
Aspects of Nonrelativistic Strings
Gerben Oling1,2* and Ziqi Yan2*

1The Niels Bohr Institute, University of Copenhagen, Copenhagen Ø, Denmark, 2Nordita, KTH Royal Institute of Technology and
Stockholm University, Stockholm, Sweden

We review recent developments on nonrelativistic string theory. In flat spacetime, the
theory is defined by a two-dimensional relativistic quantum field theory with nonrelativistic
global symmetries acting on the worldsheet fields. This theory arises as a self-contained
corner of relativistic string theory. It has a string spectrum with a Galilean dispersion
relation, and a spacetime S-matrix with nonrelativistic symmetry. This string theory also
gives a unitary and ultraviolet complete framework that connects different corners of string
theory, including matrix string theory and noncommutative open strings. In recent years,
there has been a resurgence of interest in the non-Lorentzian geometries and quantum
field theories that arise from nonrelativistic string theory in background fields. In this review,
we start with an introduction to the foundations of nonrelativistic string theory in flat
spacetime. We then give an overview of recent progress, including the appropriate target-
space geometry that nonrelativistic strings couple to. This is known as (torsional) string
Newton–Cartan geometry, which is neither Lorentzian nor Riemannian. We also give a
review of nonrelativistic open strings and effective field theories living on D-branes. Finally,
we discuss applications of nonrelativistic strings to decoupling limits in the context of the
AdS/CFT correspondence.
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1 INTRODUCTION

It has long been known that different string theories are limits ofM-theory.While the various corners
in this web that are described by perturbative string theories are fairly well understood, we are still far
from a complete understanding of nonperturbative regimes in the full M-theory. For example,
exploring nonperturbative aspects of string/M-theory is important for understanding the
information paradox for black holes, which are fundamentally nonperturbative objects. One
nonperturbative approach to M-theory stems from taking a subtle limit of the compactification
on a spacelike circle. This notably leads to Matrix theory [1–6], which serves as a powerful tool for
understanding the full M-theory in a simple system of D0-branes.

Similarly, by taking an infinite boost limit of the compactification of string theory on a spacelike
circle, we are led to the discrete light cone quantization (DLCQ) of strings, which has a Matrix string
theory description [7–9]. The infinite boost limit along a spacelike circle can be interpreted as a
compactification on a lightlike circle, which leads to nonrelativistic (NR) behavior in the resulting
frame (see for example [10]). From a different perspective, it is known that the DLCQ of string theory
arises from a T-duality transformation along a compactified spacelike circle in a genuine NR theory
[11–13]. This theory is a unitary and ultraviolet (UV) complete string theory described by a two-
dimensional quantum field theory (QFT) with a Galilean-like global symmetry in flat spacetime. This
NR symmetry is realized by introducing extra one-form worldsheet fields in addition to the ones that
are target-space coordinates. The theory has a spectrum of string excitations that satisfy a ‘string’
Galilean-invariant dispersion relation, and hence it has a spacetime S-matrix with NR symmetries.
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For these reasons, such a theory is referred to as nonrelativistic
string theory in the literature [12].1 Via T-duality, NR string theory
provides a microscopic definition of string theory in the DLCQ,
which is otherwise only defined as a subtle limit. In the formalism
of NR string theory, the exotic physics of string/M-theory in the
DLCQ with compactification on a lightlike circle is now translated
to the more familiar language of NR physics.

There are no massless physical states in NR string theory, and
the associated low-energy effective theory is described by a
Newton-like theory of gravity, instead of General Relativity
[12, 13]. Since it is UV finite, NR string theory provides a UV
completion of the associated theory of gravity in the same way
that relativistic string theory provides a UV completion of
Einstein’s gravity [12–14]. In this sense, NR string theory
defines a NR theory of quantum gravity. As such, it provides
us with a novel approach towards understanding relativistic
quantum gravity, orthogonal and hopefully complementary to
the usual paths towards quantum gravity that start from
relativistic classical gravity or relativistic QFT.

Recently, there has been renewed interest in NR string theory,
based for a large part on understanding the precise notion of its
target space geometry, starting with the early work in [15]. The
appropriate geometry that NR strings couple to is now known as
string Newton–Cartan geometry, which is neither Riemannian
nor Lorentzian. The original notion of Newton–Cartan geometry
was introduced to geometrize Newtonian gravity, and hence only
distinguishes a single direction which is associated to time. In
contrast, string Newton–Cartan geometry generalizes this notion
to distinguish two directions that are longitudinal to the string.

We start this review in Section 2 by introducing the defining
action of NR string theory in flat spacetime. We review how this
string theory is embedded in relativistic string theory as a
decoupling limit, where parts of the spectrum decouple and
the remaining states satisfy a Galilean-invariant dispersion
relation. This is achieved by coupling winding relativistic
string states to a background Kalb-Ramond field, which is fine
tuned such that its energy cancels the string tension. We elaborate
on basic ingredients of NR closed and open strings, and review
how they are related to relativistic strings in the DLCQ via
T-duality. In Section 3, we review recent progress on classical
NR strings in curved spacetime. This leads to (torsional) string
Newton-Cartan geometry in the target space. In Section 4, we
discuss quantum aspects of the sigma model for NR strings in
curved spacetime. We will also review different target-space
effective theories that arise from imposing the worldsheet
Weyl invariance at quantum level. Next, in Section 5, we
discuss applications of NR strings to the AdS/CFT
correspondence. We focus on a limit of NR string theory that

results in sigma models with a NR worldsheet. These theories are
related to decoupling limits of AdS/CFT that lead to Spin Matrix
theories. In Section 6, we conclude the review and comment on
other interesting lines of research in the field.

Finally, it is important to point out that several different limits
of string theory that lead to NR symmetries have been considered
in the literature. We will always use the term ‘nonrelativistic
string theory’ to refer to the theory wementioned above, but some
of the other approaches are sketched in Section 6.

2 WHAT IS NONRELATIVISTIC STRING
THEORY?

We start with reviewing the sigma model describing
nonrelativistic (NR) string theory in flat spacetime with a NR
global symmetry that was first introduced in [12]. We will review
its basic ingredients, how it arises from relativistic string theory,
and its relation to other corners of string theory.

2.1 Nonrelativistic String Theory in Flat
Spacetime
In this review, we work with a Euclidean worldsheet corresponding
to a Riemann surface Σ, parametrized by σα = (σ1, σ2), where σ2 is
the Euclidean time. We denote the worldsheet metric and the
worldsheet zweibein by hαβ and eα

a, with a = 1, 2, such that hαβ = δab
eα
a eβ

b. The worldsheet fields consist of the scalars Xμ = (X0, . . . ,
Xd−1) that map S to a d-dimensional spacetimemanifoldM, and in
addition two one-forms that we denote by λ and �λ. The worldsheet
scalars Xμ play the role of spacetime coordinates. In NR string
theory, two longitudinal spacetime coordinates are distinguished
from the remaining d − 2 transverse coordinates, as illustrated in
Figure 1. These directions are denoted by XA = (X0, X1) and XA′ =
(X2, . . . , Xd−1), respectively. The defining action for NR string
theory in flat spacetime is [16, 17].

S � 1
4πα′∫

Σ

d2σ
��
h

√
hαβ zαX

A′ zβXA′ + λ �DX + �λD �X( ), (2.1)

where α′ is the Regge slope and h = det hαβ. Transverse indices are
lowered using the flat Euclidean metric δA′B′, whereas the

FIGURE 1 | A schematic illustration of the longitudinal and transverse
fields XA and XA′ in the NR string action. The green arrows represent the two
longitudinal directions XA. Each horizontal slice represents the (d − 2)-
dimensional transverse directions XA′.

1Also see [13], where NR string theory is referred to as ‘wound string theory.’ In
[12], a no-ghost theorem similar to the one in relativistic string theory has been put
forward for NR string theory, showing unitarity of the theory. Moreover, tree-level
and one-loop NR closed string amplitudes have been studied in [12, 13], showing
that NR string theory is a self-consistent, UV-finite perturbation theory in the
genus. Higher-genus amplitudes have also been discussed in [12].We will not focus
on string amplitudes in this review, but a brief discussion can be found at the end of
Section 2.3.
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longitudinal directions contain a Minkowski structure. We
introduced the light-cone coordinates X and �X in the target-
space longitudinal sector and the worldsheet derivativesD and �D,

X � X0 +X1, D � i h−1/2 ϵαβ eα
1 + i eα

2( ) zβ, (2.2a)
�X � X0 −X1, �D � i h−1/2 ϵαβ −eα1 + i eα

2( ) zβ. (2.2b)
Here, the worldsheet Levi-Civita symbol ϵαβ is defined by ϵ12 =
+1. In conformal gauge, we set hαβ = δαβ so that D � z � z1 + iz2
and �D � �z � z1 − iz2, and the action Eq. 2.1 becomes

S � 1
4πα′∫

Σ

d2σ zαX
A′ zαXA′ + λ �zX + �λ z �X( ), (2.3)

which is also known as the Gomis–Ooguri string theory [12].
In conformal gauge, the fields λ and �λ transform [12, 18] under

the worldsheet diffeomorphism parametrized by ξα as δλ = ξ zλ +
λ zξ and δ�λ � �ξ �z�λ + �λ �z�ξ, where ξ = ξ0 + ξ1 and �ξ � ξ0 − ξ1. This
implies that λ and �λ transform as (1,0)- and (0,1)-forms,
respectively. In the action Eq. 2.3, they are Lagrange
multipliers that impose the chirality conditions

�zX � z �X � 0, (2.4)
on the longitudinal directions.2 The global symmetry algebra of
the NR string action Eq. 2.3 consists of an infinite number of
spacetime isometries [19]. This algebra contains two copies of the
Witt algebra, which are related to the (anti-)holomorphic
reparametrizations associated to the constraints Eq. 2.4. It also
includes a Galilei-like boost symmetry that acts on the worldsheet
fields Xμ as,

δGX
A � 0 , δGX

A′ � ΛA′
AX

A, (2.5)
which is referred to as the string Galilei boost symmetry. This is a
natural generalization of the Galilei boost symmetry for NR
particles: while the Galilei boost acts differently on space and
time directions, string Galilei boosts act differently on the
directions longitudinal and transverse to the string.
Additionally, for the action Eq. 2.3 to be invariant under
string Galilei boosts, the one-form fields are required to
transform as follows:

δGλ � Λ0
A′ + Λ1

A′( ) zXA′, δG�λ � Λ0
A′ − Λ1

A′( ) �zXA′. (2.6)
This implies that the two-dimensional QFT defined by the action
Eq. 2.3 has a NR global symmetry that acts on worldsheet fields.
Consequently, as we will see in Section 2.2, this theory has a
string spectrum that contains both open and closed string states
with a (string-)Galilean-invariant dispersion relation. The BRST
structure NR string theory is the same as in relativistic string
theory, so its critical dimensions are d = 26 for bosonic string
theory and d = 10 for superstring theories [12]. Intriguingly, in
order for NR string theory to have a nonempty string spectrum
that contains propagating degrees of freedom, it turns out that we

have to compactify the longitudinal spatial direction X1 over a
circle, as we will see in the following.

2.2 Nonrelativistic String Theory as a
Low-Energy Limit
Although NR string theory can be studied from first principles using
the action Eq. 2.3, it is useful to understand how this theory is
embedded in relativistic string theory. In fact, historically, NR string
theory was initially introduced as a zero Regge slope limit of relativistic
string theory in a near-criticalB-field [11–13]. Our starting point is the
sigma model that describes relativistic string theory,

Ŝ � 1
4πα̂′∫

Σ

d2σ zαX
μ zαX] Ĝμ] − i ϵαβ zαXμ zβX

] B̂μ]( ), (2.7)

with the following Riemannian (or Lorentzian) metric and Kalb-
Ramond background fields:

Ĝμ] �
ηAB 0

0
α̂′
α′ δA′B′

⎛⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎠ , B̂μ] � −ϵAB 0
0 0

( ). (2.8)

Here and in the following, we use hats to distinguish variables in
relativistic string theory, while variables in NR string theory are
unhatted. On this background, the relativistic string action Eq. 2.7 is

Ŝ � 1
4πα′∫

Σ

d2σ zαX
A′zαXA′ − α′

α̂′
�zX z �X( ). (2.9)

This action seems to be singular in the α̂′ → 0 limit. To obtain a
finite action under this limit, we introduce

Ŝ � 1
4πα′∫

Σ

d2σ zαX
A′zαXA′ + λ �zX + �λ z �X + α̂′

α′ λ
�λ( ), (2.10)

which reproduces the action Eq. 2.9 upon integrating out the
auxiliary fields λ and �λ in the path integral. Taking the limit
α̂′ → 0 in Eq. 2.10 gives rise to a finite action, which is the same as
the NR string action Eq. 2.3, with α′ being the effective Regge
slope in NR string theory. The associated interactions are only
finite if we simultaneously send the relativistic string coupling ĝs
to infinity, while holding ĝs α̂′1/2 fixed (which corresponds to the
radius of the circle compactified over the 11th dimension in
M-theory). Under this double scaling limit, the resulting NR
string theory has an effective string coupling gs � ĝs

����
α̂′/α′

√
,

where both gs and the effective Regge slope α′ are finite. This
limit3 is also known as the noncommutative open string (NCOS)

2The quantum mechanical implementation of the constraints Eq. 2.4 in string
loops will be reviewed in Section 2.3.

3Although this limit is the main focus of this review, several other limits of the
relativistic string Eq. 2.1 can be considered. For example, a different NR limit of
relativistic string theory has been explored in [19], where only the time direction
instead of the two-dimensional longitudinal sector is treated differently. This limit
leads to NR strings that do not vibrate. Additionally, a tensionless limit of
relativistic string theory has been considered [20–22], which leads to a sigma
model with non-Riemannian worldsheet structure, similar to the further limit of
NR strings we will discuss in Section 5.
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limit [11, 23, 25]. We will discuss its connection to NCOS in
Section 2.4.

We now examine the closed string states. The constant B-field
in Eq. 2.7 has a nontrivial effect if the X1 direction is compactified
over a circle of radius R. In the relativistic string theory described
by Eq. 2.7, closed string states with a nonzero winding number w
in X1 and momentum Kμ satisfy the following mass-shell
condition (see for example [26]):

E + wR

α̂′( )2 − α′
α̂′ K

A′KA′ � n2

R2
+ w2R2

α̂′2 + 2
α̂′ N + ~N − 2( ), (2.11)

together with the level-matching condition nw � ~N −N. Here, n
is the Kaluza-Klein number and (N, ~N) are the string excitation
numbers. The shift of the energy E in Eq. 2.11 is due to the
constant B-field in the compactified X1 direction. In the α̂′ → 0
limit, we find the dispersion relation for NR closed strings,

E � α′
2wR

KA′KA′ + 2
α′ N + ~N − 2( )[ ]. (2.12)

Finiteness of the dispersion relation Eq. 2.12 imposes the
condition that w ≠ 0. Therefore, all asymptotic states in the
closed string spectrum necessarily carry a nonzero string winding
number along the compact X1 direction [12, 14]. Note that the
Kaluza-Klein momentum number n does not show up explicitly
in the dispersion relation, but only enters via the level-matching
condition.

As is evident from the rewriting Eq. 2.9 of relativistic string
theory, the free theory Eq. 2.3 that describes NR string theory can
be deformed towards relativistic string theory by reintroducing
the operator λ�λ as in the action Eq. 2.10, with a nonzero α̂′ [14].
Indeed, turning on the λ�λ deformation controlled by the coupling
U0 � α̂′/α′ inside the NR string action Eq. 2.3 modifies the NR
dispersion relation Eq. 2.12 back to Eq. 2.11, which we rewrite as

E � α′
2wR

KA′KA′ + 2
α′ N + ~N − 2( ) − U0 E2 − n2

R2
( )[ ]. (2.13)

When U0 ≠ 0, there are asymptotic states in the zero-winding
sector with w = 0 that satisfy the relativistic dispersion relation,

U0 E2 − n2

R2
( ) − KA′KA′ � 2

α′ N + ~N − 2( ). (2.14)

In contrast, as we have seen earlier, only states corresponding to
strings that have nonzero winding around the longitudinal target
space circle X1 survive in the NR string theory limit α̂′ → 0. To
identify our NR corner in string theory, the λ�λ deformation that
drives the theory away from the NR regime must therefore be
eliminated. We will review how the λ�λ deformation is treated in
the literature later in Section 3, where string interactions are
included.

2.3 Nonrelativistic Closed Strings
Having reviewed how NR string theory arises as a zero Regge
slope limit in string theory, we return to the defining action Eq.
2.3 for NR string theory, focusing on the sector of nonrelativistic
closed string (NRCS) theory. We already learned from the α′→ 0

limit that, in order to have a nonempty closed string spectrum, we
have to compactify the longitudinal spatial direction X1 over a
spatial circle of radius R. We will now see that the Galilean-
invariant dispersion relation Eq. 2.12 can be derived directly
from the NR string action Eq. 2.3, without performing any limits,
by constructing the BRST-invariant vertex operators in NRCS.
For this, we first discuss a physical interpretation of the λ and �λ
fields by considering T-duality transformations of NRCS.

We first consider a T-duality transformation along the
compact longitudinal target space direction X1. For this, we
introduce the parent action

S � 1
4πα′∫ d2σ[zαXA′zαXA′ + λ �zX0 + �v( ) + �λ zX0 − v( )
+2Y1

�zv − z�v( )]. (2.15)

Integrating out Y1 imposes �zv � z�v, which we can solve locally by
setting v = zX1 and �v � �zX1. This reproduces the conformal gauge
NR string action Eq. 2.3. Instead, we integrate out v and �v, which
imposes λ = − 2 zY1 and �λ � −2 �zY1, so the action Eq. 2.15
reduces to

S � 1
4πα′∫ d2σ zαX

A′zαXA′ − 2zY1
�zX0 − 2�zY1zX

0( ). (2.16)

This is the action of relativistic string theory in a flat background,
with spatial directions XA′ and lightlike directions X0 and Y1.
However, since it is dual to X1, which is a circle with radius R, the
lightlike direction Y1 is a circle with effective radius α′/R.
Therefore, the closed string described by the action Eq. 2.16
describes the DLCQ of relativistic string theory [12, 14]. As such,
NRCS provides a NR covariant definition of DLCQ in relativistic
string theory, which is normally defined using a subtle limit of the
compactification of relativistic strings on a spacelike circle [4–6].

A T-duality transformation of NRCS along a compact
transverse direction acts in the same way as in relativistic
string theory, resulting in NRCS on a background with the
corresponding dual compact transverse direction. The
complete curved-spacetime Buscher rules can be found in [17,
26, 27], see also [28–32] for related works. These T-duality
relations of NRCS are displayed in Figure 2.

FIGURE 2 | T-duality transformations of NR closed string theory (NRCS).
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In addition, we consider a T-duality transformation along a
lightlike longitudinal direction in the action Eq. 2.16 that
describes the DLCQ of relativistic string theory. To do this, we
Wick rotate and compactify the X0 direction in the original action
Eq. 2.3. Following the same procedure as before, we start from the
action Eq. 2.16 and exchange theX0 direction for a dual Y0, which
leads to

S � 1
4πα′∫ d2σ zαX

A′zαXA′ + u �zY − �u z�Y( ), (2.17)

where Y = Y0 + Y1 and �Y � Y0 − Y1. This action describes NRCS.
Additionally, since u and �u impose the constraints z�Y � 0 and
�zY � 0, we get the duality map

λ � −2 zY1 � −zY, �λ � −2 �zY1 � �z�Y. (2.18)
These equations map the NRCS one-forms λ and �λ to the dual
coordinates Y and �Y. As such, we can interpret the one-forms on
the worldsheet as conjugates to the longitudinal string winding,
whereas the XA coordinates are conjugate to the longitudinal
string momentum [33, 34]. This can also be understood from a
double field theory perspective [35, 36].

While the relation Eq. 2.18 is technically only valid for
compact X0, we can still use λ = −zY and �λ � �zY (together
with �zY � 0 and z�Y � 0) as a field redefinition4 to obtain a
convenient set of parameters for the operator product
expansions (OPEs) of the original NRCS string action Eq. 2.3.
In radial quantization, we define z � eσ

2+iσ1 and �z � eσ
2−iσ1 . In

terms of XA′, XA and the dual variables YA, the nontrivial OPEs
are5

:Y z( )X z′( ) :∽ α′ ln z − z′( ) , :XA′ z( )XB′ z′( ):∽ − 1
2
α′ δA′B′ ln z − z′

∣∣∣∣ ∣∣∣∣2,
: �Y �z( ) �X �z′( ):∽−α′ ln �z − �z′( ). (2.19)

The closed string tachyon vertex operator then takes the form

: ei Kμ Xμ+ QA YA( ):, (2.20)
where Q0 = 0 and Q1 = − 2wR/α′ parametrizes the longitudinal
winding. We have omitted a cocycle factor, which is needed for
the single-valuedness of the OPEs and contributes a sign to string
amplitudes. Higher-order vertex operators are constructed from
the tachyon vertex operator Eq. 2.20 by dressing it up with
derivatives of Xμ and YA. The BRST invariance of such vertex
operators then leads to the dispersion relation Eq. 2.12 [12, 34].

The string amplitudes between winding closed strings
represented by such vertex operators have been considered in
[12]. The tree-level string amplitudes have poles corresponding to
excited closed string states carrying nonzero winding. There is no
graviton in the spectrum of NRCS. However, in the special case

where the winding number is not exchanged among the
asymptotic states, the amplitudes gains a contribution from
exchanging off-shell states in the zero winding sector. The
leading long-range contribution is proportional to 1/(KA′K

A′).
These zero-winding states become of measure zero in the
asymptotic limit, and therefore only arise as intermediate
states [14]. These intermediate states give rise to a Newton-
like potential after a Fourier transform, and induce an
instantaneous gravitational force between winding strings.

As in relativistic string theory, NRCS has a perturbative
expansion with respect to the genera of the worldsheet
Riemann surfaces. However, at loop level, there are nontrivial
constraints that restrict the moduli space to a lower dimensional
manifold [12]. This is because the one-form fields (λ, �λ) play the
role of Lagrange multipliers that require (X, �X) to be (anti-)
holomorphic maps in Eq. 2.4 from the worldsheet to the
longitudinal sector of the target space. For example, the
bosonic one-loop free energy at the inverse temperature β has
been analyzed in [12]. This free energy determines the
thermodynamic partition function of free closed strings and
gives rise to the Hagedorn temperature. It requires a Wick
rotation of X0 in the target space, followed by a periodic
identification X0 ~ X0 + β. The path integral over the zero
modes of λ and �λ leads to the following constraint on the
worldsheet modulus τ:

τ � 1
w

n + imβ

2πR
( ), n, m , w ∈Z. (2.21)

Here, m denotes the winding number in X0. From Eq. 2.21, it is
manifest that the integral over the fundamental domain for the
moduli space of the torus in the evaluation of one-loop
amplitudes is now localized to be a sum over discrete points.
The fact that the one-loop moduli space for NR strings lies within
the fundamental domain for relativistic string theory, implies that
the NR string free energy is finite. The constraint Eq. 2.21 is also
generalized to higher-loop and general N-point amplitudes [12],
in such a way that holomorphic maps from the worldsheet to the
target space exist. Such localization theorems in the moduli space
suggest that the computation of NR string amplitudes may
simplify significantly compared to the case in relativistic string
theory.6 The free energy and N-point amplitudes at one-loop
order match the ones in the DLCQ of string theory [14, 38]7.

2.4 Nonrelativistic and Noncommutative
Open Strings
We now consider open strings, whose worldsheet Σ has a
boundary zΣ. At tree level, Σ is a strip with σ1 ∈ [0, π] and
the Euclidean time σ2 ∈ R. Depending on which boundary

4The field redefinition Eq. 2.18 involves time derivatives and contributes
nontrivially to the path-integral measure. However, in the operator formalism,
the substitution Eq. 2.18 is always valid.
5A further reparametrization of worldsheet fields that mix XA and YA has been
considered in [34], where the resulting OPEs take the same form as in relativistic
string theory. It is therefore possible to evaluate string amplitudes in NR string
theory by borrowing results directly from relativistic string theory.

6See [37] for generalizations of such localization theorems at one-loop to NR open
strings. In this paper, KLT relations between tree-level NR string amplitudes are
also studied.
7It is also shown in [39] that the thermodynamic partition function of the finite
temperature type IIA string theory in the DLCQ is equivalent to the partition
function of matrix string theory.
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conditions the open strings satisfy in the compactified X1

direction, there are two open string sectors that are associated
to the defining action Eq. 2.3: 1) the nonrelativistic open string
(NROS) sector with NR string spectrum that has a Galilean-
invariant dispersion relation [14], and 2) the noncommutative
open string (NCOS) sector with noncommutativity between space
and time8 and a relativistic string spectrum [12–14]. For
simplicity, we require in the following discussions that the
open strings satisfy Neumann boundary conditions in X0 and
XA′, with zX0/zσ1 = zXA′/zσ1 = 0 on zΣ at σ1 = 0, π.

First, consider open strings that satisfy the Dirichlet boundary
condition δX1 = 0 on zΣ, by anchoring the ends of an open string
on D(d − 2)-branes transverse to X1. In this case, the variation of
the action Eq. 2.3 with respect to XA vanishes only if λ � �λ on zΣ.
The open string spectrum has a Galilean-invariant dispersion
relation [14],

K0 � α′
2wR

KA′KA′ + 1
α′ N − 1( )[ ], (2.22)

where w is the fractional winding number of open strings
stretched between transverse D-branes located along X1.
Therefore, imposing Dirichlet boundary conditions in X1

defines the NROS sector. On the D-brane, the global
symmetry of the sigma model is broken down to be the
Bargmann symmetry. In the zero winding sector, the effective
field theory living on a stack of n coinciding D-branes is Galilean
Yang—Mills theory [33],

SYM � 1
g2
YM

∫ dX0 dXA′ tr
1
2
D0ND0N − EA′ D

A′N − 1
4
FA′B′ F

A′B′( ),
(2.23)

withD0 and DA′ are covariant derivatives with respect to theU(n)
gauge group. The electric and magnetic field strengths EA′ and
FA′B′ are associated to the gauge fields A0 and AA′ on the D-brane.
The scalar field N is in the adjoint representation of U(n), and
perturbs around the solitonic D(d − 2)-brane. In the U(1) case,
this gives rise to Galilean electrodynamics (GED) [44–46]9.

Next, consider open strings that satisfy the Neumann
boundary condition zX1/zσ1 = 0 on zΣ. In this case, open
strings reside on spacetime filling D-branes. For the theory to
be well-defined, a nonzero electric field strength E (or a nonzero
B-field) is introduced. The resulting theory has a relativistic string
spectrum and noncommutativity between the longitudinal space
and time directions, with [X0, X1]∝E−1. Therefore, imposing
Neumann boundary conditions in X1 defines the NCOS sector
[12, 13]. NCOS was first discovered as a low energy limit of string
theory [11, 23, 24], in the same setup that we discussed in Section 2.2.

Also see [48–50] for original works onD-branes inmagneticfields and
their applications to noncommutative Yang-Mills theories. NCOS is
S-dual to spatially-noncommutative Yang-Mills theory [24].

Nonrelativistic and noncommutative open strings are related
via T-duality [51], as illustrated in Figure 3. In NROS, the
geometry of the longitudinal sector in the target space is taken
to be a spacetime cylinder, wrapping around the compactified
longitudinal spatial direction X1. Performing a T-duality
transformation along X1 in NROS leads to the DLCQ of
relativistic open string theory on spacetime filling D-branes.
To make the connection to NCOS, one needs to introduce a
twist in the compactification of X1 by shifting one end of the
longitudinal cylinder along the time direction, before gluing back.
This shift does not change the nature of the T-duality
transformation and still leads to the DLCQ of relativistic open
strings, unless the shift equals the circumference of the
longitudinal circle. In the latter case, the T-dual theory is
NCOS on a spacetime-filling brane and with a compact
longitudinal lightlike circle. The background electric field in
NCOS corresponds to a rescaling factor of the X1 circle in
NROS. It is also interesting to consider a T-duality
transformation along X1 in NCOS. In the T-dual frame, there
arises relativistic open string theory on a D(d − 2)-brane in the
DLCQ description. Such a D(d − 2)-brane is infinitely boosted
along a spatial circle [23]. Generalizations of the above T-duality
transformations in arbitrary background fields are studied in [51].

3 NONRELATIVISTIC STRINGS IN CURVED
SPACETIME

After reviewing the basic ingredients of NR string theory in flat
spacetime, we now consider generalizations to curved spacetime.
In the following, we will restrict to string states with zero winding
along the compact longitudinal direction. Such states are not part
of the physical spectrum, but they serve to mediate the
instantaneous forces between the physical asymptotic states
with nonzero winding. As a result, the low-energy effective
theory that arises from the nonwinding sectors of closed and
open strings that we consider in the following play a similar role
to the instantaneous force in Newtonian gravity or the Coulomb

FIGURE 3 | T-duality relations for NR open string theory (NROS). The
transverse T-duality swaps Dirichlet and Neumann boundary conditions in the
usual way.

8This space/time noncommutativity is tied to the stringy nature of the theory. In
contrast, introducing noncommutativity between space and time in field theories
typically leads to inconsistencies [40–42]. Also see [43] for theories with lightlike
noncommutativity.
9Note that this theory contains no propagating degrees of freedom. However, in
[47], it is shown that coupling GED to Schrödinger scalars in 2 + 1 dimensions
affects the renormalization group (RG) structure nontrivially and leads to a family
of NR conformal fixed points.
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force in electrostatics. Exponentiating the vertex operators
associated with such zero winding states in the path integral
gives rise to various background fields. These background fields
are functional couplings in the nonlinear sigma model that
generalizes the free worldsheet theory Eq. 2.1 by including
arbitrary marginal deformations that are conformally invariant.

We have seen in Section 2.2 that the marginal operator λ�λ
drives the theory towards the relativistic regime. In particular,
this operator deforms the NR dispersion relation Eq. 2.12 to the
relativistic dispersion relation Eq. 2.14. In this sense, the free
action Eq. 2.1 defines an unconventional vacuum around which
string theory can be expanded. As shown in Section 2.2, NR
string theory is defined at the corner where the theory is tuned
such that no λ�λ counterterms are generated. In the following, we
start by considering NR string sigma models where the λ�λ
operator on the worldsheet is classically tuned to be zero.
The consequences of this tuning at the quantum level will be
discussed in Section 4.

The remaining background fields give rise to a general
framework for studying the appropriate spacetime geometry
coupled to NR string theory. The resulting target space
geometry is known as torsional string Newton—Cartan
(TSNC) geometry [31, 52–54], since it generically allows for
nonzero torsion. In contrast to Newton–Cartan geometry,
which is related to particle probes, string Newton–Cartan
geometry contains not one but two distinguished directions
that are longitudinal to the string. In the free worldsheet
action Eq. 2.1, these directions are represented by the
longitudinal lightlike coordinates X and �X. We discuss the
gauge symmetries associated to the TSNC target space
geometry and show how they can be obtained by gauging a
Lie algebra. We also illustrate the connection to double field
theory and null reduction.

3.1 Strings in Torsional String
Newton—Cartan Geometry
The curved spacetime generalization of the free NR string theory
action Eq. 2.1 is obtained by turning on all allowed marginal local
interactions in the sigma model, which leads to the classically-
conformal action [16, 17] (see also [34] for the inclusion of the λ�λ
term)

Ŝ � 1
4πα′∫

Σ

d2σ
��
h

√
hαβ zαX

μ zβX
] Sμ] X( ) − i ϵαβ zαXμ zβX

] Aμ] X( ){
+ ��

h
√

λ �DXμ τμ X( ) + �λDXμ �τμ X( ) + λ�λU X( ) + α′R h( )Φ X( )[ ]}.
(3.1)

Here, hαβ is the worldsheet metric, R(h) is its Ricci scalar, and λ
and �λ are one-forms on the worldsheet. The symmetries of the
sigma model consist of the standard worldsheet
diffeomorphisms, worldsheet Weyl invariance, and target space
reparametrizations. IfU ≠ 0, the one-form fields can be integrated
out, and we end up with relativistic string theory. In the following,
we first discuss the geometry associated to the classical NR string
theory atU = 0, and we return to the interplay between the U→ 0
limit and quantum effects in Section 4.

The background fields in this action consist of the
symmetric and antisymmetric two-tensors Sμ] and Aμ], the
one-forms τμ and �τμ and the dilatonΦ. They can be interpreted
as a coherent state of NR strings. Demanding that Eq. 3.1 is
invariant under reparametrizations of Xμ implies that the
background fields transform covariantly under general
target-space diffeomorphisms. Furthermore, we introduce
coordinates xi that form a chart of the curved target-space
manifold. As a result, the worldsheet fields Xμ are the
composition of xμ and the embedding of the worldsheet in
the target space. Note that we only consider marginal
couplings, and we only allow the background fields to
depend on the embedding fields Xμ, which include both the
longitudinal and transverse directions. We do not allow the
background fields to depend on the one-forms λ and �λ, which
are associated with vertex operators that correspond to
winding string states.

One of the remarkable features of the resulting target-space
geometry is that it contains the one-forms τμA, where A = 0, 1,
which can be interpreted as vielbeine that parametrize the
directions that are longitudinal to the string. These
longitudinal vielbeine come with a corresponding Minkowski
metric ηAB and they are related to the fields in the action Eq.
3.1 by

τμ
0 � 1

2
τμ + �τμ( ), τμ

1 � 1
2

τμ − �τμ( ). (3.2)

In addition, the worldsheet couplings contain the symmetric
and antisymmetric two-tensors Sμ] and Aμ]. However, the
action Eq. 3.1 is invariant under a set of Stückelberg-type
transformations [17],

Sμ] → Sμ] − 2 C A
(μ τ

B
]) ηAB , Aμ] → Aμ] + 2 C A

[μ τ B
]] ϵAB, (3.3)

together with appropriate shifts of the Lagrange multipliers λ
and �λ that impose the constraints involving the longitudinal
vielbeine. Here, ϵAB is the Levi-Civita symbol for the
longitudinal directions, and CμA is an arbitrary matrix. This
Stückelberg symmetry Eq. 3.3 allows one to shuffle the
geometric degrees of freedom in the longitudinal directions
between the symmetric and antisymmetric couplings Sμ]
and Aμ].

We can fix this Stückelberg symmetry by requiring Sμ] to be
fully transverse with respect to the longitudinal directions. For
this, we introduce a set of inverse vielbeine τμA such that
τμA τ

μ
B � δAB , and set τμB Sμ] → 0. We denote the resulting

couplings by [31].

Sμ] → Eμ] � δA′B′ Eμ
A′E]

B′, Aμ] → Mμ]. (3.4)
Here, Mμ] is still an arbitrary antisymmetric tensor, which
generically contains both transverse and longitudinal
components, but Eμ] is now purely transverse. For this reason,
we have introduced the transverse vielbeine Eμ

A′ in Eq. 3.4, where
A′ = 2, . . . , d − 1. Together with their inverses E

μ
A′ and the

longitudinal vielbeine, they satisfy the following orthogonality
and completeness relations [15],
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τμ
A τμB � δAB , τμ

A Eμ
B′ � Eμ

A′τμB � 0, (3.5a)
Eμ

A′ Eμ
B′ � δA′B′ , τμ

A τ]A + Eμ
A′ E]

A′ � δ]μ. (3.5b)
The resulting geometry is referred to as torsional string
Newton—Cartan (TSNC) geometry [31, 52–54]. In contrast to
the usual Lorentzian geometry of general relativity, nonzero
‘intrinsic’ torsion related to dτA arises naturally in these
geometries for connections that are compatible with the NR
geometric data. Additionally, TSNC geometry has a
codimension-two foliation structure, with leaves being the
transverse sector. See Figure 4 for an illustration of such a
foliation structure. For this to be the case, the Frobenius
integrability condition needs to hold, which in terms of the
target-space one-forms τA = τμ

A dxμ is

dτA � αA
B ∧ τB. (3.6)

This generalizes ‘regular’ Newton–Cartan geometry with a single
clock one-form �τ � �τμdxμ, which corresponds to a foliation with
(d − 1)-dimensional spatial slices if the twistless torsional
Newton–Cartan (TTNC) condition �τ ∧ d�τ � 0 holds. In the
present ‘stringy’ case, condition Eq. 3.6 is equivalent to [55].

Eμ
A′ E

]
B′ z[μτ]]A � 0. (3.7)

As we will see later on, such foliation conditions play a role in the
quantum consistency of the worldsheet theory10. More generally,
conditions on dτA (which is related to torsion) are sometimes also
referred to as torsion conditions in the literature. In particular,
introducing a longitudinal spin connection Ωμ

A
B, the condition

D[μτ]]A � z[μτ]]A −Ω[μAB τ]]B � 0 (3.8)

has been proposed [15], which implies in particular that the
foliation condition Eq. 3.6 holds.

After fixing the Stückelberg symmetry as in Eq. 3.4, the sigma
model action Eq. 3.1 that describes NR strings becomes [31].

S � 1
4πα′∫

Σ

d2σ
��
h

√
hαβ zαX

μ zβX
] Eμ] − i ϵαβ zαXμ zβX

] Mμ]( )
+ 1
4πα′∫

Σ

d2σ
��
h

√
λ �DXμ τμ + �λDXμ �τμ + α′RΦ( ).

(3.9)
In the flat limit with τAμ � δAμ , Eμ

A′ = δμ
A′, and Mμ] = Φ = 0, this

action reduces to the free action Eq. 2.1. The worldsheet global
symmetries that act on Xμ are interpreted as local gauge
symmetries of the target space.

Similar to how Lorentzian geometry can be seen as the gauging
of the Poincaré algebra, we can use the resulting gauge
symmetries to define the TSNC target space geometry. The
vielbein fields τμ

A and Eμ
A′ can be seen as gauge fields

associated with the longitudinal translations HA and transverse
translations PA′. The longitudinal Lorentz boost JAB = ϵABJ and
the transverse rotations JA′B′ act on τμ

A and Eμ
A′ in the standard

way. In particular, the string Galilei boost, with generators GAB′
and Lie group parameters ΛA′

A, acts as

δGτμ
A � 0 , δGEμ

A′ � ΛA′
A τμ

A , δGMμ] � 2ΛA′
A ϵAB τ[μB E]]A′. (3.10)

In addition, the string Galilei boost symmetry acts nontrivially on
λ and �λ. Together, these symmetries form the string Galilei
algebra, whose commutators are given by [56].

JA′B′, JC′D′[ ] � δA′C′ JB′D′ − δB′C′ JA′D′ + δB′D′ JA′C′ − δA′D′ JB′C′,

(3.11a)
JA′B′, PC′[ ] � δA′C′ PB′ − δB′C′ PA′ , J,HA[ ] � ϵBA HB,

(3.11b)
JA′B′, GCD′[ ] � δA′D′ GCB′ − δB′D′ GCA′ , J, GAB′[ ] � ϵCA GCB′,

(3.11c)
GAB′, HC[ ] � ηAC PB′. (3.11d)

The target-space fields also transform under diffeomorphisms as
usual, and the antisymmetric field Mμ] transforms under a one-
form gauge symmetry,

δεMμ] � zμε] − z]εμ. (3.12)
Finally, the sigma model Eq. 3.9 is invariant under a dilatation
symmetry [17, 53] that rescales the longitudinal vielbeine τμA and the
one-form fields λ and �λ, while simultaneously shifting the dilaton
field Φ. This action therefore describes classical strings moving in a
TSNC geometry, corresponding to a gauged string Galilei algebra,
augmented with a dilatation symmetry associated to Φ and a one-
form gauge transformation associated to Mμ].

In the absence of the dilaton field, the Nambu-Goto form of the
action can be obtained by integrating out the worldsheet zweibein
eα
a in the path integral, which leads to [15].

SNG � 1
4πα′∫

Σ

d2σ
�������
−detταβ

√
ταβ zαX

μ zβX
] Eμ] − i ϵαβ zαXμ zβX

] Mμ]( ).
(3.13)

Here, ταβ = zαX
μ zβX

]τμ] is the pullback of τμ] = τμ
A τ]

B ηAB,
corresponding to the induced metric on the worldsheet, and ταβ is
its inverse.

FIGURE 4 | A schematic illustration of a stringy generalization of
Newton–Cartan geometry. The green arrows represent the two longitudinal
directions along the worldsheet, whose geometry is encoded in the vielbein
fields τμ

A. Each horizontal slice represents the (d − 2)-dimensional
transverse directions, parametrized by the vielbein fields Eμ

A′.

10String foliation constraints also arise from the 1/c2 expansion of the relativistic
string action [55], which we do not consider in this review.
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An alternative formulation of the Polyakov form of the action
Eq. 3.9 can be obtained by splitting off the longitudinal
components in Mμ] in terms of an additional gauge field mμ

A,

Mμ] � Bμ] + 2m[μAτ]]B ϵAB, δGmμ
A � −ΛA′

A Eμ
A′. (3.14)

In doing so, we have absorbed the boost transformations in mμ
A,

so that the remaining antisymmetric tensor Bμ] is invariant under
boosts. This results in the action [17].

S � 1
4πα′∫

Σ

d2σ
��
h

√
hαβ zαX

μ zβX
] Hμ] − i ϵαβ zαXμ zβX

] Bμ]( )
+

+ 1
4πα′∫

Σ

d2σ
��
h

√
λ �DXμ τμ + �λDXμ �τμ + α′RΦ( ). (3.15)

Here, we introduced the combination Hμ] � Eμ] + 2mA
(μ τ

B
]) ηAB,

which is invariant under string Galilei boosts. Since Bμ] no longer
transforms under boosts, it is similar to the ‘standard’
Kalb–Ramond field of relativistic strings, which transforms only
under the U(1) gauge symmetry δξBμ] � 2 z[μξ]] and spacetime
diffeomorphisms. As such, this alternative parametrization
separates the B-field on the one hand from the geometric data
Hμ], τμ

A and mμ
A on the other hand. These two groups of variables

then do not transform into each other under the string Galilei
symmetries, akin to the case in relativistic string theory. However,
without imposing τμA τ

]
B Bμ] � 0, this description of the target space

variables reintroduces a Stückelberg symmetry similar to Eq. 3.3.
As a result, Hμ] and Bμ] can never be completely separated in any
physical observable. Still, the requirement of Stückelberg symmetry
can provide a useful check on computations in terms of this
alternative parametrization.

3.2 Torsional String Newton—Cartan
Geometry From a Limit
In Section 2.2, we reviewed how NR string theory in flat
spacetime arises as a zero Regge slope limit of relativistic
string theory. This limiting procedure can be directly
generalized to strings propagating in arbitrary background
fields. For this, we start from the sigma model for relativistic
string theory,

Ŝ � 1
4πα̂′∫

Σ

d2σ
��
h

√
DXμ �DX] Ĝμ] + B̂μ]( ) + α̂′R Φ̂[ ]. (3.16)

Next, we introduce a set of longitudinal vielbeine τμ
A. We then

parametrize the relativistic Lorentzian background metric Ĝμ],
the Kalb–Ramond field B̂μ] and the dilaton Φ̂ using [15].

Ĝμ] � c2 τμ] + Eμ] , B̂μ] � −c2 τμAτ]BϵAB +Mμ] ,

Φ̂ � Φ − ln |c|, (3.17)

where Eμ] � δA′B′Eμ
A′E]

B′. In the flat limit, with τAμ → δAμ ,
EA′
μ → δA′μ and Mμ] → 0, the relativistic background fields in

Eq. 3.17 reduce to the choice of background fields Eq. 2.8 in flat
spacetime. We take τμ

A, Eμ
A and Mμ] to be independent of the

parameter c. To be able to take the c→∞ limit on the worldsheet,

we then introduce a pair of one-form fields λ and �λ, which allows
us to rewrite the action Eq. 3.16 as

Ŝ � 1
4πα′∫

Σ

d2σ
��
h

√
DXμ �DX] Eμ] +Mμ]( ){ + λ �DXμ τμ

+ �λDXμ �τμ + λ�λU + α′R h( )Φ}, (3.18)
where we have identified U = 1/c2. We then promote U to be a
functional coupling depending on Xμ. This corresponds precisely
to the action Eq. 3.1 with general marginal couplings that we
introduced at the beginning of this section. As a result, we see that
sending c → ∞ in the relativistic theory Eq. 3.16 using the
parametrization Eq. 3.17 of the background fields removes the
λ�λU term in the worldsheet action. This produces the sigma
model Eq. 3.9 for NR string theory in arbitrary backgrounds. Up
to rescalings, the c→∞ (or U→ 0) limit is equivalent to the zero
Regge slope limit that we considered in the previous section for
flat spacetime, where the parametrizations in Eq. 3.17 reduce to
the ones in Eq. 2.8 with a critical B-field.

While we are able to make sense of the c → ∞ limit on the
worldsheet, this limit seems singular from the perspective of the
relativistic NS-NS geometric data Ĝμ], B̂μ] and Φ̂ in Eq. 3.17. This
is not surprising, since theNR string sigmamodelEq. 3.9 that results
from the limit does not couple to a relativistic NS-NS geometry but
to TSNC geometry, as we discussed above. It is also important to
understand the NR limit directly on the level of the spacetime
geometry.Wewill now review two differentmethods that both show
how one can obtain TSNC geometry from Lorentzian geometry,
without relying on the worldsheet theory. The first method starts
from the description of Lorentzian geometry in terms of a gauging of
the Poincaré algebra, which can be extended to include the
Kalb–Ramond field. The second method uses double field theory,
which incorporates both the metric and the Kalb–Ramond field into
a single O(d, d)-covariant metric HAB. Both of these setups can be
used to consistently describe the c → ∞ limit of the target space
geometry. For simplicity, we will not consider the dilaton in the
following discussion.

3.2.1 Algebra Gauging
From an algebraic perspective, Lorentzian geometry can be
obtained from a gauging of the Poincaré algebra. This gauging
associates the Lorentzian vielbeine EÂ

μ , where we have
Â � 0, 1, . . . , d − 1, to the translation generators PÂ, while the
spin connectionΩÂB̂

μ is associated to the Lorentz boost generators
MÂB̂. One can incorporate the Kalb–Ramond field into this
construction by adding an additional set of generators QÂ to
the Poincaré algebra, which satisfy the same commutation
relation as the translation generators [31, 52]. The associated
fields, denoted by Πμ

Â, can therefore be thought of as an
‘additional’ set of vielbeine. With this, the total connection is

Aμ � Eμ
Â PÂ + 1

2
Ωμ

ÂB̂ MÂB̂ + Πμ
Â QÂ. (3.19)

The Lorentzian tangent space metric Ĝμ] is constructed from the
vielbeine EÂ

μ using the Minkowski frame metric ηÂB̂. Likewise, we
use the additional vielbeine Πμ

Â to parametrize the relativistic
Kalb–Ramond field,
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Ĝμ] � Eμ
Â E]

B̂ ηÂB̂ , B̂μ] � [Eμ
Â Π]

B̂] ηÂB̂. (3.20)

While the Π Â
μ fields initially have d2 degrees of freedom, this

parametrization of B̂μ] is invariant under shifting Πμ
Â → PÂ

B̂ Eμ
B̂

for any symmetric PÂB̂, which leaves the correct amount of
degrees of freedom for an antisymmetric tensor. The gauge
transformations associated to the Lorentz boosts correspond to
local Lorentz transformations, while the translations can be
related to diffeomorphisms. Similarly, the transformations
associated to QÂ correspond to one-form gauge
transformations. Using the appropriate identifications, this can
be done without any constraints on the torsion of the geometry.

To implement the NR limit, we split the frame indices Â �
(A,A′) into longitudinal and transverse indices and introduce the
reparametrization [52].

Eμ
A � c τAμ + 1

2 c2
ϵAB πμ

B( ),
Πμ

A � −c ϵAB τμ
B − 1

2 c2
ϵBC πμ

C( ). (3.21)

The transverse vielbeine correspond to Eμ
A′ and πμ

A′ = Πμ
A′. Using

the parametrizations in Eq. 3.20, this results in the following
expansions,11

Ĝμ] � c2 τμ] + τ(μA π])B ϵAB + Eμ] +O 1/c2( ), (3.22a)
B̂μ] � −c2 τμA τ]B ϵAB − τ[μA π]]B ηAB +Mμ] +O 1/c2( ). (3.22b)

Here, we recover the transverse metric Eμ] = δA′B′ Eμ
A′ E]

B′ and the
antisymmetric tensor Mμ] that were introduced in Eq. 3.4. The
latter is now parametrized as

Mμ] � τ[μA π]]B ηAB + E[μA′ π]]B′ δA′B′. (3.23)

In the c → ∞ limit, the redefinition Eq. 3.21 corresponds to an
_Inönü–Wigner-type contraction of the relativistic algebra. We
can then gauge the resulting F-string Galilei algebra [52] to obtain
the local transformations associated to the geometry. These local
transformations, which include both the string Galilei boosts Eq.
3.10 and the one-form gauge transformations Eq. 3.12, can be
derived from the F-string Galilei algebra without any restrictions
on the torsion of the geometry. The result is the spacetime TSNC
geometry that the nonrelativistic string sigma model Eq. 3.13
couples to.

3.2.2 Double Field Theory
An alternative approach to parametrizing non-Lorentzian
geometries comes from double field theory (DFT) [35, 36,
57]. This formalism was originally intended to provide a
manifestly T-duality covariant description of the geometry
that relativistic strings couple to (see for example [58] for a
review). In relativistic string theory, the DFT formalism
unifies the Lorentzian metric and the Kalb–Ramond field
into a single generalized metric,

HMN � Ĝ
μ] −Ĝμρ

B̂ρ]

B̂μρ Ĝ
ρ]

Ĝμ] − B̂μρ Ĝ
ρσ
B̂σ]

( ). (3.24)

The indices M, N are 2d-dimensional and they are raised and
lowered using the O(d, d) metric

JMN � 0 δμ]
δμ
] 0( ). (3.25)

The doubled coordinates XM � ( ~Xμ, Xμ) incorporate both the
conventional coordinates Xμ and the ‘dual’ coordinates ~Xμ.
For consistency of the theory, one needs to impose a section
condition, which is commonly solved by requiring the fields to
be independent of the dual coordinates ~Xμ. Together with the
covariant dilaton e−2Φ̂ |Ĝ|1/2, one can then construct O(d, d)-
covariant ‘doubled’ actions for both the string sigma model
and the target-space effective action (see for example [57,
59]). The generalized metric given in Eq. 3.24 is symmetric,
and its inverse is obtained simply by raising its indices with
JMN. We can encode these properties in an O(d, d) covariant
way using

HMN � HNM, HM
P HN

Q J PQ � JMN. (3.26)
Remarkably, the particular combinations of the Lorentzian
metric and Kalb–Ramond field that enter in the
parametrization Eq. 3.24 combine in such a way that its c → ∞
limit using the expansion (Eq. 3.22) is nonsingular. In this limit, we
obtain [36, 60].

HMN � Eμ] −Eμρ Mρ] + τμA τ]
B ϵAB ,

Mμρ E
ρ] − τμ

A τ]B ϵAB Eμ] −MμρE
ρσMσ] − 2 τμ

A M]ρ τ
ρ
B ϵAB

( ). (3.27)

Clearly, this generalized metric no longer corresponds to a
Lorentzian metric, since its top left block Eμ] is now
degenerate. However, if one considers the doubled
description of the target space geometry as fundamental,
one can take Eq. 3.26 as the defining relations of the
geometry. From this perspective, the parametrization Eq.
3.27 in terms of TSNC variables therefore constitutes a
valid generalized metric in the doubled actions, since these
defining relations still hold, even though the generalized
metric can no longer be related to relativistic NS-NS
geometry.

The most general solution of the defining Eq. 3.26 for HAB

leads to a top left d × d block with (n, �n) chiral and antichiral
lightlike vectors, and a string sigma model can be constructed
for each case [36]. The TSNC geometry discussed above
corresponds to the case (n, �n) � (1, 1). Having n � �n appears
to be necessary for zero central charge in the BRST algebra on
the string worldsheet [61]. The framework of double field theory
has also been used to study target space effective actions [54, 62],
the relation between the λ�λ and T�T deformations [63],
worldsheet symmetry algebras [59] and supersymmetric
string actions [64, 65]. Similar limits and NR
parametrizations have also been considered in exceptional
field theory, which generalizes the manifest duality-invariance
of string theory to M-theory [66, 67].11A related expansion also appears in [26].
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3.3 Torsional String Newton—Cartan
Geometry From Null Reduction
NR string actions can also be obtained from a null reduction in a
relativistic background with a lightlike isometry [28]. Starting
from a d-dimensional Lorentzian manifold with a lightlike
isometry, we choose adapted coordinates xμ = (u, xi) such that
the lightlike isometry is generated by zu. Then we can write the
associated metric as

ds2 � 2 τi dx
i du −mj dx

j( ) + Eij dx
idxj. (3.28)

Together with u, the d − 1 coordinates xi form a chart of the
target-space manifold. Additionally, we decompose the
Kalb–Ramond field in the components bi = Bui and Bij. In
such a background, the relativistic Polyakov action is
given bry

Ŝ � 1
4πα′∫ d2σ

��
h

√
hαβ Eαβ − 2τ(αmβ)( ) − i ϵαβBαβ[ ]

+ 1
2πα′∫ d2σ

��
h

√
hαβ τβ − i ϵαβ bβ( )zαXu. (3.29)

As we have discussed in Section 3.1, Xu and Xi are worldsheet
functions that parametrize the embedding of the worldsheet in
terms of the target space coordinates u and xi. Pullbacks such as
τα = zαX

iτi are constructed using the embedding coordinates Xi.
To implement a null reduction, we also require that the
momentum of the string in the u-direction is conserved off
shell. For this, we introduce a Lagrange multiplier Aα that
imposes a relation between the momentum current Pα

u �
zL̂/z(zαXu) and a closed one-form dη on the worldsheet [28,
30, 31],

S′ � 1
4πα′∫ d2σ

��
h

√
hαβ Eαβ − 2τ(αmβ)( ) − iϵαβBαβ[ ]

+ 1
2πα′∫ d2σ

��
h

√
hαβτβ − iϵαβ bβ + zβη( )[ ]Aα.

(3.30)

In this action, the equations of motion for η imply that
the one-form Aα dσα is closed. As a result, we can recover
the original lightlike direction through Aα = zαX

u and we see
that our action is equivalent to the relativistic string action
Eq. 3.29. Alternatively, we can interpret η itself as an
embedding coordinate that is dual to Xu. We work in a
sector of fixed total momentum in the u-direction, and
interpret η as a compact target-space direction along
which the string has a fixed winding mode. Then the
constraint imposed by the Lagrange multipliers Aα imply
that the total momentum of the string in the u-direction is
mapped to the string winding in η. For this reason, the dual
NR string winds exactly once in η, and the periodicity of this
direction is determined by the original lightlike momentum
in Xu.

The action Eq. 3.30 describes strings coupled to a torsional
Newton–Cartan geometry, described by the fields τi, Eij, together
with the background fields mi, Bij and bi as well as the η direction
along which the string winds. It is equivalent to the worldsheet
action Eq. 3.9 introduced above after the following identifications
[30, 31, 52].

xμ � xi, v( ) , τμ
0 � τi, 0( ) , τμ

1 � bi, 1( ),
Mij � Bij + 2m[i bj] , Miv � mi.

(3.31)

The last line defines the antisymmetric tensorMμ], where x
i and v

form a chart of the dual target space manifold. Similarly, the
symmetric tensor Eij is extended to Eμ] by setting Evv = Eiv = 0.
The Lagrange multipliers Aα are related to the one-forms λ and �λ
in the action Eq. 3.9, and the local boost symmetries and one-
form gauge transformations of the background can also be
recovered. As such, null reduction provides an alternative
perspective on the NR string action and the TSNC geometry
that we previously obtained from a c → ∞ limit. Likewise, in
addition to the limiting procedure we discussed in Section 3.2.2
above, non-Riemannian parametrizations of generalized metrics
can be obtained from a generalized metric in the relativistic
parametrization Eq. 3.24 using an O(d, d) transformation
along a lightlike isometry [65, 66].

In the above, we have considered a single lightlike momentum
sector of strings in the relativistic background Eq. 3.28. The
lightlike isometry in the relativistic background corresponds to an
isometry of the spatial longitudinal direction v in the dual TSNC
geometry, and the momentum mode of the string along u is
translated to a single winding mode of the nonrelativistic string
along v. For related constructions of nonrelativistic particle or
field theory actions through null reduction, the lightlike direction
u is typically taken to be noncompact. On the other hand, the
T-duality relation between NR strings and the DLCQ of
relativistic strings that was discussed in Section 2.3 would
require that u is a compact lightlike direction.

4 EFFECTIVE FIELD THEORIES FROM
NONRELATIVISTIC STRINGS

Next, we review the RG analysis of the sigmamodel Eq. 3.9where
the classical value for the background field associated with the λ�λ
operator is tuned to zero. This analysis will allow us to construct
an effective Newton-like theory of gravity in the target space. In
general, the λ�λ operator is generated by log-divergent loop
corrections. As a result, this operator will have to be included
in the spectrum in order for the OPEs to be closed, and it would
then deform the theory back to the full relativistic string theory.
To counteract this, extra global symmetries are imposed in the
worldsheet sigma model such that this operator can be prevented
from being generated quantum-mechanically. Such worldsheet
global symmetries correspond to additional spacetime gauge
symmetries that restrict (part of) the torsion of the target-
space TSNC geometry.

We discuss different proposals for symmetry algebras that have
been used to construct renormalizable interacting worldsheet QFTs
that describe NR strings in background fields. Imposing Weyl
invariance at the quantum level, the vanishing beta-functionals of
background fields determine the spacetime equations of motion that
govern the dynamics of the target-space TSNC geometry. This is
analogous to how the (super)gravity equations of motion arise in
relativistic string theory. With such worldsheet symmetries, NR
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string theory can be studied in a self-contained way, without
referring to the full relativistic string theory. We also comment
on recent progress on supersymmetrizations of NR string theory
and its relation to the modified symmetry algebras. Finally, we
review recent progress on the RG calculation of the worldsheet
theory for NR open strings. This analysis of conformal
anomalies gives the NR analog of Dirac-Born-Infeld (DBI)
action that describes the low energy dynamics of D-branes.
The distinction between different NR limits considered in the
literature that lead to extended p-brane objects in NR string/
M-theory will also be discussed.

4.1 Beta Functions of theWorldsheet Theory
After reviewing classical aspects of NR string sigma models and
the associated target-space geometry, we now investigate the
quantum behavior of the worldsheet QFT. We first approach
this by taking a limit of the beta functionals of relativistic string
theory. Next, we review different constructions of self-contained
NR string theories in curved spacetime that are defined by
renormalizable sigma models.

4.1.1 Target-Space Gravity From a Limit
The self-consistency of string theory requires the classical
worldsheet Weyl invariance to be preserved at the quantum
level. This sets all beta-functionals of the background fields in
the string sigma model to zero. The vanishing beta-functionals
determine the target-space equations of motion that govern the
dynamics of the target-space geometry. In relativistic string
theory, this procedure leads to the spacetime supergravity
equations of motion.

We already learned that the bosonic string sigma model Eq.
3.16 describes strings propagating in NR geometries only ifU = 0,
corresponding to the limit c = U−1/2 → ∞. This limit has been
applied to the spacetime equations of motion determined by the
vanishing beta-functionals [53]. It is shown that the dynamics of
the NR target space arises from the c → ∞ limit of the NS-NS
gravity in relativistic string theory. At the lowest order in α′, this
defines the so-called dilatation-invariant string Newton-Cartan
gravity [53]. The associated target-space gravity action has been
studied in [53] and also from a DFT point of view in [54]. Since
these results are rather involved, we will only show them in a
simplified model where the torsion is set to zero, which is
discussed in Section 4.1.3.

The supersymmetric generalization of the parametrization Eq.
3.17 has been studied in various works. See [16, 68–70] for
examples, and we will follow closely the recent paper [70] for the
state of the art. In addition to the reparametrization of the metric,
Kalb-Ramond, and dilaton field in Eq. 3.17, one also needs to
reparametrize the fermionic fields, including the gravitino Ψ̂μ and
the dilatino λ̂, such that

Ψ̂+ � c1/2 ψ+ + c−1/2 ψ− , λ̂ � c1/2 λ+ + c−1/2 λ−, (4.1)
where ψ± and λ± are worldsheet chirality projected spinors. The
c→ ∞ limit is nonsingular if the following geometric constraints
hold:

Eμ
A′ E

]
B′ z[μ�τ]] � 0 , Eμ

A′ τ
] z[μ�τ]] � 0. (4.2)

One can choose whether these constraints are imposed on dτ or d�τ.
The Condition Eq. 4.2 is required for the supersymmetric
transformation rules of ψ± and λ± to remain finite. It is interesting
to note that these constraints only impose half of the integrability
conditions Eq. 3.6 required by the codimension-two foliation.Wewill
see later in Section 4.1.3 that the same torsion conditionEq. 4.2 shows
up in bosonic sigma models once appropriate worldsheet symmetries
are imposed. Such a c→∞ limit has been applied to ten-dimensional
N � 1 supergravity, which leads to a supersymmetric generalization
of TSNC geometry with NR spacetime supersymmetry [70].

4.1.2 Quantum Corrections and Renormalizability
It is also insightful to apply the U = c−2 → 0 limit to the beta-
functionals of the sigma model Eq. 3.16 that describes relativistic
strings propagating in Lorentzian geometries, before committing
to the conformal fixed point [34]. This leads to the RG structure
of the sigma model action Eq. 3.9, evaluated around the physical
value U = 0. Moreover, the Weyl invariance of sigma models in
torsional Newton–Cartan backgrounds that we discussed in
Section 3.3 has also been studied directly using the worldsheet
QFT in [71]. It is shown in [18, 71] that the λ�λ operator receives
log-divergent quantum corrections, and its functional coupling U
receives nontrivial RG flows just like all other background fields.
At the lowest order in α′, the beta-functional of U gives

β U( )∣∣∣∣U�0 � α′Eμρ E]σ z[μτ]] z[ρ�τσ] + O α′2( ). (4.3)

Here, we definedEμ] � Eμ
A′E

]A′. This beta-functional Eq. 4.3 is found
by evaluating the quantum loop corrections directly using the sigma
modelEq. 3.9withU= 0 in [18, 71], and also from considering theNR
limit [34]. Therefore, the sigma model Eq. 3.9 is not renormalizable
unless a λ�λ counterterm is included. This issue does not invalidate the
U→ 0 limit that we take in string theory: because theworldsheet has to
be conformal for string theory to be self-consistent, all the beta-
functionals are required to vanish. It is therefore consistent to tune
U = 0 at the conformal point, together with the condition

β U( )∣∣∣∣U�0 � 0. (4.4)
At the lowest order in α′ Eqs. 4.3 and 4.4 lead to the geometric
constraints

Eμρ E]σ z[ρτσ] � 0 , or Eμρ E]σz[ρ�τσ] � 0. (4.5)

These constraints are the lightlike components of the foliation
condition Eq. 3.7 and coincide with the first condition in Eq. 4.2
obtained from requiring the supersymmetry transformations to be
finite. The resulting NR gravity is therefore a zeroU solution to the
(super)gravity equations of motion in relativistic string theory.

There are two perspectives on how Eq. 4.4 should be treated
[34]. In the first perspective [28, 30, 31, 53, 71], we solve Eq. 4.4
together with other target-space equations of motion perturbatively,
order by order in α′. This defines target-space non-Lorentzian gravity
with higher derivative corrections, but with the potential problem that
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solutions to the target-space equations ofmotion at lower orders in α′
might not be extendable to higher orders without introducing a
nonzeroU. In the second perspective [17, 18, 26, 72], we are interested
in identifying the conditions under which quantum corrections to λ�λ
vanish at all loops, which means that Eq. 4.4 holds nonperturbatively
at all loops, such that NR string theory is defined by a renormalizable
worldsheet QFT. This is achieved by extending the string Galilei
algebra using additional generators, whose realization on the
worldsheet imposes additional geometric constraints in the target-
space geometry. These geometric constraints protect λ�λ from being
generated by quantum corrections, and thus lead to a self-contained
notion of NR string theory that is free from deformations towards
relativistic string theory.

4.1.3 Extensions of String Galilei Symmetries
In the following, we review several proposals for extended
worldsheet global symmetry algebras, whose realization on the
sigma model Eq. 3.15 results in different constraints on the
longitudinal vielbein field τμ

A that restrict the torsion of the
TSNC geometry. Once such constraints are imposed, the sigma
model Eq. 3.9 is protected against any λ�λ deformation and
becomes renormalizable.

In Section 3.1, we showed that the sigma model Eq. 3.9 is
invariant under the symmetry transformations that form the
string Galilei algebra (Eq. 3.11), which arises as a contraction of
the Poincaré algebra. Recall that the string Galilei algebra
consists of generators associated with longitudinal and
transverse translations that we refer to as HA and PA′ ,
respectively, as well as the string Galilei boosts GAA′ .
Notably, PA′ and GAA′ commute in Eq. 3.11.

In analogy to how the Galilei algebra can be extended to the
Bargmann algebra in the particle case, it is shown in [15, 56, 73]
that the string Galilei algebra can be extended to the string
Bargmann algebra by introducing a generator ZA such that

PA′ , GB′A[ ] � δA′B′ ZA. (4.6)
This new generator ZA is the stringy version of the central charge
corresponding to the conserved particle number in the Bargmann
algebra. In contrast, because ZA carries a longitudinal index and
hence does not commute with the longitudinal Lorentz boost, ZA
is noncentral in the string Bargmann algebra. One way to close
the algebra is by including an additional generator Y that arises
from the commutator of GAA′ and GBB′. This second extension
will not play any important role in the following discussions, and
we refer the readers to [26, 30] for discussions on the Y extension
and its generalizations.12

The target-space gauge transformations corresponding to the
string Bargmann algebra are most naturally realized on the
variables τμ

A, Eμ
A′, mμ

A and Bμ] in the action Eq. 3.15. In terms

of these variables, the boost transformations remain the same as
in Eq. 3.14, and the ZA symmetry only acts nontrivially on mμ

A,

δmμ
A � Dμσ

A � zμσ
A + Ωμ

AB σB, (4.7)
where we have used σA to denote the parameter for ZA gauge
transformations.13 Additionally, the derivative Dμ is covariant
with respect to the spin connection Ωμ

AB associated with the
longitudinal Lorentz boost. Recall that without imposing the
condition τμA τ]B Bμ] � 0, the theory has the Stückelberg
symmetry (Eq. 3.3), but the invariance under this symmetry
can provide useful consistency checks on results in the quantum
theory. One can obtain the target-space variables by gauging the
string Bargmann algebra, supplemented with a general
antisymmetric Bμ] field, so that the latter only transforms
under the U(1) gauge symmetry δξBμ] � 2 z[μξ]] and
spacetime diffeomorphisms. From this perspective, mμ

A is the
gauge field associated to the ZA generator.

Requiring that the NR string sigma model is invariant under
the background field transformations generated by the string
Bargmann symmetries reproduces the action Eq. 3.15, which we
repeat below for convenience:

S � 1
4πα′∫

Σ

d2σ
��
h

√
hαβ zαX

μ zβX
] Hμ] − i ϵαβ zαXμ zβX

] Bμ]( )
+ 1
4πα′∫

Σ

d2σ
��
h

√
λ �DXμ τμ + �λDXμ �τμ + α′RΦ( ).

(4.8)
Here, Hμ] � Eμ] + 2m A[μ τ B

]] ηAB is invariant under string Galilei
boosts but not under the ZA transformations. For the action Eq.
4.8 to be invariant under the ZA transformations, wemust impose
the zero-torsion condition on τμ

A [15],14

D[μτ]]A � 0 0 dτA � −ΩA
B ∧ τB. (4.9)

While part of the components in Eq. 4.9 can be used to solve for
the longitudinal spin connection Ωμ

AB, the rest give rise to the
geometric constraints,

Eμ
A′ E

]
B′ z[μτ]]A � 0 , Eμ

A′ τ
]
(A ηB)C z[μτ]]C � 0. (4.10)

The first condition in Eq. 4.10 coincides with the integrability
condition Eq. 3.7 in the codimension-two foliation structure, which
sets the torsion associated to dτA to zero. The target-space geometry
coupled to NR strings described by the worldsheet action Eq. 4.8
with string Bargmann symmetries is referred to as string Newton-
Cartan (SNC) geometry, which has zero torsion [15]. As
desired, it is shown in [72] that this action does not receive
quantum correction to the λ�λ operator at all loops. Therefore,
the quantum sigma model Eq. 4.8 is renormalizable when the
string Bargmann symmetries are imposed. It therefore gives
rise to a notion of NR string theory defined by a renormalizable12Another way of including a ZA generator in the string Galilei algebra is provided

by the F-string Galilei algebra mentioned in Section 3.2.1. This algebra also
includes generators corresponding to the one-form gauge transformations, and
because of that it evades the need for introducing the additional extension Y.
However, its realization on the worldsheet does not impose any constraints on the
torsion, and it is therefore less suitable for the purposes of the current discussion.

13This should not be confused with the worldsheet coordinates σα.
14See [74] for an example where the zero-torsion condition Eq. 4.9 arises as an
equation of motion from a spacetime action.
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quantum sigma model, which can be studied on its own in a
self-consistent way, without referring to the full relativistic
string theory.

The beta-functionals of the background fields Hμ], Bμ], and Φ in
Eq. 4.8 have been studied in [18, 72], which we review below. In the
path integral, the Stückelberg symmetries Eq. 3.3 that mix Hμ] and
Bμ] are recast in the form of Ward identities. The physical beta-
functionals are therefore manifestly invariant under the Stückelberg
symmetries in Eq. 3.3. It has been proven in [72] that there is a
nonrenormalization theorem for τμ

A. We can therefore define the
beta-functionals with respect to the remaining variables Eμ], Mμ],
and Φ that enter in the action Eq. 3.9 where the Stückelberg
symmetries are fixed,

β E( )
μ] � dEμ]

dt
, β M( )

μ] � dMμ]

dt
, β Φ( ) � dΦ

dt
. (4.11)

Here, t is the renormalization ‘time’ and et defines the
renormalization scale. In terms of the variables Hμ] and Bμ],
we have

β E( )
A′B′ � βHA′B′, β

M( )
AB � −1

2
ϵAB ηCD β H( )

CD − ϵCD βBCD( ), (4.12a)
β M( )
A′B′� β B( )

A′B′ , β
M( )
AA′ � β B( )

AA′ + ϵAB β B( )
BA′. (4.12b)

The subscripts A and A′ of the beta-functionals denote
contractions with the inverse vielbeine τμA and Eμ

A′,
respectively. In order to present these results, we first review
some additional elements of SNC geometry. The geometric
quantities that are invariant under the string Galilei boosts are
Eμ
A′, τμ

A, Hμ], and

Nμ] � ηAB τ μ
A τ

]
B − 2E( μ

A′ τ
])
A mλ

A Eλ
A′. (4.13)

A compatible connection can be constructed using these
boost-invariant objects (but not uniquely, see for
example [26]),

Γρμ] � 1
2
Nρσ zμτ]σ + z]τμσ − zστμ]( )

+ 1
2
Eρσ zμH]σ + z]Hμσ − zσHμ]( ). (4.14)

Using this connection, the Riemann curvature Rρ
μ]σ , the Ricci

tensor Rμ], and the covariant derivative ∇μ can be defined in
the standard way. The beta-functionals are then given by

βEμ] � α′Eμ
A′E]

B′PA′B′ + O α′2( ) , βMAB � −α′
2
ϵAB PC

D − ϵCD QCD( ) + O α′2( ),
(4.15a)

βMμ] � α′QA′B′ + O α′2( ) , βMAA′ � α′ PAA′ + ϵAB QBA′( ) + O α′2( ), (4.15b)
Where

Pμ] � Rμ] + 2∇μ∇]Φ − 1
4
Eρσ Eκλ Hμρκ H]σλ, (4.16a)

Qμ] � −Eρσ 1
2
∇ρHσμ] − ∇σΦHσμ]( ). (4.16b)

We denoted the Kalb-Ramond field strength as H � dB. The
beta-functional associated with the dilaton is

βΦ − 1
2
β lnG( ) � d−26

6
− α′Eμ] ∇μ∇]Φ − ∇μΦ∇]Φ + 1

4
Rμ](

− 1
48

HμA′B′ H]A′B′ ) + O α′2( ). (4.17)

Here, G = det(τμ
A, Eμ

A′). These one-loop beta-functionals have
been derived first from analyzing the OPEs in [18], and they were
later corroborated by the background field method in [72]. The
same result was also derived as a NR limit of the relativistic beta-
functionals in [26]. The overlap of these results with the beta-
functionals derived in [71] for the sigma models in torsional
Newton–Cartan geometry from Section 3.3 is confirmed using
double field theory methods in [54].

In Section 3.1, we noted that the sigma model Eq. 4.8 is also
invariant under a dilatational symmetry, namely,

Φ → Φ + lnΔ , τμ
A → Δ τμ

A , λ → Δ−1 λ , �λ → Δ−1 �λ.

(4.18)
Nevertheless, this dilatational symmetry is not preserved by
the zero-torsion constraint Eq. 4.9, unless zA′Δ = 0 [26].
Intriguingly, one can still obtain a renormalizable
worldsheet QFT that is compatible with the dilatational
symmetry if one breaks half of the ZA symmetry [34]. In
order to preserve the longitudinal Lorentz symmetry, the
only possibility is to break a lightlike component of the ZA

symmetry. We choose to break �Z � Z0 − Z1 for concreteness.
Taking a contraction in the string Bargmann algebra that
decouples the generator �Z leads to a self-consistent
subalgebra. Gauging this algebra gives rise to the same
string Galilei boost transformations, but now mμ

A only
transforms under Z = Z0 + Z1 as far as the extended
symmetries are concerned, with

δmμ
0 � δmμ

1 � Dμσ, (4.19)
where σ is the Lie group parameter associated with the Z
generator. Requiring that Eq. 4.8 is invariant under the Z
symmetry leads us to the condition

D[μ�τ]] � 0. (4.20)
This condition leads to the geometric constraints

Eμ
A′ E

]
B′ z[μ�τ]] � 0 , Eμ

A′ τ
] z[μ�τ]] � 0. (4.21)

Here, τμ � 1
2 (τμ0 + τμ1 ). These are the same constraints we

encountered in Eq. 4.2 in the context of the NR limit of
supergravity. Both constraints in Eq. 4.21 preserve the
dilatational symmetry [70], which is generated by
the transformations in Eq. 4.18. Moreover, only half of the
integrability conditions Eq. 3.7 appear, coinciding with the
first condition in Eq. 4.21.

This halved ZA symmetry leads to attractive features. First,
it is shown in [34] that the geometric constraints Eq. 4.21 are
sufficient for eliminating at all loops the quantum corrections
that generate the λ�λ operator, which could otherwise deform
the theory towards relativistic string theory. Therefore, the
symmetry algebra with a halved ZA symmetry still leads to a
self-contained notion of NR string theory. Further analysis of
the RG structure of the associate sigma model at the lowest
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order in α′ has been explored in [34]. Second, it was suggested in
[30, 31, 53, 70] that the original zero-torsion constraint Eq. 4.9
might be too strong. As discussed in [30, 31], torsion in τμ

A seems to
be essential for applications of NR strings to the AdS/CFT
correspondence (see Section 5). Additionally, as we reviewed in
Section 4.1.1, it was shown in [70] that the finiteness of the
supersymmetry rules under the NR limit leads to a set of weaker
torsion constraints, which coincide with the ones in Eq. 4.21.
While the string Bargmann proposal for the modified symmetry
algebra requires the zero-torsion condition Eq. 4.9, the modified
proposal with a halved ZA symmetry still allows half of the τμ

A to be
torsional. This modified proposal therefore probes a larger class of
target-space gravities, which might eventually be useful for studies
of NR supergravity and gauge-gravity duality.

4.2 Nonrelativistic Open Strings and
Dirac-Born-Infeld Action
We already learned in Section 2.4 that, in flat spacetime, open
strings ending on a D(d − 2)-brane that is transverse to the
longitudinal spatial direction X1 enjoy a Galilean-invariant
dispersion relation. In a curved spacetime, we consider the
boundary condition Xμ|zΣ � fμ(Yi), where Yi parametrize the
D-brane submanifold, with i = 0, 2, . . . , d − 1, and fμ describes
how the D-brane is embedded in the target space. The
Dirichlet boundary condition δX1|zΣ � 0 in flat spacetime
now becomes δXμ|zΣ � δYi zifμ(Yj). In addition to the
closed string sigma model Eq. 4.8, we now have an
additional boundary action,

Sbdry � 1
2πα′∫

zΣ

dσ2 N Y( ) λ − �λ( ) + i Ai zτY
i[ ]. (4.22)

Varying λ and �λ in this action sets N = 0, which means that N
decouples in any analysis of the open string action. However, it
is important to note that there will be counterterms generated forN
once quantum corrections are turned on; this will give rise to a
nontrivial beta-functional for N. Assuming that X1 is an isometry
direction, then setting N = 0 classically means that we are in the
unbroken phase of the spontaneous breaking of the translational
symmetry in X1 due to the presence of the D-brane. The
background field N is associated to the Nambu-Goldstone (NG)
boson that perturbs the shape of the D-brane. This NG boson is
absorbed into the definition of the collective coordinate Yi in the
case whereN = 0. This can be seen by applying the T-duality rules Eq.
2.18 in flat space, where theymap λ − �λ to i zτY

1, so thatN becomes a
component of the gauge boson on the D-brane in the dual picture.

The beta-functionals of N and Ai have been derived in [33] using
the covariant background field method. Imposing Weyl invariance
at the quantum level requires that these beta-functionals vanish.
These are target-space equations that arise from a D(d − 2)-brane
action, which has a straightforward generalization to Dp-branes,

SDp � −Tp ∫ dp+1Y e−Φ
������������������������������������
−det 0 τ] zjf

]

τμ zif
μ Hμ] + Bμ]( )zifμ zjf

] + Fij
( )√

,

(4.23)

where F = dA is the field strength on the Dp-brane. A related
worldvolume action for D-branes also appears in [75, 76],
where the embedding spacetime is taken to be torsional
Newton–Cartan spacetime extended with a periodic space
direction, as discussed in Section 3.3. In the flat limit, at the
quadratic order in the field strength Fμ], the Dp-brane action
Eq. 4.23 in the broken phase reproduces Galilean
electrodynamics, which is the U(1) case of Eq. 2.23, with
the scalar N receiving the natural interpretation as a
NG boson.

The DBI-like action Eq. 4.23 continues to hold in the case
that the D-brane extends in the compactified longitudinal X1

direction. In the flat limit, open strings residing on such a
D-brane configuration satisfy the Neumann boundary
condition in the X1 circle. As reviewed in Section 2.4,
such open strings are in the NCOS sector and enjoy a
relativistic dispersion relation. It is shown in [51] that
dualizing the DBI-like action Eq. 4.23 that describes a
D-brane localized in a longitudinal lightlike circle gives
rise to the DLCQ of NCOS. This is in contrast to the fact
that the T-dual of a NR Dp-brane localized in a longitudinal
spatial circle is T-dual to relativistic DBI action in the
DLCQ [51].

4.3 Generalized Nonrelativistic p-branes
In [33], it is shown that the Galilean DBI action Eq. 4.23 arises as
the c → ∞ limit of the relativistic DBI action,

ŜDBI � −Tp ∫ dp+1Y e−Φ̂
��������������������������
−det Ĝμ] + B̂μ]( )zifμ zjf] + F̂ij[ ]√

,

(4.24)
where the background fields are parametrized as in Eq. 3.17,
and F̂ij � Fij is c-independent. This clarifies how higher-
dimensional objects such as the Dp-branes fit into the
framework of NR string theory, which arises as a ‘stringy’
limit of relativistic string theory. Such a stringy limit induces
a two-dimensional foliation in the spacetime geometry. In
contrast, generalizations of this stringy limit to the so-called
‘p-brane’ limits have been discussed in the literature [12, 56,
73, 77–79]. A p-brane limit is usually applied to the Nambu-
Goto action of relativistic p-branes coupled to a (p + 1)-form
gauge field Â

(p+1)
. The relativistic p-brane action is

Ŝp-brane � −∫ dp+1Y
�����������������
−det zαXμ zβX] Ĝμ]( )√

− ∫ Â
p+1( )

. (4.25)

Instead of the ‘stringy’ parametrization Eq. 3.17, we now consider
a ‘p-brane’ parametrization,

Ĝμ] � c2 γμ
u γ]

v + c1−p Eμ] , Â
p+1( )
μ0 ...,μp

� −cp+1 γμ0u0 . . . γμpup ϵu0 ... up + A
p+1( )
μ0 ... μp .

(4.26)

Here, u = 0, . . . , p, and γμ
u are the vielbein fields that encode the

geometry of the induced (p + 1)-dimensional foliation in
spacetime. In the limit c → ∞, the p-brane action Eq. 4.25
gives rise to a nonsingular low-energy action,
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Sp−brane � −1
2
∫ dp+1σ

���−γ√
γαβ zαX

μ zβX
] Eμ] − ∫A p+1( ), (4.27)

where γαβ = zαX
μ zβX

] γμ] and γ = det γαβ. In the case of p = 1, the
p-brane action Eq. 4.27 is the Nambu-Goto action Eq. 3.13 of NR
string theory. For the Polyakov description of the p-brane limit,
see, e.g., [68, 69], where κ-symmetries of the p-brane actions are
also discussed. Also see [16] for discussions on κ-symmetry in
the Green-Schwarz formalism of NR string theory in AdS
background.

The p-brane limit of relativistic p-branes differs in nature from
the stringy limit of relativistic DBI action. The NR DBI action Eq.
4.23 that arises as the stringy limit describes Dp-branes coupled
to SNC geometry, equipped with a two-dimensional foliation
structure. In contrast, the NR p-branes described by Eq. 4.27 are
coupled to the so-called p-brane Newton-Cartan geometry,
equipped with a (p + 1)-dimensional foliation structure. The
two-brane limit that induces a three-dimensional foliation
structure has been applied to (super) M2-branes [68, 80]. Also
see [81, 82] for a theory of light Open Membranes (OM) on an
M5-brane near a critical three-form field strength. This OM
theory arises in the two-brane limit of M-theory and describes
five-dimensional NCOS at strong coupling. Such an (open)
membrane limit of M2-and M5-brane actions has been
studied in [83]. Moreover, the two-brane limit of the bosonic
sector of eleven-dimensional supergravity has recently been
investigated in [67]. S-dualities of light (super) Dp-branes that
arise from performing the general p-brane limits in relativistic
string/M-theory are studied in [12, 84].

5 NONRELATIVISTIC HOLOGRAPHIC
DUALITIES

As was mentioned in Section 1, one of the hopes in studying NR
string theory is that it will allow us to obtain a better
understanding of previously inaccessible corners of relativistic
string theory. We will now briefly discuss particular applications
of these ideas in the context of the AdS/CFT correspondence.
Other directions will be mentioned in Section 6.

Specifically, we focus on a decoupling limit that was
originally introduced in the context of N � 4 super-
Yang–Mills, which is known as the Spin Matrix theory
(SMT) limit [85]. We first introduce this limit by
comparison with the Penrose/BMN limit [86, 87].
Subsequently, we discuss the associated worldsheet theory
as well as the backgrounds and sigma models that result
from applying the SMT limit to strings on AdS5 × S5.

5.1 Decoupling Limits of the AdS/CFT
Correspondence
In the strongest form of the AdS/CFT correspondence [88], four-
dimensional N � 4 supersymmetric Yang-Mills theory is
conjectured to capture the full nonperturbative dynamics of
IIB string theory on AdS5 × S5. However, even in the large N
limit, matching perturbative string theory results explicitly to the

dual field theory is a formidable task. For this reason, various
limits that focus on a simpler decoupled sector have been
considered. One example is the well-known BMN limit [87],
which is related to the Penrose limit [86] of AdS5 × S5, zooming in
on the neighborhood of a lightlike geodesic. In terms of the
background geometry, this limit can be obtained by boosting
along an equator of S5 at the center of AdS5, leading to an infinite
angular momentum J around the equator. The resulting geometry
is a ten-dimensional pp-wave [89], a maximally supersymmetric
IIB solution. On the dual gauge theory side, this limit selects the
BMN states that carry infinite R-charge J, with

Q → ∞,
Δ − Q

Q
→ 0. (5.1)

Here, Δ is the anomalous dimension of the corresponding
operator, and Q is a particular combination of the R-charge
and S3 Cartan generators (J1, J2, J3) and (S1, S2), which is usually
taken to be equal to J1. Other choices ofQwould lead to different
coordinates on the pp-wave. In this limit, the field theory
spectrum can be matched perturbatively to the spectrum
obtained from quantizing the string on the pp-wave
background.

NR string theory can be viewed as another example where a
decoupled sector of string theory is analysed in a self-contained
way. In this case, the decoupled sector only contains winding
string states that satisfy a Galilean-invariant dispersion relation.
As a first example, an NR limit of string theory on AdS5 × S5 has
been studied in [16], where it was shown to be equivalent to a
supersymmetric two-dimensional sigma model of free particles
propagating on AdS2. The T-dual of this NR string theory leads to
relativistic strings on a time-dependent pp-wave with a
compactified lightlike circle and hence DLCQ. This NR string
theory was subsequently given a dual interpretation in terms of a
conformal quantum mechanics theory [90]. See also [91, 92] for
more recent work in this direction.

Another decoupling limit that allows us to probe particular
subsectors of N � 4 SYM on R × S3 is known as Spin Matrix
theory (SMT) [85]. At least in principle, this limit is tractable at
finite values of N, which would allow it to capture perturbative
and nonperturbative gravity effects in AdS. In this case,
nonrelativistic behavior arises by zooming in on the dynamics
of the theory close to a BPS bound. Given a BPS bound Δ ≥ Q of
N � 4, the associated SMT is defined by the limit

λ → 0 , N � fixed,
Δ − Q

λ
� fixed. (5.2)

Here, Q is again a particular combination of S3 and R-charge
Cartan generators. Fields in SMT have ‘matrix’ indices that
are inherited from the SU(N) gauge symmetry of the parent
N � 4 theory. Similarly, they have a ‘spin’ index, determined by the
choice of Q, corresponding to the spin symmetry group of the
remaining states. In theN→∞ limit, SMT reduces to a spin chain of
length equal to the total R-charge J, so that J→∞ gives a continuum
limit. Subleading 1/N corrections then enable the splitting and
joining of the spin chains. The simplest nontrivial choice
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corresponds toQ= J1 + J2, which leads to aHeisenberg spin chain for
N → ∞ and to the SU(2) Landau–Lifshitz model in the continuum
limit. The largest SMT corresponds to Q = J1 + J2 + J3 + S1 + S2 and
results in the spin group PSU(1, 2|3), where the 1/16 BPS
supersymmetric black hole in AdS5 × S5 from [93] survives in
the limit.

The field theory SMT limit Eq. 5.2 has been mapped to the
relativistic string sigmamodel on AdS5 × S5 [28]. It results in a NR
string similar to the ones we discussed before, but in this case not
only the target space geometry but also the worldsheet geometry
is nonrelativistic. As a result, instead of the usual Virasoro
symmetry, this Spin Matrix string theory has a Galilean
conformal algebra (GCA) of reparametrization symmetries on
the worldsheet [30]. Its target-space geometry, known as U(1)-
Galilean geometry, is closely related to the TSNC geometry that
we have discussed in Section 3.2, and we will discuss its local
symmetries below.

In the following, we give a brief review of the construction of the
sigmamodel for SMT strings from the sigmamodel forNR strings in
general backgrounds. Additionally, we show how the U(1)-Galilean
geometries associated to particular BPS bounds can be constructed
from an appropriate limit of the AdS geometry [28, 30, 94]. We also
review how, after gauge fixing the GCA worldsheet symmetry, the
classical string sigma model reproduces known effective continuum
spin chain actions obtained from field theory. Finally, we discuss
their interaction with the Penrose limits mentioned above.

5.2 Spin Matrix Theory Limit of
Nonrelativistic String Theory
We first consider the tensionless limit of the NR string sigma
model Eq. 3.9 that was introduced in [28, 30]. This limit results in
a NR string with a NR worldsheet structure. For simplicity, we
will set the dilaton to zero in the following discussion.
Additionally, following the discussion in Section 3.3, we
assume the existence of a lightlike Killing vector in the
original Lorentzian target space, which results in a TSNC
geometry with a longitudinal spatial isometry.
Correspondingly, we split the embedding coordinates as Xμ =
(Xi, η), where the worldsheet scalar η parametrizes the
longitudinal spatial isometry, and i is a (d − 1)-dimensional
index that contains a timelike component. Here, following the
literature, we now consider a Lorentzian worldsheet. Using the
parametrization Eq. 3.31 together with bi = 0 and Mij = 0, this
leads to the worldsheet action

S � − 1
4πα′∫

Σ

d2σ
���−h√

hαβ zαX
i zβX

j Eij + 2 ϵαβ zαXimi zβ η( )
− 1
4πα′∫

Σ

d2σ λ ϵαβ eα
0 + eα

1( ) zβX
iτi + zβη( ) + �λ ϵαβ eα

0 − eα
1( ) zβX

iτi − zβη( )[ ].
(5.3)

Wehave introduced a set of worldsheet vielbeine eα
awith a = 0, 1 such

that hαβ = ηab eα
aeβ
b. As discussed in Section 3.3, this sigma model

describes strings propagating in aTNCgeometry that is extendedwith
a spatial circle direction parametrized by η. The TNC geometry is
described by the clock one-form τi, the transverse vielbeine Ei

A′, and

theU(1) gaugefieldmi corresponding to the remaining antisymmetric
couplings.

Next, we perform a zero tension limit of the sigma model Eq.
5.3. This is implemented by sending c → ∞ after taking the
following rescalings:

α′ → c α′ , eα
1 → c eα

1 , λ → ω + cψ

2 c3
, (5.4a)

η → c η , eα
0 → c2 eα

0 , �λ → ω − cψ

2 c3
, τi → c2 τi, (5.4b)

while Ei
A′ and mi remain unchanged. In this limit, the action Eq.

5.3 becomes

S � − 1
4πα′∫ d2σ e eα1 e

β
1 zαX

i zβX
j Eij + 2 ϵαβ zαXi mi zβη( )

− 1
4πα′∫ d2σ ϵαβ ω eα

0 zβX
i τi + ψ eα

0 zβη + eα
1 zβX

i τi( )[ ].
(5.5)

Similar to the previous action, this sigmamodel is invariant under
global worldsheet transformations corresponding to Galilean
boosts ΛA′ and U(1) symmetries σ,

δτi � 0, δmi � ziσ, δEij � 2 τ(i EA′
j)ΛA′, (5.6)

which correspond to gauge symmetries in the target space
geometry. Unlike in TNC geometry, the U(1) gauge field mi

field no longer transforms under Galilei boosts after the limit,
which is why the resulting geometry is referred to as U(1)-
Galilean geometry. We can also clearly see that the worldsheet
vielbeine eα

0 and eα1 are treated differently in the action Eq. 5.5,
which indicates the nonrelativistic structure on the worldsheet.
In fact, the sigma model is invariant under the local
transformations

eα
0 → f eα

0 , eα
1 → f eα

1 + g eα
0 , ω → f−1 ω − g f−2 ψ ,

ψ → f−1 ψ,

(5.7)
where f parametrizes Weyl transformations and g corresponds to
local Galilei boosts. We can choose flat gauge on the worldsheet
to fix these local symmetries, up to the residual gauge
transformations

σ0 → F σ0( ) , σ1 → F′ σ0( ) σ1 + G σ0( ), (5.8)
which correspond to a Galilei conformal algebra. Classically, its
Lie brackets are given by

Ln, Lm[ ] � n −m( ) Ln+m , Ln ,Mm[ ] � n −m( )Mn+m.
(5.9)

This algebra corresponds to a contraction of the usual two
Virasoro algebras.

5.3 Spin Matrix Strings From a Limit on
AdS5 × S5

We now consider the SMT limit of strings in AdS5 × S5 [28],
which can be implemented using the previous tensionless limit. If
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we denote the AdS5 and S5 radius by ℓ, the associated effective
string tension is given by

T � ℓ
2

2πℓ2s
�

����
gs N
2π

√
, ℓ

2
s � 2α′, (5.10)

where gs is the string coupling and N denotes the total number of
coinciding extremal black D3-branes. Recall that the AdS/CFT
dictionary relates field theory and string theory parameters
through 4π gs = λ/N and ℓ/ℓs = λ1/4, where λ is the ’t Hooft
coupling in N � 4 supersymmetric Yang-Mills theory. The SMT
field theory limit Eq. 5.2 then corresponds to

T → 0 , N � fixed,
Δ − Q

T2
� fixed. (5.11)

The energy Δ and the charge Q are now associated to target space
isometries of the AdS5 × S5 metric, which, in global coordinates, is
given by

ds2 � ℓ
2 −cosh2ρ dt2 + dρ2 + sinh2ρ dΩ2

3 + dΩ2
5( ), (5.12)

where dΩ2
k is the metric of a k-sphere of unit radius. We now have

Δ = izt, and the choice of Q = S + J corresponds to the choice of a
particular combination S of the Cartan generators of the S3 and
the S5 isometries J. We will illustrate this with concrete examples
in the following. Next, one introduces coordinates x0 and u such
that [94].

izx0 � Δ − Q � Δ − S − J , −izu � 1
2

Δ − S + J( ). (5.13)

The u coordinate will be lightlike on a particular submanifold M
of AdS5 × S5 and, as we will see in more detail below, the SMT
limit restricts the dynamics of the string to this submanifold. We
can parametrize the metric on M as

ds2/ℓ2∣∣∣∣M � 2 τi dx
i du +mjdx

j( ) + Eij dx
i dxj. (5.14)

From this parametrization, we obtain a TNC geometry (τi, mi,
Eij), which allows us to construct the nonrelativistic bosonic
TNC string action in Eq. 5.3. Note that the dimension of this
geometry will depend on the choice of Q. In this construction,
the momentum along the u-direction is interpreted as a
winding number in the η direction, as discussed in Section
3.3. Additionally, it turns out that the clock one-form τi dx

i =
dx0 + / always contains a component along the X0 direction.
The SMT field theory limit Eq. 5.11 can then be implemented
using the tensionless string limit. For this, we scale the conserved
charge associated to the X0 direction as T2,

c → ∞, X0 � c2 ~X
0
, c � 1

2
�
2

√
πT

, N and ~X
0
fixed .

(5.15)
Note that, in this limit, themomentum along the u direction (and

hence the winding along the η direction) is given by J, which
corresponds to the length of the spin chain in the dual field theory.

Going to flat worldsheet gauge, solving the constraints
imposed by the Lagrange multipliers ω and ψ, and fixing the
residual GCA transformations, the action Eq. 5.5 reduces to

S � − J

2π
∫ d2σ mi z0X

i + 1
2
Eij z1X

i z1X
j( ). (5.16)

As we will see below, this allows us to recover several known
sigma models arising from spin chains. So far, this gauge fixing of
the SMT string has only been implemented classically.

5.3.1 The SU(2) Spin Matrix String and the
Landau–Lifshitz Model
Now let us illustrate the SMT string construction with the
concrete example of Q = J1 + J2, which allows us to zoom in
the SU(2) sector [28, 30, 94]. From the bulk perspective, this
charge involves two of the three commuting S5 isometries, so we
can parametrize it using Hopf coordinates on an S3 ⊂ S5. In these
coordinates, the S5 metric is given by

dΩ2
5 � dα2 + sin2α dΩ3′2 + cos2α dβ2, (5.17a)

dΩ3′2 � 1
4

dθ2 + sin2θ dϕ2( ) + dγ + 1
2
cos θ dϕ( )2, (5.17b)

where γ parametrizes the Hopf fiber, and (θ, ϕ) parametrize the
base S2 of the S3 ⊂ S5. Correspondingly, we have −izγ = J1 + J2.
Together with the global AdS time t from Eq. 5.12, we can then
define the adapted coordinates X0 and u,

t � X0 − u

2
, γ � X0 + u

2
0 izX0 � Δ − J1 − J2, −i zu � 1

2
Δ + J1 + J2( ).

(5.18)

The length of the zu vector is then given by

ℓ
−2 z2u � −cosh2 ρ + sin2 α. (5.19)

Hence, we see that the u-direction is lightlike when ρ = 0 and α= 0. As
a result, in the SMT limit zooming in on Q = J1 + J2, the dynamics of
the string is restricted to the center of AdS5 and the Hopf S

3 inside S5.
The SU(2) spin group then arises from the isometries of this S3. The
corresponding U(1)-Galilean background geometry is given by

~τi dx
i � d~x0, mi dx

i � −1
2
cos θ dϕ , Eij dx

i dxj � 1
4

dθ2 + sin2 θ dϕ2( ).
(5.20)

On this background, the gauge fixed action Eq. 5.16
corresponds to

S � J

4π
∫ d2σ cos θ _ϕ − 1

4
θ′2 + sin2 θ ϕ′2( )[ ], (5.21)

where _ϕ � zϕ/zσ0 and (θ,ϕ)′ = z(θ, ϕ)/zσ1. This is the Landau-
Lifshitz sigma model that describes the XXX1/2 ferromagnetic
Heisenberg spin chain in the large J limit, with σ1 the position on
the spin chain, corresponding to the string winding in the periodic η
direction. This sigma model has also been obtained from a similar
limit of strings on AdS5 × S5 by Kruczenski [95], although the latter
limit involves taking J→ ∞ while keeping λ/J2 fixed. In contrast, the
Spin Matrix limit corresponds to λ → 0 with J fixed.

5.3.2 General Spin Matrix Theory String Backgrounds
and Penrose Limits
The most general SMT limit comes from zooming in on the BPS
bound

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 83227118

Oling and Yan Aspects of Nonrelativistic Strings

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Δ≥Q � S1 + S2 + J1 + J2 + J3, (5.22)
which involves all Cartan generators of the S3 ⊂ AdS5 and the S5

isometries. The resulting U(1)-Galilean target-space geometry is
given by

~τi dx
i � d~x0, mi dx

i � −sinh2ρ dw − sinh2ρ �A − B,
Eij dx

i dxj � dρ2 + sinh2ρ d�Σ2
1 + sinh2ρ cosh2ρ dw + �A( )2 + dΣ2

2.

(5.23)
Here, dΣ2

1 and dΣ2
2 refers to the Fubini–Study metric on CP1 and

CP2, and B and A refer to their respective potentials,

B � sin2ξ dψ + A( ) − 1
2
dψ , A � 1

2
cosθ dϕ,

dΣ2
2 � dξ2 + sin2ξ dΣ2

1 + sin2ξ cos2ξ dψ + A( )2, dΣ2
1 �

1
4

dθ2 + sin2θ dϕ2( ). (5.24)

They arise from the S5, and from the S3 in AdS5 (corresponding to
the barred quantities �A and d�Σ2

1). The radial ρ direction is
inherited from AdS5, and w parametrizes the Hopf fiber of its
S3. This geometry contains all other geometries corresponding to
more restrictive BPS bounds. In particular, we can recover the
SU(2) geometry in (5.20) by setting ρ = 0 and ξ = π/2 as well as
fixing ψ. That restriction leaves us with the (θ, ϕ) coordinates that
parametrize the SU(2) Landau-Lifshitz model in Eq. 5.21. More
generally, the U(1)-Galilean geometry associated to each SMT
limit can be read off from Table 1.

The resulting sigma models match with the SU(1, 1) sigma
model and the bosonic part of the PSU(1, 1|2) sigma model that
were obtained (following [95] for the SU(2) sector) from a
coherent state representation in [96–98]. Spinning string
solutions of the SMT string sigma models have been
considered in [99].

To simplify the resulting sigma models, we set J→∞, focusing
on long spin chains or long strings, and hence zooming in on the
region around a particular point of theU(1)-Galilean target space.
For example, in the SU(2) Landau–Lifshitz sigma model Eq. 5.21,
we can take

J → ∞, θ � π

2
+ x�

J
√ , ϕ � y�

J
√ , (5.25)

with x and y fixed. Then the action Eq. 5.21 becomes

S � 1
4π
∫ d2 σ x _y − 1

2
x′( )2 + y′( )2[ ]( ), (5.26)

corresponding to the free magnon limit of the Landau–Lifshitz
model. This action can then be quantized exactly and its spectrum
matches the result of the corresponding decoupling limit on the
field theory side [100].

Geometrically, the large charge limit is similar to the Penrose
limit discussed above. There, one zooms in on the neighborhood
of a lightlike geodesic on AdS5 × S5, which results in a pp-wave
geometry. This is a maximally supersymmetric solution of IIB
supergravity. The solution is unique, but, depending on the
choice of lightlike geodesic, one obtains the same geometry in
different coordinates, analogous to how different u-coordinates
correspond to different SMT limits. The most general form of the
pp-wave metric we need is

ds2/ℓ2 � dx0 du + xk dy
k( ) + δkl dx

kdxl + dykdyl( )
+ δpq dxpdxq − xpxq dx0( )2[ ]. (5.27)

Here, k, l = 1, . . . , n are ‘flat’ directions, while the string feels a
quadratic potential in the p, q = 1, . . . , 8 − 2n directions. The SMT
limit then suppresses the dynamics in the p′ directions, and
results in the sigma model (5.16) coupled to the U(1)-Galilean
geometry

~τ � d~x0, mi dX
i � −∑n

k�1
xk dy

k,

Eij dX
i dXj �∑n

a�1
dxk( )2 + dyk( )2[ ]. (5.28)

The number of surviving spatial directions 2n is determined by
the choice of SMT limit as listed in Table 1. These U(1)-Galilean
geometries were referred to as ‘flat-fluxed’ or FF backgrounds in
[94], since they contain only the minimum requisite flux mi in
order to make the resulting SMT sigma model Eq. 5.5 nontrivial.

Supplemented with the appropriate five-form field strength,
IIB strings can be quantized on the general pp-wave background
Eq. 5.27, and the SMT limit of the resulting spectrum can be
matched to the field theory result [101]. To further establish this
corner of NR strings in the holographic correspondence, this
result should also be obtained from a direct quantization of the
SMT string sigma model on the FF U(1)-Galilean backgrounds
Eq. 5.28. Finally, a new approach has recently been developed
for the explicit construction of Spin Matrix theories using a
classical reduction of N � 4 followed by a suitable
quantization and normal ordering procedure [102–105].
This construction reproduces earlier results obtained [85]
from limits of the one-loop spectrum of N � 4 and also
leads to a two-dimensional field theory formulation of the
SU(1, 1) sectors, suggesting a natural dual description for SMT
strings on the three-dimensional SU(1, 1) geometry in Table 1
at large N.

6 OUTLOOK

We have reviewed recent developments in several aspects of NR
string theory. We discussed how this theory arises from a
decoupling limit of relativistic string theory. Starting from the
free theory, we showed that this limit gives rise to a self-
consistent, unitary and UV-complete string theory with a
Galilean-invariant spectrum. The resulting NR string theory
provides a first-principles definition of the discrete light cone
quantization (DLCQ) of relativistic strings that is covariant under
nonrelativistic symmetries. In general backgrounds, with
appropriate symmetries imposed on the worldsheet theory, NR
string theory can be studied in a self-contained way, without
referring to the parent relativistic string theory. Several aspects of
the geometry, the quantization and the dualities of this theory
have already been explored, but much work remains to be done.

In particular, the supersymmetrization of NR string theory is
still relatively unexplored. In our discussion, we have exclusively
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discussed the bosonic sector of NR string theory, which has so far
been the main focus of current research. Nevertheless, there
already have been studies of NR superstring analogs of the
Ramond-Neveu-Schwarz [65, 106, 107], the Green-Schwarz
formalism [16, 64], and κ-symmetries [16, 68]. Likewise, a
Dirac equation for spacetime fermions has been obtained from
the quantization of a supersymmetric free NR string action [106],
and the NR limit of the target space supergravity action has also
recently been studied [70]. It is of imminent importance to extend
these works to map out a more complete picture of NR
superstring theories. This would not only improve our
understanding of the DLCQ of string/M-theory, in a
formalism that is covariant with respect to NR target-space
gauge symmetries, but also enable us to develop a top-down
view of NR holographic dualities. Moreover, it would be
intriguing to explore NR superstring amplitudes and
generalizing the higher-genus results in [12] to superstrings.

As a concrete example of such NR holographic dualities, the Spin
Matrix theory (SMT) limits of AdS/CFT that we discussed in Section
5 are expected to provide a fertile testing ground. Immediate goals
include quantizing the SMT string sigma model, including its
Galilean Conformal algebra (GCA) of residual reparametrization
symmetries (see also [29, 108]), and obtaining its beta functions. Since
we can deduce the effects of the SMT limit on the AdS geometry, a set
of proposed consistent backgrounds already exists. Also for these
SMT strings, the supersymmetrization of the theory is still
underdeveloped. It should be noted that another sigma model
with nonrelativistic worldsheet geometry and GCA symmetries
exist, which is likewise obtained from a tensionless limit [20–22].
While the resulting strings are fundamentally different, the
developments in the quantization [109, 110] and
supersymmetrization [111] of this latter tensionless string can
perhaps be of use for SMT strings. Additionally, it would be very
interesting to revisit the NR string theory obtained in [16, 90] from a
limit on AdS5 × S5. See for example [91, 112] for recent discussions of
uniform light-cone gauge fixing.

More generally, it would be intriguing to complete the programof
building up a duality web in NR string theory, which would provide
a new window on studying various nonperturbative sectors in
M-theory. This analysis can be approached both using Dp-branes
as probes (see for example [113]), whose analogs in NR string theory
have been discussed in this review, or using supergravity. For this
purpose, it is essential to include Ramond-Ramond charges in the
framework of NR string theory and to further explore the different p-
brane limits generalizing the NR string limit that were discussed in

Section 4.3. It would also be interesting to understand the relation to
the recent construction of NR theories from null reduction of M5-
branes [114–116].

We have also seen that the T-duality-invariant framework of
double field theory (DFT) appears to be particularly suited for
studying NR string theory, as it incorporates both the limit and
null reduction/duality approach. As we mentioned in Section 3.2.2,
the formalism of DFT naturally incorporates several notions of non-
Riemannian geometry. As a result, many DFT-covariant
constructions that were originally developed for relativistic string
theory can be efficiently applied to NR string theory, including the
target-space actions [54, 62] and supersymmetric worldsheet actions
[64, 65]. Similar results can be obtained in exceptional field theory
[66, 67], and both frameworks are expected to be useful in building a
broader understanding of NR strings and their related theories.

So far, we have focused on string theories obtained from
NR limits. However, building on recent work on the NR
expansion of general relativity [117–120], a similar NR
expansion of string theory using a small but nonzero
Regge slope has been considered [55]. This expansion
would allow us to consider relativistic corrections to the
NR limit order by order.

There also exist other notions of NR strings and membranes
that are not covered by this review. For example, a particle limit of
relativistic strings has been studied in [19, 121, 122]. This limit
gives rise to non-vibrating Galilean strings described by a NR
worldsheet, propagating in a target-space geometry that is
Newton-like, equipped with a codimension-one foliation
structure. For another example, sigma models with various
Lifshitz scalings have been applied to construct the
worldvolume theories for membranes [123] and strings [124],
in the absence of any worldvolume (Lorentzian nor Galilean)
boost symmetries. Such endeavours beyond the relativistic
framework may eventually lead to an alternative route towards
the unification of different string theories, as well as a larger class
of holographic dualities. Additionally, there exist several ‘bottom-
up’ constructions of NR holography, many of which arise from
explicit symmetry breaking in relativistic parent theories, see for
example the review [125].
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TABLE 1 | The Spin Matrix theories arising from the near-BPS limit Δ ≥ Q for charge combinations with integer coefficients, the 2n spatial dimensions of their target space in
the bulk and their AdS5 × S5 origin. The associated U(1)-Galilean geometry can be obtained from appropriate restrictions of the PSU(1, 2|3) result in Eq. 5.23.

Spin group Q 2n ρ, w ∈ AdS5
�θ, �ϕ ∈ AdS5 θ, ϕ ∈ S5 ξ, ψ ∈ S5

SU(2) J1 + J2 2 – – ✓ –

SU(2|3) J1 + J2 + J3 4 – – ✓ ✓
SU(1, 1) S1 + J1 2 ✓ – – –

PSU(1, 1|2) S1 + J1 + J2 4 ✓ – ✓ –

SU(1, 2|2) S1 + S2 + J1 4 ✓ ✓ – –

PSU(1, 2|3) S1 + S2 + J1 + J2 + J3 8 ✓ ✓ ✓ ✓
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