
2+ of 3 d9 electronic configurations

[3–7]. To identify which parameters are the key ingredients which drive the high-Tc

superconductivity in cuprate, searching for isostructural compounds with some of these
properties and comparing them to the cuprate were motivated [8]. Among all the cuprate
analogs [9], nickelate of Ni1+ with the same 3 d9 electronic configurations was identified as the
closest cousin to the cuprate [7, 10]. For decades, theoretical and experimental efforts have been
made to explore the lead [11–13]. Unlike cuprate, which was first synthesized in the bulk form,
superconducting nickelate was only realized recently in the thin-film form [14–21], with Ni1+ in the
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infinite-layer phase that can be achieved through topotactic
reduction from the perovskite compound. Missing
superconductivity in the bulk nickelate [22, 23] and limitation
in stabilizing the infinite-layer phase above ~10 nm from the
substrate [24–26] demands answers on the thickness-dependent
crystallinity and electronic structure of the infinite-layer nickelate
film. While lanthanide-cuprate La-Ba-Cu-O was the first
superconducting compound synthesized [27], lanthanide-
nickelate was initially reported to not host superconductivity,
but superconductivity was only realized in the neodymium-based
counterpart, a rare-earth element with 4 f magnetism [14]. The
possible roles of rare-earth magnetism in the early observation of
nickelate’s superconductivity added layers of mystery to the
newfound sister of cuprate [6, 28, 29]. In addition to the bulk
nickelate not being reported to show superconductivity, concrete
evidence of the Meissner effect in the superconducting nickelate

thin film was missing [14], leading to the suspect whether the
phenomenon was interfacial in nature. High-Tc cuprate is
uniquely identified with a dominant dx2−y2 -wave gap which is
believed to be mediated by the antiferromagnetic superexchange
interaction, that poses as a crucial factor in the high-Tc

superconductivity [3]. Hence, answering the superconducting
order parameter in the nickelate is the top priority. However,
the challenge in the fabrication of high-quality infinite-layer
nickelate films obstructed the experimental means to
investigate, especially with those surface-sensitive techniques
are not applicable when bad crystallinity or secondary phases
are prone to form at the surface of nickelate superconducting
thin-film [25]. Overall, while the discovery of superconductivity
in the nickelate provided an exciting playground to study the
highly correlated system, the newfound superconductor family
also ignited controversial debates that will reshape high-Tc

FIGURE 1 | Structural properties of the reduced infinite-layer nickelate thin film. (A,C,D) STEM HAADF images. (B) XRD (002) pattern. (A) A thick 30 nm
Nd0.85Sr0.15NiO2 film has infinite-layer phase stabilized up to ~5 nm from the substrate interface. Above 5 nm, secondary phase or off-tilt structure can be seen, data is
adapted from [26]. Entire Nd0.8Sr0.2NiO2 film of thinner <10 nm can be reduced to infinite-layer phase with perfect crystallinity (C,D) up to the surface, with no sign of
secondary phase except for possible RP stacking fault occurs at some part of the film (D). (B) A clear Laue fringes can be observed for 8 nm Nd0.8Sr0.2NiO2 and
15 nm La0.8Ca0.2NiO2 thin films, indicating coherent infinite-layer phase. (E) Atomic-force-microscopy (AFM) images show the atomically flat terrace-like surface
topography in Nd0.8Sr0.2NiO2 (6.5 nm) film surfaces before (top) and after (bottom) topotactic reduction done in the PLD chamber.
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framework [4–6, 30–37]. In this article, we provided a
contemporary experimental perspective on the topics.

THICKNESS DEPENDENCE

Stabilization of Infinite-Layer Phase
Since the observation of superconductivity in the infinite-layer
nickelate Nd0.8Sr0.2NiO2 thin film [14], apparent challenges have
emerged in material synthesis [25]. On top of low reproducibility
and difficulty in the fabrication of superconducting doped infinite-
layer structure bymany experimental groups [38, 39], a hard-nut-to-
crack issue is a limited thickness from the substrate interface, which
the infinite-layer phase can be stabilized [25, 26, 40]. Above ~10 nm
from the substrate interface, obvious secondary phases or off-tilt
structures form instead of the infinite-layer or partially reduced
perovskite phase [25]. Inmany cases, growing a thick filmwill lead to
the formation of a secondary phase even at just ~5 nm from the
substrate (Figure 1A) [26]. On the other hand, if a thinner <10 nm
film is grown, the entire film can be fully reduced with no
observation of secondary phase even at the film surface (Figures
1C,D), except for possibly Ruddlesden-Popper (RP) stacking fault at
some regions of the film (Figure 1D). The obvious strategy for
obtaining the purest possible infinite-layer phase is fabricating thin
films below 10 nm. In addition to the absence of secondary phases as
shown in the STEM image, atomically flat surfaces with terrace-like
topography can be observed on the film surface before and after
topotactic reduction, as shown in the atomic-force-microscopy
images in Figure 1E. Some reports suggested using SrTiO3

(STO) capping layer on top of the nickelate thin film prior to a
topotactic reduction that can serve as a “backbone” to help stabilize
the infinite-layer phase during topotactic reduction from the
perovskite phase [25, 41]. However, such a method has not led
to a thicker infinite-layer phase of >10 nm. Lattice coherency of a
crystalline thin film can be seen from the X-ray diffraction (XRD)
Laue fringes which originate from the constructive interference
between perfect lattice layers of the thin film. To date, most
reported XRD data of the perovskite phase of the doped nickelate
thin film has clear Laue fringes in the vicinity of the (002) peak;
however, Laue fringes are typically absent for the reduced doped
infinite-layer nickelate (002) peak [16, 26, 41–43]. This may suggest
the presence of nonstoichiometric oxygen at random parts of the
reduced infinite-layer thin film. Significant development of
secondary or perovskite phases is typically avoided after
optimization in film growth conditions since no perovskite peak
or defect phase peak is seen in the XRD curve.

The challenge of obtaining a coherent infinite-layer phase does
not affect transport-related study since zero resistance can be
observed even when only a small part of the film is
superconducting. Unfortunately, the same cannot be said for
measurements requiring a pure phase with coherent crystallinity,
especially at the film surface, such as the Angle-resolved
Photoemission Spectroscopy (ARPES) or Scanning Tunneling
Spectroscopy (STS). Many probing techniques which reveal
crucial aspects of the superconductivity in nickelate cannot be
carried out because of the lack of coherent lattice and purity in
the infinite-layer phase, especially on the top surface. With much

effort in optimizing film quality, we recently reported an observation
of clear Laue fringes in the vicinity of XRD (002) peak of the infinite-
layer phase for Nd1-xSrxNiO2 and La1-xCaxNiO2 (Figure 1B).
Especially in the case of superconducting lanthanide infinite-layer
nickelate, more than 30 unit-cells (uc) of a coherent infinite-layer
lattice can be seen vividly from the XRD Laue fringes.

Thickness Dependency and Role of Strain
and Interface
Superconductivity is missing in the bulk infinite-layer nickelate [23,
44–46]. The puzzling limitation in the thickness of the infinite-layer
thin film further warrants the importance of investigating the
thickness dependency of the physical observables and electronic
structure of the infinite-layer nickelate. The zero-resistivity critical
temperature , Tc,0, of Pr0.8Sr0.2NiO2 thin film with thickness from 5.3
to 12 nm has been reported [8], showing a slight decrease from 5.3 to
8 nm and it then increases again up to 12 nm. However, the normal
state resistivity of the same samples also shows corresponding change,
where high Tc,0 samples have low resistivity. This implies the stronger
correlation between Tc,0 and normal state resistivity but not the film
thickness [25].On the other hand, theTc,0 ofNd0.8Sr0.2NiO2 thinfilms
monotonically increases with film thickness (4.6–10.1 nm) observed
from both resistivity and susceptibility measurements [24]. In
addition, a systematic evaluation of the thickness-dependent
electronic structure has been shown with the change in Hall
coefficients and XAS spectra of Nd0.8Sr0.2NiO2 thin film from 4.6
to 10.1 nm [24]. The results imply strain modulation and interface
effect in the infinite-layer nickelate.

RARE-EARTH DEPENDENCE

Doping Dependent Phase Diagram
The barium (Ba) hole-doped lanthanide La-cuprate La2-xBaxCuO4

was the first high-Tc cuprate synthesized, which kicked off the door to
high-temperature superconductivity beyond the BCS paradigm [27].
To mimic cuprate’s square-planar structure and 3 d9 electronic
configurations, Ni1+ state in nickelate was predicted to be an ideal
cuprate analog to assist in the understanding of the origin of high-Tc
superconductivity in cuprate [4, 7, 13, 14, 34, 47, 48]. Naturally,
lanthanum (La) was the first rare-earth option to be looked for in
nickelate. Many experimental attempts were made on La-nickelate to
achieve superconductivity with Ni1+ state in the form of superlattices,
infinite-layer structure for the past 2 decades [12, 14, 49, 50]. Despite
the long search, La-nickelate was initially found not to be
superconducting and the first observation of nickelate
superconductivity was realized by Sr-doped on a smaller
neodymium ion Nd-infinite-layer nickelate thin film with 4f
magnetism in 2019 [14]. Since then, superconductivity in the
infinite-layer nickelate family has been quickly expanded to
another neighbor with rare-earth magnetism in the rare-earth
series, praseodymium (Pr) [42], and has been successfully
reproduced by multiple experimental groups [17, 51]. However,
superconductivity in La-nickelate, which has an empty 4f orbital,
still seems non-existent for another 2 years until it was successfully
realized independently by two different groups in the Ca-doped La1-
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xCaxNiO2 [16] and Sr-doped La1-xSrxNiO2 [41] infinite-layer thin
film. Given the missing report of superconductivity in La-nickelate
for almost 2 decades, the role of 4fmagnetism and other differences
between LaNiO2 and (Pr/Nd)NiO2 in the recipe of superconductivity
become an open question and inspire further investigation on their
pairing symmetries, anisotropy and doping dependent phase
diagram [16, 26, 28, 29, 40, 41, 52–55].

Figure 2A shows doping-dependent superconducting dome
and phase diagram in various Sr-doped and Ca-doped rare-earth
(La, Pr, Nd) infinite-layer nickelate synthesized so far [15, 16, 26,
40, 41]. The first eye-catching feature is the presence of “dip” with
a lower Tc for a particular doping in the Nd1-xSrxNiO2 [26, 40]
and La1-xSrxNiO2 [41] thin films. Given the lack of consistency of
the “dip” feature on a particular doping across different rare-earth
nickelates and reports, it is presently unclear whether it is an
experimental artifact or a reminiscence of certain quantum
critical transitions in the system. The second observation is
the expansion of the superconducting dome to a higher
doping level from Nd1-xSrxNiO2, Pr1-xSrxNiO2 to La1-
xCaxNiO2. Given the increased difficulty in synthesizing
infinite-layer nickelate thin film at larger doping [25, 41], such
observation may have a certain correlation to film crystallinity.

The perovskite nickelate has a smaller in-plane lattice constant
than the SrTiO3 (001) substrate, which the lattice mismatches are
decreasing fromNdNiO3 to LaNiO3. It has been established that a
perovskite phase nickelate with good crystallinity is essential to
the success in topotactic reduction to the infinite-layer phase [25].
One may suggest that perovskite La1-xCaxNiO3 and Pr1-xSrxNiO3

can be grown to have better crystallinity than the Nd1-xSrxNiO3 at
a large doping regime. A similar argument could be made for the
difference in superconducting dome between La1-xCaxNiO2 and
La1-xSrxNiO2. The Ca2+ ion is of more similar size to the rare-
earth La3+, Pr3+ and Nd3+ ions than the larger Sr2+ ion [16].
Regardless, it is also possible that different rare-earth ion and
cation doping leads to a slight difference in the electronic band
structure of the infinite-layer nickelate, causing a different span of
superconducting domes. Another note is, so far, the doping level
in the fabricated thin films is expected to follow the stoichiometry
of the polycrystalline target used in the pulsed-laser-deposition
(PLD) growth. It is not warranted that the doping level is
accurate, and further investigation on the stoichiometry of the
doped thin film shall be carried out. The third observation is the
correlation between the size of the rare-earth ions and
superconducting transition temperature Tc. The maximum

FIGURE 2 | (A,B) Superconducting phase diagram of various hole doped infinite-layer nickelates, plotted as a function of hole doping levels x (A) and c-axis lattice
constant (B). Data are adapted from (La, Ca) [16], (La,Sr) [41], (Pr, Sr) [15], (Nd, Sr) [26, 40]. (C,D)Observation of Meissner effect in the superconducting infinite-layer thin
film atH ‖ c. Superconducting transition observed in resistivity and susceptibility (C)measurements for Nd0.8Sr0.2NiO2 thin film. (D) Themeasuredmoment at above Tc is
typically of −10−8 emu scale and almost constant at Tc,onset <T<300K, correspond to STO substrate diamagnetic signal.
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onset temperature in resistivity, where resistivity reaches 90% of
its value at 20 K, Tc,90% is roughly consistent among various
reports, where La-nickelate has Tc,90% ~9–10 K while Pr- and Nd-
nickelate has Tc,90% ~12–15 K. It is routinely explained by the
increase in electronic bandwidth for a smaller rare-earth ion
[14, 16].

In addition to the difference in the superconducting Tc

between La- and (Pr/Nd)- infinite-layer nickelate, the Hall
coefficient (RH) sign change temperature across doping levels
also exhibits dissimilarity between La- and (Pr/Nd)-nickelate. RH

sign change temperature is monotonically increasing with hole
doping in the case of (Pr/Nd)- infinite-layer nickelate [15, 26, 40],
which may suggest increased-dominancy in dx2−y2 hole pocket at
Fermi level with increasing hole doping. However, in the case of
La1-xCaxNiO2, the RH sign change temperatures are constant at
around 35 K between 0.23≤x≤ 0.3 and the difference in RH at
low temperature is small at increasing doping [16]. While
preliminary and possibly confounded by the impact of in-
plane compressive stress from the substrate, the role of hole
doping is likely to be different in modifying the band structure of
the Ca-doped La-nickelate as compared to the Sr-doped (Pr/Nd)-
nickelate.

Relevance to Lattice Constant
Since superconductivity has not been observed in the bulk
infinite-layer nickelate despite that high crystallinity samples
were made [44, 45], the ab-axis lattice constants of the
superconducting infinite-layer thin film are epitaxially
constrained to the substrate in-plane lattice constants. It
might be intuitive to look for any correlation between the
c-axis lattice dimension and superconducting dome of the
infinite-layer nickelate (Figure 2B). At first glance, the
superconducting dome is generally limited to between 3.32 Å
and 3.45 Å. However, the superconducting domes between
various rare-earth compounds do not completely overlap.
Also, for the case of La1-xCaxNiO2, the variation in c-axis
lattice constant across doping is small due to a very similar
ionic size between Ca2+ ion and La3+, and has slight sample-to-
sample variation at the same Ca doping [16]. It seems early to
suggest any strict correlation between the superconducting
dome of infinite-layer nickelate and the c-axis lattice
dimension. It is worth noting that an enhancement in onset
Tc was realized experimentally by applying external pressure
[17], which suggests the likelihood of further increasing Tc by
simulating chemical pressure through tuning in-plane lattice
constants, rare-earth ions size, or dopant size. In addition, we
note that there are recent theoretical calculations on the effect of
in-plane lattice constant and epitaxial strain in tuning the P4/
mmm - I4/mcm phase transition in RNiO2 (R = La, Pr, Nd, Eu-
Lu, Y) [56, 57].

OBSERVATION OF MEISSNER EFFECT

Two main phenomena characterize superconductivity: 1) zero
electrical resistivity, 2) Meissner effect. The first experimental
report of the discovery of superconductivity in Nd0.8Sr0.2NiO2

thin film provided multiple resistivity-temperature (R − T)
curves with clear zero resistivity data and two-coil mutual
inductance measurement to observe the expulsion of the
magnetic field in the Meissner state [14]. However, the real
part of the pickup voltage Re(Vp) does not go to zero as
expected for a superconductor in the Meissner state. Some
diamagnetic signal is observed, but the Re(Vp) measured the
lowest temperature is far from zero as compared to the change
within the transition Re(Vp) ~ 1.7 → 1.25 μV [14]. The absence
of concrete data to support the presence of Meissner state led to a
suspicion that the superconductivity in nickelate arises from the
interface with the substrate but is not intrinsic to the bulk
material.

Meissner effect is routinely seen in the magnetic susceptibility
measurement: 1) a negative slope in theM −H curve which ends
at the lower critical field Hc1, 2) negative diamagnetic signal
below Tc inM − T curve which the volume susceptibility χV (in S.
I. unit) goes to -1 for Meissner state. TheM − T andM −H data
were not presented in the early reports of the superconductivity
observed in the infinite-layer nickelate thin films. Zeng et al.
provided a study on the thickness-dependent effect on the film’s
Tc in both resistivity and susceptibility measurements [24]. The
diamagnetic moment in M − T curve (measured at H ‖ c) below
the superconducting transition is typically of ~ 10−5 emu scale for
a 2.5 × 5 mm2 superconducting thin film of 8 nm thick. After
demagnetizing field correction, the volume susceptibility at 2 K
can be calculated to be χV < − 0.9 which is fairly close to -1 for
perfect diamagnetism (Figure 2C). Figure 2D presents the raw
data for the magnetic moment measured above transition
T>Tc,onset. The infinite-layer thin film on STO substrate has
an almost temperature-independent moment for
Tc,onset <T< 300K, which the small ~ 10−8 emu negative
moment measured shall correspond to the STO substrate
diamagnetic signal. In addition, a negative slope in M −H
curve was also observed in superconducting Nd0.8Sr0.2NiO2

thin film, resembling the Meissner effect and bulk
superconductivity, which is intrinsic to the nickelate thin film
but not of the interface. The lower critical field Hc1 is defined as
the magnetic field in the sample which the field penetrates the
sample volume and the onset of mixed state for type Ⅱ
superconductor. In the M −H curve, due to the thin-film
nature with large demagnetizing factor N → 1 for H ‖ c, the
Happlied

c1 before demagnetization factor correction is around and
less than 1Oe, which is difficult to be resolved and has a large
error in the calculation of actualHc1. After demagnetizing factor
correction, theHc1(T � 0K) is approximated to be around 79 Oe.

The superconducting transition temperature observed in the
M − T curve typically has an onset close to the Tc,0 in resistivity
provided good homogeneity of the entire sample (Figure 2C).
Lower Tc, onset in M − T can be measured if the applied field is
larger than the lower critical field H>Hc1. Since the applied
Happlied

c1 ≤ 1 Oe for Nd0.8Sr0.2NiO2 infinite-layer nickelate thin
film, a larger measuring field of 10 Oe can lead to lower
Tc, onset and smaller χV(2K) as compared to 3 Oe measuring
field, for example. In addition, the Meissner effect will not be
observable, or only a very small diamagnetic signal is observed if
there are inhomogeneity and defect phases in the infinite-layer
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nickelate thin film, which can easily present even when a high Tc

is observed in the resistivity R − T data.

PAIRING SYMMETRY

Dominant d-wave Gap
The infinite-layer nickelate is a sister of the high-Tc cuprate,
which hosts a dominant dx2−y2 -wave gap, both sharing a similar
crystal structure and 3 d9 electronic configuration. In the recent
resonant inelastic X-ray scattering (RIXS) experiments at Ni
L3-edge on the infinite-layer nickelate thin films, charge order
and spin wave of antiferromagnetically coupled spins in a square
lattice was observed [43, 58–60]. The antiferromagnetic exchange
coupling strength J is estimated to be around 63.6 meV in RIXS.
While a different J value can be estimated with different spin
model calculation, the general consensus is that the nickelate’s J
value is smaller than the J ~ 130meV of the high-Tc cuprates [58,
61]. In addition, exchange bias effect was observed at a
ferromagnet/Nd0.8Sr0.2NiO2(20 nm) interface which could be
interpreted as the antiferromagnetic nature at the surface of
thick Nd0.8Sr0.2NiO2 film (though exchange bias field is absent
for ≤ 10 nm film) [18]. Despite the lack of concrete proof on the
long-range magnetic order to date, the t − J model used in
cuprates is perceived to be suitable to capture nickelate’s
superconductivity [55] and the general consensus across
different theoretical calculations on the superconducting
pairing symmetry of nickelate is a dominant dx2−y2 -wave
pairing like the cuprate with some pointed out various
possibility of multiband superconductivity [35, 52, 55, 62]. In
the t − J − K model which accounted for the Kondo coupling in
nickelate, an interstitial s-wave gap exists at the large hole doping
and small t/K region of the phase diagram [63]. On the other
hand, if hopping t/K is large as compared to the Kondo coupling,
a dominant d-wave pairing or a transition from (d + is)-wave at
low doping to d-wave at large doping is expected [63].

Considering the role of nickelate superconductivity in
illuminating the origin of high-Tc superconductivity in cuprates,
a detailed experimental study on the pairing symmetry of nickelate
is crucial. The first experimental report on the superconducting gap
symmetry of the infinite-layer nickelate is a single-particle-
tunneling experiment on Nd0.8Sr0.2NiO2 film surface which
detected signals correspond to s-wave, d-wave or a mixture of
both in different parts of the film surface [19]. However, we note
here the difficulty in achieving a good crystallinity and high purity
of the superconducting phase, especially near the film surface of the
reduced infinite-layer thin film. Hence, surface-sensitive
techniques which are useful in determining the gap profile like
the angle-resolved photoemission spectroscopy (ARPES) may not
be feasible to investigate the pairing order of the infinite-layer
nickelate thin films until the film quality at the surface is perfected.
Furthermore, phase-sensitive experiments are also waiting to be
seen [64].

Fully Gapped Pairing and Isotropic Upper
Critical Field
While the tunneling experiment did not lead to a complete
answer of the nickelate’s pairing order, the existence of a fully
gapped s-wave signal ignited multiple explanations to the
observation [63, 65]. Recently the upper critical field Hc2 of
Nd0.775Sr0.225NiO2 thin film is measured to be mostly isotropic
down to the lowest temperature and is smaller than the Pauli
limit [66]. The isotropic Hc2 in the Nd0.775Sr0.225NiO2 infinite-
layer nickelate is completely distinct from the cuprate with
large anisotropy and other quasi-2D superconductors. On the
other hand, this isotropic upper critical field behavior places
nickelate to be more similar to the high-Tc multiband iron-
based superconductor which is believed to host nodeless
s±-wave multigap pairing [67, 68]. Further investigation on
the nickelate’s controversial pairing symmetry is warranted
[69, 70].
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