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In order to alleviate the privacy issue of traditional smart grids, some researchers

have proposed a power metering system based on a federated learning

framework, which jointly trains the model by exchanging gradients between

multiple data owners instead of raw data. However, recent research shows that

the federated learning framework still has privacy and security issues. Secondly,

since the server does not have direct access to all parties data sets and training

process, malicious attackers may conduct poisoning attacks. This is a new

security threat in federated learning - poisoning attack. However, solving the

two problems at the same time seems to be contradictory because privacy

protection requires the inseparability of the training gradients of all parties, and

security requires the server to be able to identify the poisoned client. To solve

the above issues, this paper proposes an intrusion detection method based on

federated learning client-side security in AMI networks, which uses CKKS to

protect model parameters. In addition, to resist the poisoning attack in

federated learning, the model trained by the data processing center and the

model trained by each client are firstly calculated for the direction similarity, and

the similarity value is scaled as the adaptive weight of the aggregation model.

Then, the size of each client model update is normalized to be the same size as

the data processing center model update. Finally, the normalized updates and

adaptive weights are weighted averaged to form a global model update. The

research results show that the method in this paper can effectively resist

inference attacks and poisoning attacks. In the AMI network, the intrusion

detection method based on federated learning can maintain a good

detection performance.
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1 Introduction

Because smart grid Advanced Metering Infrastructure (AMI) is

an important part of the power system, and the power system is also

related to information security and computer network, it is

vulnerable to various network threats, and advanced technologies

need to be adopted to protect the security of smart grid AMI. With

the gradual development of machine learning technology, machine

learning is widely used in the field of smart grid, such as intrusion

detection Li et al. [1], electricity stealing detection Hasan et al. [2],

private data sharing Su et al. [3], and so on. However, despite the

rapid development of machine learning-based power systems, their

privacy and security problems are still exposed. Federated learning is

proposed as a promising privacy-preserving method, which can

jointly learn a common machine learning model in a decentralized

training manner under the coordination of a central server. During

this training process, each participant uses the local data set to learn

the model parameters, and the local data does not need to be

uploaded to the data center, so it will not be exposed. All in all,

federated learning can protect the privacy of training data and

detection data to a certain extent. However, recent work shows that

federated learning still confront many privacy and security issues.

From a privacy perspective, direct communication of gradients

may reveal sensitive information. Whether it is a semi-honest server or

a third party, once the gradient information is obtained, a large amount

of sensitive information about the client may be obtained through

inference, thereby revealing the privacy of the client. From a security

point of view, if there are malicious actors in the federated training

process, they can perform poisoning attacks on data or models, send

poisonous localmodel updates to the server, or insert hidden backdoors

into the global model. So in order to build a privacy and security

federated learning framework, these two problems must be settled.

In order to deal with the privacy attacks faced by federated

learning, researchers have proposed many solutions, which are

mainly based on the following technologies: methods such as

differential privacy, secure multi-party computation, and

homomorphic encryption. For federated learning poisoning

attack defense, the main idea is to eliminate malicious models

before local model parameters are aggregated. Then the

corresponding defense methods are as follows: similarity-based

defense, statistics-based defense, performance-based defense, and

feature extraction-based defense. Both the privacy and poisoning

attacks of federated learning are solved by constructing linear or

non-linear functions. The machine learning model is composed of

linear and non-linear models. For example, the neural network

(Neural Network,NN) used in the machine learning model is a

mathematical model that simulates the structure and function of

biological networks and is composed of neurons and synapses.

Among them, neurons have complex non-linear characteristics and

are the basic unit of biological information processing nervous

system [4–6].

In order to solve the privacy and poisoning attack security

problems of smart grid AMI federated intrusion detection

concurrently, this paper proposes a privacy protection method

using homomorphic CKKS encryption. When the client upload

gradient is not obtained by the untrustworthy, we calculate the

directional similarity between the client training model and the

data center training model, and then extract the similarity by

using a non-linear function (logarithmic function). Specifically, this

paper makes three contributions:

1) This paper adopts a privacy-enhanced federated learning

framework based on CKKS in the smart grid AMI network,

which can prevent malicious clients from inferring client

information through their uploaded gradients (malicious

clients may be sham clients injected by attackers or real

clients compromised by attackers), thereby revealing client

privacy. It also prevents semi-honest data centers and control

servers from violating client privacy.

2) This paper improves a poisoning attack defense method. First,

use the Pearson correlation coefficient to calculate the directional

similarity between the model trained by each client and the

model trained by the data center, and then scale the similarity

value. The data center model is obtained by training on a clean

dataset. Second, the gradients are normalized to avoid malicious

attackers from affecting the global model by enlarging the

gradient size. Finally, the scaled similarity is used as the

adaptive weight to calculate the aggregation model.

3) This paper provides algorithm, security analysis and tests on

the dataset to prove that the proposed scheme can resist the

Trim attack of federated learning.

The rest of this article is organized as follows. In Section 2, we

analyze related work. In Section 3, the relevant knowledge is

needed to supplement the research content. In Section 4, we

make a problem statement. Section 5 then details a privacy-

enhanced robust federated learning framework. Next, analysis

and performance evaluation are performed in Section 6. Finally,

Section 7 concludes the paper.

2 Related work

2.1 Research status of federated learning
privacy issues

For user privacy in federated learning, the existing work mainly

focuses on guaranteeing the secrecy of gradients. These solutions are

mainly based on the following techniques: Differential Privacy [7–9],

Secure Multi-Party Computation [10–12], Homomorphic

Encryption [13–15] and other methods.

Wu et al. [7] proposed a new Local Differential Private (LDP)

algorithm that redesigned the training process. This enables data

owners to add layers of randomization before the data leaves and

reaches potentially untrustedmachine learning services. Kumar et al. [8]

proposedPrivacy-aware and asynchronousDeep-Learning-assisted IoT
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applications (PADL) to enable several data collection sites to

cooperatively train deep neural networks (Deep Neural Networks).

Neural Networks, DNN) while maintaining the secrecy of private data.

Liu et al. [9] proposed an adaptive privacy-preserving federated learning

framework APFL. These differential privacy-based methods may result

in lower federated learning accuracy.

Bonawitz et al. [10] proposed a novel, communication-efficient,

fault-robust protocol for secure aggregation of high-dimensional data.

Mohassel and Zhang [11] proposed SecureML, which conducts

privacy-preserving learning through Security Multi-Party

Computation (SMC). During the initial setup phase, data owners

operate, encrypt, and secretly share their data between two non-

colluding servers. Riazi et al. [12] pointed out an SMC-based protocol

that enables multiple participants to collaboratively compute an

agreed-upon function without revealing any participant’s input

information except that which can be inferred from the

computation results. As a result, secure multi-party computation

will not only lead to large communication overhead, but also cannot

fully guarantee the prevention of information leakage.

Aono et al. [13] conducted model training through

asynchronous SGD, and then homomorphically encrypted the

gradient, which could obtain high accuracy while protecting the

security of federated learning. Xu et al. [14] designed a new

solution to decrease the negative influence of irregular users on

training accuracy, thereby guaranteeing that the training results

are mainly computed from the contribution of high-quality data,

while using chaotic circuits and additional homomorphic ciphers

system to ensure the confidentiality of all user-related

information. Fang and Qian [15] encrypted the uploaded

gradients using an improved paillier algorithm, which is

almost the same as the training accuracy of the multi-party

privacy-preserving machine learning framework.

According to the analysis, this paper proposes a

homomorphic CKKS encryption method to protect the

privacy of the gradient uploaded by the client.

2.2 Research status of federated learning
poisoning attack

In order to solve the federated learning poisoning attack,

researchers have proposed some defense schemes, which are divided

into four types: similarity-based defense, statistics-based defense,

performance-based defense and feature extraction-based defense.

Similarity-based defense is to design aggregation algorithms

based on the similarity between gradients, such as Krum Blanchard

et al. [16] for Euclidean distance, which selects one gradient with the

lowest predefined score as the aggregated gradient from all uploaded

gradients. Xia et al. [17] iteratively filter the models that are farthest

from the mean of the remaining models, taking the mean of the last

remainingmodels as the aggregatedmodel. Thesemethods aremore

effective when there are few malicious attackers. However, when

there are many attackers colluding with each other, they will lead to

choosing a malicious value as the comparison standard, then the

similarity calculation value lacks reliability.

Statistics-based defense is to use statistical features such asmedian

and mean to circumvent malicious model parameters. Yin et al. [18]

first eliminated some extreme values and selected themedian result of

the corresponding dimension of the client model as the aggregated

model. Chen et al. [19] used the gradient dimension median as a

global update. These methods can bypass malicious models with high

probability by selecting the median or mean as the aggregated result.

However, the globalmodel lacks a lot of normal gradient information,

which weakens the accuracy of the model.

Fang et al. [20] argue that neither of the above two

aggregation rules is efficacious enough for an opponent with

certain knowledge, and they can carefully design a similar set of

gradients to confuse the aggregation rules.

Performance-based defense is to use auxiliary datasets to test

the accuracy, loss value, etc. Of each client model to eliminate

malicious models. Xie et al. [21] used the validation dataset to

directly test the loss value and modulo length of the model, and

calculate the score of each model to remove outliers. Zhao et al.

[22] assign each client’s submodel to other clients for cross-

validation to find toxic updates. These defenses are to use a new

dataset on the server to test the client’s model for anomalies.

Feature extraction-based defenses can extract features from

high-dimensional models and then discriminate feature spaces.

Zhao et al. [22] directly decomposed the uploaded model by

Principal Components Analysis (PCA), and then considered the

model corresponding to the principal component to be the normal

model. Nguyen et al. [23] introduced the FLAME defense

framework for estimating a sufficient amount of noise to inject

to ensure backdoor elimination. To minimize the amount of noise

required, model clustering and weight clipping methods are also

used to maintain good performance of the aggregated model. A

problem with these methods is that which type represents normal

and which type represents abnormal, and a benchmark needs to be

determined in advance, which is a technical problem.

3 Preliminaries

3.1 Homomorphic encryption

Homomorphic encryption is an encryption scheme that can

still perform homomorphic computations in an encrypted

situation. Under the same operation rules, the result of its

ciphertext calculation is the same as the ciphertext of the

plaintext calculation result. According to different operation

rules, homomorphic encryption can be divided into two types:

one is additive homomorphism and the other is multiplicative

homomorphism. According to the supported operation types

and operation times, homomorphic encryption schemes can be

divided into three types: Partially Homomorphic Encryption

(PHE), somewhat Homomorphic Encryption (SHE), and Fully
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Homomorphic Encryption (FHE). Some of the homomorphic

encryption methods can only perform one type of homomorphic

calculation, addition or multiplication. Somewhat

homomorphism supports addition and multiplication

operations on ciphertext at the same time, but can only

perform ciphertext operations for a limited number of times.

While the homomorphic encryption method can simultaneously

perform addition and multiplication homomorphic calculations,

and can support infinite ciphertext operations. CKKS Cheon

et al. [24] is a fully homomorphic encryption method, which

supports the addition andmultiplication of floating-point vectors

in the ciphertext space. Homomorphic encryption CKKS consists

of key generation (KeyGen), key distribution (DisKey),

encryption algorithm (Enc), and decryption algorithm (Dec).

• KeyGen: Responsible for the generation of the public key

(PK) and private key (SK) of the entire system.

• DisKey: Responsible for distributing keys.

• Encryption: Indicates the encryption function, which uses

the public key to encrypt the plaintext to attain the

ciphertext.

• Decrypt: Indicates the decryption function, which uses the

private key to decrypt the ciphertext to obtain the

corresponding plaintext.

The homomorphic encryption CKKS used satisfies the

additive homomorphic property and the multiplicative

homomorphic property as shown in Equations 1, 2.

E x1( ) + E x2( ) � E x1 + x2( ) (1)
E x1( )pr � E rpx1( ) (2)

3.2 Pearson correlation coefficient

The Pearson correlation coefficient is a method of measuring the

similarity between vectors, which measures whether the vectors are

linearly related. In addition, it can be regarded as the cosine similarity

after centering the vectors. The disadvantage of cosine similarity is

that the two vectors calculated cannot be empty in each dimension,

and the Pearson correlation coefficient overcomes this defect.

When there are two vectors X = [x1, x2, . . . , xn], Y = [y1, y2,

. . . , yn], the similarity calculation between vector X and vector Y

is shown in formula (3).

ρ X,Y( ) � Cov X, Y( )
σ X( )pσ Y( ) �

∑n
i�1 xi − �X( )p∑n

i�1 yi − �Y( )������������∑n
i�1 xi − �X( )2√

p

�����������∑n
i�1 yi − �Y( )2√ (3)

The Pearson correlation coefficient value ρ(X,Y) is between -1 and

1. Different values of the Pearson correlation coefficient indicate that

the two vectors have different relationships, and different value ranges

represent different correlation strengths of the vectors.

When the Pearson correlation coefficient value is 0, it means

that there is no linear correlation between the two vectors.

When the value of the Pearson correlation coefficient is

between (-1, 0), it means that when the value of one vector

increases (decreases), the value of the other vector decreases

(increases), indicating an inverse relationship between them.

When the value of the Pearson correlation coefficient is

between (0,1), it means that when the value of one vector

increases (decreases), the value of the other vector increases

(decreases), indicating the same change between them.

It is assumed that the larger the absolute value of the correlation

coefficient of two vectors, the stronger their correlation. And the

closer their correlation coefficient values are to 0, the weaker the

correlation between the two vectors, as shown in Table1.

This paper uses the Pearson correlation coefficient to compute

the correlation between the federated learning data center training

model and the client-side training model. When the correlation

coefficient value is less than 0.25, we consider that the model trained

by the client has nothing to do with the model trained by the data

center, and set the aggregation weight of the model trained by the

client to 0, thereby suppressing the poisoning model. Here we have

tested and set the Pearson correlation coefficient to 0.25,

0.5 equivalent. It is found that when the Pearson correlation

coefficient is 0.25, the effect is better. The focus of this paper is

to use CCKS and similarity based robust aggregation algorithm to

build our intrusion detection framework and implement intrusion

detection. Therefore, the setting process of Pearson correlation

coefficient correlation value is not shown in the paper.

4 Problem statement

4.1 Threat model

When the intrusion detection method based on federated

learning is deployed in the smart grid AMI network, there may

still be security risks. For example, an attacker may want to obtain

client information, and can intercept the model updates

uploaded by each client to conduct inference attacks. Other

attackers want to influence certain decisions of smart grid

AMI by reducing global model performance. Among them,

these clients may be sham clients injected by attackers, or real

clients invaded by attackers. But the attacker will not

compromise the data center and control server (too

expensive), which means that the data center and control

server can honestly do everything correctly and according to

the regulations. Client privacy may also be compromised as data

centers and control servers have access to model updates for

individual clients. Therefore, we consider the data center and

control server to be semi-honest, and furthermore, assume that

the four entities do not collude with each other.

When the attacker has the following information about the

FL system: training data, local updates, loss function and learning
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rate on the client. When the attacker knows the training data of

the client, he may carry out a data poisoning attack; When an

attacker knows the local update, loss function and learning rate of

the client, he has the ability to modify the local model, that is, to

poison the model. We believe that the proposed method can

defend against attacks such as Trim attacks initiated by attackers

possessing the above information.

4.2 Client security objective

The goal of this paper is to design a scheme that achieves

robustness against poisoning attacks launched by malicious

clients while preserving privacy and without loss of accuracy.

Specifically, we have three design goals:

• Privacy: An attacker can reveal privacy by inferring

gradients or parameters to recover training samples. In

order to protect the privacy of users, it is proposed to

protect the gradient uploaded by the client.

• Robustness: refers to the presence of attacks, the proposed

method can still maintain the classification accuracy of the

global model. That is, regardless of whether there is an

attack, the proposed method should have the same

performance as FedAvg without an attack.

• Accuracy: Poisoning attacks cause model performance

degradation by poisoning datas or models, such as

inaccurate predictions, misclassifications, etc. Therefore,

the federated learning intrusion detection method must

guarantee that the accuracy is within a rational range.

4.3 System model of smart grid AMI

As shown in Figure 1, the system model of this AMI has four

types of entities:

• Key Generation Center (KGC): An independent and

trusted third-party agency responsible for distributing

and managing the public and private keys required by

the AMI federation system.

• Clients: The data owner trains a unified model under the

coordination of the data center. Based on security

considerations, the client uses its own data for local

training, and then uploads the cryptographic gradients or

parameters to the data center, and we presume that the data of

each client is independent and identically distributed.

• Data Center (DC): Receives model updates from

individual clients and aggregates them. DC has a small

dataset of no attack samples, which provides a basis of trust

for the model to resist poisoning attacks.

• Control Server (CS): completes the aggregation work

together with the DC, and has the public-private key

pair (pkc, skc) generated by the KGC for encryption and

decryption.

For ease of reading, symbols and descriptions appearing in

this paper are listed in Table 2.

5 Federated learning intrusion
detection method based on
homomorphic encryption

In this paper, the full connected neural network is used to

train the detection model, and the trained model parameters

or gradients are floating point, while homomorphic

encryption CKKS can support the addition and

multiplication of floating point vectors in the ciphertext

space. Therefore, In order to settle the issue that the client

model update of each client suffers from inference attacks and

leaks user privacy, this paper uses the homomorphic

encryption method (CKKS) to encrypt the data generated

by each entity, so as to protect the client upload gradient

from being obtained by untrusted people. A trusted key

generation center generates keys for individual entities. All

authorized entities can access the public key generated by

KGC for other entities, and the private key generated by KGC

for an entity is kept by that entity. For example, the key (pkc,

skc) generated by KGC for the control server, in which

all authorized entities (each client, data center) can use the

public key of the control server, and the private key is stored

by CS.

This paper believes that there is a deviation between the

malicious gradient vector and the benign gradient vector,

and judges whether the gradient is malicious according to

the similarity with the benign gradient, so that the influence

of the malicious gradient can be identified and reduced. This

article is based on such a foundation. In order to train an

intrusion detection model that can resist poisoning attacks,

this paper also considers the model updates of the DC and

each client to jointly build a global model. Specifically, in

each iteration, the data center trains a benchmark model

Cao et al. [25] based on its data set, and performs directional

TABLE 1 Correlation table.

Absolute value 0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8-1

Correlation extremely weak weak medium Strong extremely Strong
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similarity calculation with the model update of each client,

and then scales the calculated value as a model Aggregated

adaptive weights. The closer the directions are, the greater

the adaptive weight. This protects against attacks where an

attacker manipulates the direction of the client’s model. At

the same time, the model update amplitude of each client is

normalized according to the data center model update

amplitude, so that it has the same size as the data center

model update, so that it can resist the scaling attack of the

client model by the attacker. The entire federated learning

model building process repeats three steps.

5.1 Client local training

In round t, the client Ux, x ∈ [1, 2, . . . , K] participating in

the training obtains the global model parameters [ωt−1
x ]pkx

issued by the DC, wherein the global model parameters are

encrypted with pkx. After decryption by the private key skx,

use the client’s data for training to update the model, the

expression is ωt
x � ωt−1

x − α∇Gt−1
X . In order to prevent

attackers or semi-honest data centers from obtaining

updates of each client and compromising user privacy, the

gradient [ωt
x]pkc is obtained by encrypting the local update

with the public key pkc of the control server.

5.2 Secure aggregation

The DC interacts with the CS to identify and defend against

user-initiated poisoning attacks. Specifically, since the data saved

by DC is safe, the gradient [Gt
d]pkc obtained by its training model

is used as a comparison benchmark.

Since an attacker may manipulate the direction of model

updates on malicious clients, so that the global model is updated

in the opposite direction to the update direction, we use the Person

correlation coefficient to calculate the encryption gradient

[Gt
x]pkcx�mx�1 of the selected m clients in a similar direction to the

baseline encryption gradient, as shown in Algorithm 1. To compute

the similarity without exposing client privacy, DC blurs the gradients

of client and DC by formula (4) and formula (5):

Ex � Gt
x[ ]pkcprx, x ∈ 1, 2, . . . , m[ ] (4)

FIGURE 1
Smart grid AMI system model.

TABLE 2 Symbol definition.

Symbol Describe

Pk public key

Sk private key

ω model weights

G Gradient

α learning rate

V magnified person correlation coefficient

T Federated Learning Iterations

t Federated Learning Iteration Index

K number of clients

A Number of malicious clients
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Ed � Gt
d[ ]pkcprd (5)

where rx and rd are two randomly selected non-zero numbers.

Input: DC owns [Gt
x]pkc and [Gt

d]pkc , x ∈ [1, 2, . . . , m], CS owns

private key skc

Output: similarity between [Gt
x]pkc, x ∈ [1, 2, . . . , m]

and [Gt
d]pkc

DC:

1: Randomly select two non-zero numbers ri, i ∈ x, d{ }
2: Using Equation 4 and 5 to get: Ei � [Gt

i ]pkc*ri, i ∈ x, d{ }
3: Send Ei to CS

CS:

1: Decrypt Ei using its private key

skc: Di � Dec(skc, Ei), i ∈ x, d{ }
2: Calculate the similarity ρx,dbetween client

parameters and data center parameters using

formula (6)

Algorithm 1. Similarity Calculation

The DC then sends the obfuscated data to the CS, which

decrypts using its private key to obtain Dx and Dd. CS uses the

Pearson correlation coefficient to calculate the update direction

similarity of the decrypted client model gradient and data center

model gradient, as shown in formula (6):

ρx,d �
Cov Dx,Dd( )
σ Dx( )pσ Dd( ), x ∈ 1, 2, . . . , m[ ] (6)

Among them, the decrypted data and are still obscure.

After the DC performs the similarity calculation, the Person

correlation coefficient is scaled by Eq. 7.

vx � max 0, In
1 + ρx,d
1 − ρx,d

( ) − 0.5{ } (7)

For those with low similarity, we consider them to be

abnormal. Eq. 7 indicates that the higher the correlation is,

the more information is extracted by the scaling function, and

the lower the correlation is, the less information is extracted by

the scaling function. For below a certain value, the aggregation

weight vx is 0.

Since it is possible for an attacker to launch an attack by

expanding the scale of client model updates Cao et al. [25],

thus affecting the global model update scale, this paper

normalizes the magnitude of model updates for each

client. The specific operation is to normalize the gradient

obtained by each client training model to the same

magnitude as the gradient of the DC training model, as

shown in Eq. 8.

�Gi � ‖Gd‖
‖Gi‖pGi (8)

where Gi represents the gradient of the ith client in the current

training round, Gi represents the normalized gradient of the ith

client, Gd represents the gradient obtained by data center

training, and ‖.‖ represents the L2 norm of a vector.

Normalization guaranteess that updates to individual client

models do not have too much influence on the aggregated

global model. At the same time, the normalization in this

paper also enlarges the smaller value of the update of the

client to make it the same as the update value of the data

center, because we think that the smaller update is more likely

to be a normal model. Such normalization can mitigate the

influence of malicious models on the global model.

Considering that the higher the similarity, the closer the

model parameters are to the model trained by the data center,

and the greater the impact on the final model. In this paper, the

scaled similarity value is used as the weight of model

aggregation, and the parameters of the global model are

shown in formula (9).

ωt � ωt−1 − α ∑
i∈ 1,2,...,m[ ]

vi∑i∈ 1,2,...,m[ ]vi
Gi (9)

where α is the global learning rate.

Algorithm 2 represents safe aggregation based on similarity

and normalized gradient magnitude, which enables safe

aggregation in the case that neither DC nor CS knows the

true gradient of the client and CS does not know the true

gradient of the data center.

Input: DC owns [ωt−1]pkc, [Gx]pkc , x ∈ [1, 2, . . . , m] and [Gd]pkc,
CS owns private key skc and vx, x ∈ [1, 2, . . . , m]

Output: [Gt]pkc
DC:

1: randomly select m non-zero numbers rx, x ∈ [1, 2,

. . . , m] and one non-zero positive number rd

2: Calculate Ex′ � [Gt
x]pkc*rx, x ∈ [1, 2, . . . , m]

and Ed′ � [Gt
d]pkc*rd

3: Send Ei′ and Ed′ to CS

CS:

1: Decrypt Ei′ using its private key

skc: Di � Dec(skc, Ei′), i ∈ x, d{ }
2: Use Eq. 7 to obtain vx

3: Compute the client-side model normalization

using Eq. 8 to obtain rd*Gx � ‖Dd‖
‖Dx‖*Dx

4: Calculate ex � α vx∑i∈[1,2,...,m]vx
*rd*Gx, x ∈ [1, 2, . . . , m]

5: Use CS’s public key pkc for

encryption: Ex � [ex]pkc , x ∈ [1, 2, . . . , m]
6: send Eex{ }x�mx�1 to DC

DC:

1: Remove noise: Fx � Eex*
1
rd
, x ∈ [1, 2, . . . , m]

2: Update the global model to: [ωt]pkc �
[ωt−1]pkc− (∑i∈[1,2,...,m]Fx)

Algorithm 2. Safe Aggregation Based on Similarity and

Normalized Gradients
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5.3 Model distribution
Since the global model parameters after security aggregation

are encrypted with the public key of CS, if they are sent directly

to the client, the client cannot decrypt it without the private key

[22]. Therefore, it is necessary to communicate between the DC

and CS, obtain the global model parameter [ωt]pkx re-encrypted
by the public key held by all users, and then broadcast the

parameter to all clients. The global model security broadcast

Algorithm 3 is as follows:

Input: DC owns [ωt]pkc, CS owns private key skc

Output: Client public key pkx encrypted [ωt]pkx
DC:

1: Randomly choose n non-zero numbers r

2: Calculate R � [ωt]pkc + [r]pkc
3: Send R to CS

CS:

1: Decrypt R using its private key skc: d = Dec

(skc, R)

2: Re-encrypt with public key pkx: R′ � [d]pkx
3: Send R′ to DC

DC:

1: Remove noise: [ωt]pkx � R′ + [−r]pkx
2: broadcast [ωt]pkx to all clients

Algorithm 3. Global Model Safe Broadcast Algorithm

6 Analysis and performance
evaluation

This section analyzes the algorithm, security and

experimental results of the proposed method.

6.1 Analysis of algorithms

1) Optimization problem: optimize the algorithm by reducing

the number of communications. For Algorithm 1, when

calculating the correlation coefficient between the gradient

of the data center and the gradient of the client, there are m

clients training the model, then call Algorithm 1 m times, and

the model parameters trained by the data center will be sent

each time, so it can be sent by sending 1-time data centermodel

parameters to optimize. Furthermore, we found that Ei and Ei′
in Algorithm 1 and Algorithm 2 are independent of each other

and blinded in the same way, where Ed′ needs to be blinded

with a positive number, so one blinding can be performed in

DC (using Algorithm 2 blinded). And reduce the number of

communication rounds by sending EI′ to CS in one round.

2) Correctness of the security aggregation algorithm: In order

to ensure that the proposed scheme can effectively discern

malicious gradients, we need to ensure that the data with

blinding factors added in Algorithm 1 can be calculated

correctly. It can be seen from the literature Cheon et al.

[24] that the Pearson correlation coefficient can calculate the

blinded variables in the right direction.

6.2 Security analysis

1) This paper discusses the security of three subjects: raw data,

model parameters, and Pearson’s correlation coefficient. For

the original data, in the framework based on federated

learning in this paper, the security of the raw data has

been greatly guaranteed. The data analysis platform in the

AMI network is transferred from the data center to the

concentrator, and the small distance transmission of the

original data from the smart meter to the concentrator

reduces the risk of long-distance movement from the

smart meter to the data center, so the privacy of data has

been greatly protected. For model parameters, the model

parameters trained using the CKKS encryption

concentrator are then uploaded to the data center for

aggregation. In order to prevent the semi-honest data

center from leaking client privacy, let the control server

and the data center aggregate model parameters together,

so that neither the data center nor the control server can know

the original data of the model parameters. This paper believes

that it is unnecessary to protect the privacy of the Pearson

correlation coefficient. Although the control server can

directly obtain the Person correlation coefficient, since the

control server is semi-honest, it will perform operations

correctly as required, so it will not change the correlation

coefficient value. Although there is literature showing that the

similarity between gradients contains more information

about the training data than the gradient values, samples

can be reconstructed using gradient similarity. However, this

method relies on the sign of the gradient, and in the context of

homomorphic encryption, the method of obtaining data

information through gradient similarity is ineffective

Cheon et al. [24].

2) Discuss security when it comes to secure aggregation and

model distribution. During secure aggregation, the client first

uses CKKS to encrypt its training parameter [Gt
x]pkc, and then

sends it to the DC. The DC performs a homomorphic

operation on the encrypted parameters (to achieve the

purpose of fuzzy parameters) to obtain

Ei � [Gt
i]pkc*ri, i ∈ x, d{ }, and sends it to the CS. After the

CS is decrypted, the similarity calculation is performed to

obtain the similarity value ρx,d. CS calculates the aggregation

weight vx according to the similarity value, then CS

normalizes the client model to obtain rd*Gx, then

calculates the aggregated gradient ex � α vx∑x∈[1,2,...,m]vx
rd*Gx
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with noise added, and then encrypts it and sends it to DC.

After DC removes noise, the model is updated. In this

aggregation process, except for Person correlation

coefficient and aggregation weight, DC and CS have no

direct contact with parameters, and all parameters are

invisible during the aggregation process, so the data in the

aggregation process is safe. Among them, Person correlation

coefficient privacy does not need to be protected (explained in

the previous paragraph), and vx is obtained by Person

correlation coefficient, so it does not need to be protected,

so the secure aggregation process is safe. When distributing

the model, the model [ωt]pkc owned by the DC is encrypted

with the CS public key. The homomorphic encryption

operation of [ωt]pkc is performed to obtain

R � [ωt]pkc + [r]pkc, and R is sent to CS. CS re-encrypts it

to obtain R′ � [d]pkx, and then sends it to DC, DC After

removing the noise, the [ωt]pkx is obtained and sent to each

client. Neither DC nor CS obtains the original model ωt in this

distribution process, so the model distribution process is safe.

6.3 Performance evaluation

6.3.1 Experimental setup
1) Dataset: In order to evaluate the performance of the intrusion

detection method based on federated learning in the smart

grid AMI network, this paper adopts the NSL-KDD dataset

for testing, and the data includes training set and test set. The

data set is randomly allocated on the client side, and the data

center has non-attack NSL-KDD data. It is assumed that the

sample distribution of the data center is biased towards a

certain type, that is, the proportion of the samples of the data

center to a certain type of samples is q, and the other types the

sample probability is (1 − q)/4, and the remaining types of

samples have the same proportion, this q is called the data

center sample bias.

2) Evaluated Poisoning Attack: Trim attack is a kind of off-

target local model poisoning attack optimized for Trim mean

and median aggregation rules. Because attackers poison the

client’s data, it is also reflected in the impact training model.

Therefore, this paper uses Trim attack to test the method in

this paper, which can protect the client from data poisoning

attacks and model poisoning attacks.

3) Evaluation Metrics: Since the Trim attack aims to improve

the test error rate, this paper uses the test error rate of the

global model to evaluate the robustness, where the test error

rate of the global model refers to the proportion of labels that

the global model mispredicts. When the proposed method

obtains a lower test error rate under this attack, the method is

robust against this attack. This paper also uses the accuracy

rate as one of the evaluation metrics of our method.

4) System settings: In this paper, the number of clients is set to

50, the proportion of malicious clients is 40%, the data of each

client is randomly allocated, the data center is allocated

100 training data, and the distribution of data in the data

center is the same as the distribution of the overall training

data. The model in this paper is an intrusion detection model

with 2000 federated learning iterations under the fully

connected neural network. Unless otherwise stated,

experiments were performed with this system setup. In

order to test whether the proposed method can resist the

poisoning attack and reasoning attack of federated learning in

smart grid AMI intrusion detection, this paper uses a simple

fully connected neural network, which can be replaced by

other neural networks later.

6.3.2 Experimental results
1) Robustness evaluation: This paper compares with FLTrust

Cao et al. [25], FedAvg McMahan et al. [26], PEFL Liu et al.

[27] methods. Table 3 shows the test error rate when the

distribution of the data center samples is the same as the

distribution of the overall training samples. At this time,

the number of clients is 50, the data of each client is

randomly allocated, the data center allocates

100 training data, and the distribution of data in the

data center is the same as that of the overall training

data. When there is no attack, the proportion of

malicious clients is 0%, and when there is an attack, the

proportion of malicious clients is 40%.

Without the attack, the test error rate of the proposed

method is lower, while FedAvg, FLTrust and PEFL have higher

test error rate. It shows that this method has no negative

impact on the federated aggregation process when there is no

attack. For example, the test error rate of the proposed method

is 0.1494, while the test error rates of FedAvg, FLTrust and

PEFL are 0.1465, 0.1602 and 0.1523. The results show that the

proposed method is more accurate than other methods against

poisoning attacks in the absence of attacks. In the presence of

Trim attack, the test error rate of the proposed method,

FLTrust and PEFL is higher than that of FedAvg without

attack, but the test error rate of the proposed method is the

closest to FedAvg without attack, which indicates that the

proposed method is robust. When there is an attack, the

proposed method has a lower test error rate than other

methods (FedAvg, FLTrust, PEFL) because our method

integrates all client data information for detection. FedAvg

has no defenses, and when there is a malicious attack, it may be

TABLE 3 Test error rate.

Method FedAvg FLTrust PEFL Proposedmethod

No attack 0.1465 0.1602 0.1523 0.1494

Trim attack 0.2881 0.1611 0.1553 0.1523
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guided by the malicious attack model. FLTrust updates the

model through the joint training of the data center model and

the client model, and uses the pruning cosine method to

eliminate the client models with a similarity less than zero,

and retain all the client models greater than zero. So when the

client model with low similarity and not less than zero

participates in model aggregation, the global model will

also be affected. The accuracy of PEFL is similar to the

FIGURE 2
The effect of iteration on accuracy.

FIGURE 3
The effect of the total number of clients on the accuracy.
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proposed method, because when the number of malicious

attackers is less than 50% of the total number, the baseline

model selected by PEFL according to the median dimension is

highly likely to bypass the malicious model, and the Pearson

correlation coefficient and A logarithmic function is used to

generate aggregate weights, assigning larger weights to clients

with high similarity and suppressing their weight values for

smaller clients.

2) Accuracy evaluation: Many factors affect the size of the

accuracy, s. ch as model type and structure, sample

quality, number of federated learning iterations, total

number of clients and proportion of malicious clients,

and data center data volume and distribution (bias). This

paper tests the effect of the number of federated learning

iterations, the number of clients and the proportion of

malicious clients, as well as the number and distribution of

samples in the data center on the accuracy.

Figure 2 shows the change in the accuracy of the proposed

method for 1,000 federated learning iterations when the number

of clients is 50, the data of each client is randomly allocated, the

data center allocates 100 training data, and the distribution of

data in the data center is the same as that of the overall training

data, and the proportion of malicious clients is 20%. When the

number of federated learning iterations raises, the precision of

the model improves. Before 250 federated learning iterations, the

model’s accuracy raises significantly, and after 400 federated

learning iterations, the model’s precision stabilizes.

Figure 3 shows the effect of the total number of clients on

the model accuracy. At this time, the proportion of malicious

clients is 40%, the data of each client is randomly allocated,

and the data center allocates 100 training data, and the

distribution of data in the data center is the same as that

of the overall training data. As the number of clients raises,

the precision of the model decreases. The total number of

clients ranges from 50 to 200. When the total number of

clients is 50, 100, 150, and 200, the intrusion detection rates of

the proposed method are 0.8477, 0.8457, 0.8438, and 0.8115,

respectively. Since the number of samples of the client is

more, the training effect of the model is more friendly.

Therefore, when the total number of clients increases, the

TABLE 4 The effect of malicious client ratio on accuracy.

Malicious ratio (%) 0 10 20 40 60 80 90 100

FedAvg 0.8535 0.8271 0.7559 0.7119 0.6807 0.6299 0.4639 0.2490

FLTrust 0.8477 0.8467 0.8428 0.8447 0.5479 0.4648 0.4648 0.4596

PEFL 0.8398 0.8389 0.8359 0.8389 0.8389 0.8379 0.8135 0.2549

Proposed method 0.8506 0.8447 0.8438 0.8477 0.8467 0.8496 0.8350 0.2510

FIGURE 4
The impact of data center sample size on accuracy.
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number of samples on each client decreases, which may have

a certain impact on the performance of the model.

Table 4 shows the effect of different malicious client

proportions on the model accuracy. At this time, the number

of clients is 50, the data of each client is randomly allocated, the

data center allocates 100 training data, and the distribution of

data in the data center is the same as that of the overall training

data. As the number of poisoned clients raises, the precision of all

models decreases. This is because the amount of malicious data

raises, the amount of normal data decreases, and there is too little

correct information for global model training, resulting in a drop

in accuracy. However, the method proposed in this paper can

maintain a similar accuracy rate as FedAvg without attack when

the proportion of malicious clients is 90%. Other methods, such

as FedAvg and FLTrust, can only tolerate less than 60% of

malicious clients. When the proportion of malicious clients is

20%, the FedAvg accuracy decreases from 0.8535 to 0.7559.

When the proportion of malicious clients is 60%, the accuracy

of FLTrust decreases from 0.8477 to 0.5479. This shows that the

method proposed in this paper has better performance

against Trim.

Figure 4 shows the effect of the number of data center

samples on the accuracy of the intrusion detection model. At

this time, the number of clients is 50, the proportion of

malicious clients is 40%, the data of each client is

randomly distributed, and the distribution of data in the

data center is the same as that of the overall training data.

Here, the number of data center samples is set to 50–500,

corresponding to different accuracy rates. When the number

of samples in the data center is 100, the accuracy rate reaches

84.77%, and then when the number of samples in the data

center increases, the accuracy rate decreases slightly,

indicating that the data center can verify the proposed

method with 100 data samples, and obtain Good detection

effect.

Table 5 describes the impact of the data distribution of the

data center on the model accuracy. At this time, the number

of clients is 50, and the proportion of malicious clients is 40%.

The data of each client is randomly allocated, and the data

center allocates 100 training data. The accuracy rate is the

highest when the sample distribution deviation of the data

center is 0.2, and the larger the deviation, the lower the

accuracy rate. When q = 0.2, it means that the number of

various samples in the data center is the same, and the more

uniform the distribution of samples in the data center, the

better the trained model can reflect the characteristics of

various samples. The model trained in the data center is used

as the benchmark model for eliminating malicious models.

The more reliable the benchmark model is, the more accurate

the malicious model can be eliminated.

7 Conclusion

This paper studies the possible inference attacks and

poisoning attacks in the joint training of smart grid AMI

using federated learning technology. Firstly, the reasons for

inference attack and poisoning attack in smart grid AMI

using federated learning technology are analyzed. Secondly,

the threat model of smart grid AMI scenario when applying

federated learning technology is proposed, and our defense

target is proposed according to the threat model, and then the

system model is proposed. Next, this paper proposes a

federated learning intrusion detection method against

inference attacks and poisoning attacks, which is achieved

through three processes:

1) Client local training: This process is that each local client

trains the model and encrypts the trained model using the

encryption technology CKKS and then uploads it.

2) Secure aggregation: In the CKKS environment, the Pearson

correlation coefficient is used to calculate the directional

similarity between the model trained by the client and the

model trained by the data center, and the scaled similarity

value is used as the adaptive weight value of the server model

aggregation. At the same time, the model gradient amplitudes

uploaded by each client are normalized according to the data

center model gradient amplitudes.

3) Model distribution: The data center distributes the aggregated

global model to each client. The initial aggregated global

model is encrypted with the public key of the control server. If

it is directly distributed to each client, the client cannot access

the specific model. Therefore, the global model is re-

encrypted using the client’s public key with the

cooperation of the data center and the control server.

Finally, the optimization analysis of the algorithm, the safety

calculation analysis and the performance evaluation of the proposed

TABLE 5 The impact of data center sample distribution on accuracy.

deviation q = 0.2 q = 0.4 q = 0.6 q = 0.8 q = 1

No attack 0.8411 0.8496 0.8389 0.4951 0.3574

Trim attack 0.8320 0.8154 0.8096 0.3818 0.3496
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method are carried out. The research results show that the proposed

method can effectively resist inference attacks and poisoning attacks,

and the intrusion detection based on federated learning canmaintain

a good detection performance in the AMI network.
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