
Nonlinear Fourier analysis of
matter-wave soliton interferometry

Yu-Jie Feng1*, Zhi-Yuan Sun2,3† and Xin Yu2

1Institute of Fundamental and Interdisciplinary Sciences, Beijing Union University, Beijing, China, 2Institute of
Fluid Mechanics, Beihang University, Beijing, China, 3International Research Institute for Multidisciplinary
Science, Beihang University, Beijing, China

The bright solitons in quasi-1D atomic Bose-Einstein condensates are good
candidates for constructing matter-wave interferometers with high sensitivity and
long phase-accumulation times. Such interferometers at the mean-field level can be
theoretically studied within the framework of quasi-1D Gross-Pitaevskii (GP)
equation with narrow repulsive potential barriers. In this paper we present a basic
proposal of using the nonlinear Fourier transform (NFT), also known as the inverse
scattering transform, as an effective tool to analyze the soliton contents for those
interferometers, which thanks to the nearly integrable nature of the GP equation
when the normalized atom number fraction near the barrier is small. Based on typical
cases, we show that the soliton components can be accurately detected from the
output wave fields of the interferometers by computing the NFT spectra.
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1 Introduction

Bright solitons are localized wavepackets that propagate without change on their profiles,
due to the balance between dispersion and self-focusing nonlinearity. They have attracted
significant interests in a wide range of nonlinear physical systems [1–3]. As a typical paradigm,
the atomic Bose-Einstein condensates (BECs) with attractive interactions between atoms
support bright matter-wave solitons, which have been experimentally created in the
condensates of 7Li, 85Rb, 39K, and 133Cs [4–8]. Furthermore the interactions between those
solitons [9–11] and with potential barriers [12–26] have been explored both at the mean-field
and at the quantum-mechanical level.

An important application of the bright solitons is to consider the soliton-barrier interaction
for the design of matter-wave interferometers. Such interferometric proposals have been
discussed in many theoretical works [18–26], and realized in several experiments [13, 14].
The basic elements of the interferometer include splitting and recombination of a bright soliton
on a repulsive barrier [14, 18–23]. A fast soliton incident on a narrow barrier can split into
transmitted and reflected solitons. Correspondingly, when two bright solitons interact at the
location of the barrier, the redistribution of the norms (normalized atom numbers) of the
outgoing waves depend on the relative phase of the incoming solitons [14, 18, 22]. This makes
nearly total (perfect) recombination of the incident solitons possible. The soliton-based
interferometers have their advantages such as high sensitivity and longer-time acquisition
of phase shifts [14, 19].

The mean-field description of the atomic BEC solitons interacting with narrow potential
barriers can be studied by the quasi-one-dimensional (1D) Gross-Pitaevskii (GP) equation [3],
which presents the form of nonlinear Schrödinger (NLS) equation plus a localized potential
term (we set the harmonic trapping potential vanished for convenience). The deviation between
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the quantum and GP approach becomes negligible for large number of
atoms in the solitons. Depending on different forms of potential
barriers, we can construct various schemes of soliton
interferometers [23, 25–27]. In principle, the GP equation with
general external potential is non-integrable. However, if the
macroscopic wave function of the condensate sometime has
negligible distribution of norms near the narrow (localized)
repulsive barriers, the GP equation is close to integrable (nearly
integrable). This would be the case that the incident solitons or
outgoing waves (with most of the norms) are far enough away
from the barrier.

On the other hand, the integrable NLS equation can be well
studied by using the tool of nonlinear Fourier transform (NFT),
also known as the inverse scattering transform [1, 28–30]. This
technique decomposes the nonlinear waves into localized solitary
eigenmodes and dispersive radiation components. The NFT may
find its application in optical communications, where the
nonlinear spectrum (mainly the solitonic part) was modulated
to achieve the so-called “Eigenvalue communication” [31].
Recently, the NFT was also shown to be effective in analyzing
some nearly integrable NLS models, where the perturbations such
as dissipations, higher-order effects, or random noises are small
[32–35]. For these systems, the slow variation of the nonlinear
spectrum can be computed and traced as time evolves.

In this Brief Research Report, we use the NFT as a tool to “detect”
the ingredients of the outgoing waves that emerge after the soliton
collision with the narrow barrier for the soliton-based matter-wave
interferometry. Through several typical cases, we show that those
nonlinear contents (mainly the solitonic components) as well as their
norm distribution can be accurately tested out by NFT, which is
benefited from the nearly integrable nature of the systems outside the
barrier-affected region. Therefore, we expect potential application of
the nonlinear spectral analysis not only for the simulation results but
also in detailed understanding of the experimental data such as those
in [13, 14].

2 Methods

2.1 Quasi-1D GP equation

Considering a mean-field description, the dimensionless wave
function ψ(x, t) of the condensate obeys the normalized quasi-1D
GP equation with attractive interatomic interactions

i
zψ x, t( )

zt
� −1

2
z2

zx2
− |ψ x, t( )|2 + V x( )[ ]ψ x, t( ) , (1)

with the normalized temporal and spatial coordinates t and x,
respectively measured in the units 1/ωr and ar �

�������
Z/(mωr)

√
, where

ωr is the radial trap frequency and m is the atomic mass. See, e.g., [3,
18], for a more detailed discussion of the relevant units. Taking the
realistic parameters in experiments [4, 5], where the bright BEC
solitons have been created with ~103 7Li atoms (ωr = 2π × 700Hz),
the 200 dimensionless time units correspond to ~50 ms and
100 dimensionless length units correspond to ~140 μm, which are
under the current experimental capacity. The systematical derivation
of Eq. 1 from the 3D GP equation can be found in [3, 20], and

qualitative features of the 1D GP equation are fairly accurate for a wide
range of atom numbers below the critical threshold.

The potential barrier V(x) may be modeled by some localized
functions, such as the preferred Gaussian function generated by an off-
resonant Gaussian light sheet [14, 18], or two Gaussian potentials
forming the Fabry-Perot cavity [27]. This setup Eq. 1 can also include a
nonlinear potential barrier that relates to the norm of the wave
function [25]. Note that here we omit the harmonic trap along the
x direction which can be approximately realized for a configuration of
toroidal ring trap that introduces periodicity in x coordinate [18, 23].

2.2 Numerical simulations

We integrate Eq. 1 by using a fourth-order split-step method [36]
in a box L = 128πwith a uniform grid ofN = 213 nodes. The integration
domain was chosen large enough to prevent boundary effects. The
time step Δt = 0.0005 was employed which satisfies the requirement of
numerical stability. We have double checked our results by increasing
the box size, by fining the grid, as well as by using different integration
schemes.

Our initial condition can take the form of a single incident soliton,
or two oppositely moving bright solitons, even a bound state (soliton
molecule) composed by two fundamental solitons. The general form of
these nonlinear excitations at t = 0 can be written as

ψ x, t � 0( ) � k1sech k1 x + x1( )[ ]eiv1x
+k2sech k2 x + x2( )[ ]ei v2x+Δ( ) . (2)

Without loss of generality, setting k2 = 0, we have a single soliton
locating at x = −x1, with the amplitude k1 and moving velocity v1; For
sufficiently large values of |x1| and |x2| (x1 > 0 and x2 < 0), Eq. 2
approximately represents a pair of two bright solitons with oppositely
velocities v1 and v2 (v1 > 0 and v2 < 0), and with a relative phase Δ; A
bound state with zero phase difference (Δ = 0) can be constructed if |
x1−x2| is relatively small by assuming v1 = v2.

On the other hand, the relative numerical norm (i.e., atom number
fraction) that emerges on each side of (E±), as well as near the narrow
barrier (E0) is computed by the following normalized integral
quantities:

E+ � 1
N∫+∞

+d
|ψ|2dx ,

E− � 1
N∫−d

−∞
|ψ|2dx ,

E0 � 1
N∫+d

−d
|ψ|2dx ,

(3)

where the total norm N � ∫+∞
−∞ |ψ|2dx representing the number of

atoms is conserved, and d is the spatial position at which the effect of
the localized potential vanishes V (±d) ≃ 0. Note that we have the
conservation law E++E−+E0 = 1, and E0 ≃ 0 insures the nearly
integrable feature of the system [E0 (tf) < 1% is kept in all our
simulations].

2.3 Nonlinear spectral analysis

To perform the NFT, we need to solve the Zakharov-Shabat
spectral problem for a given wave function ψ(x, t)
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dY
dx

� −iλ ψ
−ψ* iλ

( )Y , (4)

where Y(x, t; λ) is a vector and λ � ξ + iη ∈ C denotes the spectral
eigenvalues, with ξ and η being the real and imaginary parts
respectively. These eigenvalues are symmetrically distributed on the
upper and lower complex planes. The discrete (solitonic) eigenvalues
apparently away from the real and imaginary axes correspond to
solitons, and their amplitudes are 2|η| while their velocities are
associated with −2ξ. The eigenvalues appearing very near the real
axis stand for small dispersive radiation waves.

Eq. 4 can be numerically solved by using the Fourier collocation
method [36], which expands theY(x, t; λ) components in the Fourier series
and the spectral problem (4) is reformulated in the Fourier space. This
method is convenient for computing the discrete solitonic eigenvalues. Our
results are also double checked with the Boffetta-Osborne method [30].

Here solving the spectra we take the wave functions at the times long
enough after the soliton-barrier interaction.

3 Results and discussions

3.1 Soliton splitting at a Gaussian barrier

We firstly show the example that the output after an incident
soliton interacting with a finite-width Gaussian potential barrier can
be well captured by the NFT. Here the linear potential V(x) = q exp
(−x2/σ2) is used with its normalized strength and width q = 4.0 and σ =
0.14. The amplitude and initial position of the incident soliton were
kept while its velocity varies, and the wave function at tf = 2x1/v1 was
chosen for computing the nonlinear spectrum [E0 (tf) is a very small
quantity].

FIGURE 1
(Color online) Nonlinear spectral analysis of the soliton splitting at a repulsive Gaussian potential barrier. The incident soliton parameters include k1 = 1,
x1 = 10, and (A) v1 = 0.5; (B) v1 = 1.2; (C) v1 = 2.5. The left panels show the spatial-temporal intensities |ψ(x, t)|2 (with the same colorbar as placed at the top), and
the right panels correspondingly present the NFT eigenvalues calculated with ψ(x, tf = 2x1/v1). Note that in (C) the eigenvalues near the real axis look more
intensive since thewindow along ξ is twice of that as in (A) and (B). (D)Comparison of E±with Es

± for the velocity of incident soliton varying from0.5 to 2.6.
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Figures 1A–C present the typical results for a low-, mediate-, high-
speed incident soliton respectively. We see that the nonlinear spectra
can clearly describe the features of the outgoing waves (the amplitudes
and velocities of the reflected and transmitted solitons are accurately
detected by the solitonic eigenvalues). In fact, there exist small-
amplitude radiation waves that correspond to the eigenvalues very
adjacent to the real axis. However, the solitonic eigenvalues take
almost all the norms. Here, we define the following ratios Es

− �
2ηs/k1 for ξs > 0 and Es

+ � 2ηs/k1 for ξs < 0, where λs = ξs + iηs
denote the discrete solitonic eigenvalues for solitons. This quantity Es

±

refers to the percentage of the total norm that the transmitted or
reflected solion takes since a soliton norm is proportional to its
amplitude.

Figure 1D compares Es
± with E± for a range of incident velocities. It

suggests a good agreement for slow and fast incident solitons which is
reasonable since the soliton tends to a complete reflection or

transmission, such as those in Figures 1A, C. For the velocity near
the 50:50 splitting, we found that Es

± is a bit smaller than E±. This is due
to the increased emission of radiation waves on both sides of the
potential barrier [e.g., see in Figure 1B], which take a small fraction of
the norms away from the solitons. Thus, the NFT may represent a
suitable tool to explain the wave content in details, especially for the
mediate-speed soliton splitting.

3.2 Soliton recombination at a Gaussian
barrier

In this section we discuss the use of NFT after the collision of a soliton
pair at the repulsive Gaussian barrier. We know that the asymmetries of
two incident bright solitons scattered by the barrier may lead to the
redistribution of the norms which is an effect depending on some

FIGURE 2
(Color online) Nonlinear spectral analysis of the soliton recombination at a repulsive Gaussian potential barrier. The parameters of the incident soliton
pairs include k1 = k2 = 1, v1 = 1, x1 = 10, and (A) v2 = −0.8; (B) v2 = −0.97; (C) v2 = −1. The relation x1/v1 = x2/v2 is required. The left panels show the spatial-
temporal intensities |ψ(x, t)|2 [(A) and (C) have the same colorbar as placed at the top, while (B) has its own insetted colorbar], and the right panels
correspondingly present the NFT eigenvalues calculated with ψ(x, tf = 2x1/v1). (D) Comparison of E+ with Es

+ for |v2/v1| varying from 0.8 to 1.
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parameters of the solitons, such as their relative phase, relative velocity,
and even relative amplitude (inverse width) [18, 24]. Very slight deviation
from the completely symmetric scenario can induce a nearly-perfect
soliton recombination [24]. This parameter-sensitive phenomenon forms
a base of the soliton interferometer.

Figures 2A–C show the cases that two oppositely moving solitons
with only difference on their velocities collide at the barrier
simultaneously, respectively generating the partial recombination,
nearly total recombination, and symmetric outputs. The eigenvalues of
the nonlinear spectra for these outputs are also presented.We see that the
solitonic eigenvalues accurately capture the amplitudes and velocities of
the outgoing solitons. A further comparison can be seen in Figure 2D,
where variations of E+ and Es

+ with |v2/v1| are plotted [we concentrate on
E+ since the (partial) recombination occurs in the region x > 0 if |v2/v1| <
1]. We found a good agreement with very small deviation only for the
regime of nearly-perfect recombination, which results from the emission
of weak radiation waves. These examples further support the effectiveness
of NFT in analyzing the outputs of two-soliton interactions at the narrow
repulsive barrier.

3.3 Scattering of soliton molecules at a
Gaussian barrier

Two adjacent bright solitons with zero phase difference can form
an oscillating bound state, also known as a type of soliton molecules

[37–41]. This structure has a periodic internal interaction, which
presents more colorful features when it is scatted by the potential
barrier [15, 38]. Here we use Eq. 2 with short separation distance
between solitons to construct a very good approximation of the two-
solitonmolecule, and launch this solitonmolecule with different initial
velocities.

Figure 3 shows the typical simulation results and the eigenvalues of
the NFT spectra for the output wave fields. When the incident velocity
is low, as seen in Figure 3A, the soliton molecule experiences a nearly-
elastic reflection, with a very slight emission of radiation waves. The
nonlinear spectrum detects this reflected soliton molecule very well.
The two-point solitonic eigenvalues with the same real parts is the sign
of a soliton molecule, and they are almost symmetric about the
imaginary axis with the initial eigenvalues (not shown here). In
Figure 3B, we simulate a mediate-speed soliton molecule scattered
by the Gaussian barrier. The scattering process destructs the molecule,
leading to the separation of a slow reflected soliton with large
amplitude and a fast transmitted soliton with small amplitude. This
result is exactly analyzed by the NFT spectrum, with two solitonic
eigenvalues representing output of the reflected and transmitted
solitons respectively. When a fast soliton molecule collide with the
barrier, most of its norm can transmit the barrier with the molecule
structure preserved. Figure 3C gives such an example, in which we also
see a very small reflected soliton separating from the molecule. The
eigenvalues of the outgoing waves also reveal this feature where the left
two-point solitonic eigenvalues are for the transmitted molecule while

FIGURE 3
(Color online) Nonlinear spectral analysis of the soliton molecule scattered at a repulsive Gaussian potential barrier. The parameters of the soliton
molecules include k1 = k2 = 1, x1 = 30, x2 = 34, and (A) v1 = v2 = 0.4; (B) v1 = v2 = 1.2; (C) v1 = v2 = 2.3. The left panels show the spatial-temporal intensities |ψ(x, t)|2

(with the same colorbar as placed at the top), and the right panels correspondingly present the NFT eigenvalues calculated with ψ(x, tf = 2x1/v1).
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the right individual eigenvalue corresponds to the small reflected
soliton.

3.4 Soliton splitting and recombination at a
nonlinear potential barrier

In the above sections, we have discussed the scattering of bright
solitons at the linear (Gaussian shape) potential barrier, and shown
the effectiveness of NFT in analyzing their output wave contents.
Hereafter we offer the results for the setup with a nonlinear
repulsive potential barrier. The simulations in [25] claim that
the use of nonlinear splitter provides a higher sensitivity than
its linear counterpart, and a nonlinear localized barrier may be
realized by means of the localized Feshbach resonance, as well as in
a nonlinear optical waveguide. We implement a nonlinear
potential barrier of the form V(x) = q exp (−x2/σ2)|ψ|2 with q =
4.0 and σ = 0.14. The similar simulations were performed
considering a incident soliton splitting and two oppositely-
moving solitons scattering at the nonlinear barrier.

Figure 4 presents our results. In Figure 4A, we compare E± with Es
±

for the nonlinear splitter, where with the velocity increasing the incident
soliton gradually transmits the barrier, which is similar to the case of the
linear splitter. The 50:50 splitting seems to occur at a slower incident
velocity. This comparison suggests that the NFT can well detect the
transmitted and reflected solitons that dominate the nonlinear wave field,
with only slight deviations coming from the emission of radiation waves.
In Figure 4B, we provide the data for two-soliton interaction at the
nonlinear barrier. The trend from partial to nearly-perfect recombination
next to symmetric scattering can also be found with |v2/v1| → 1. The

difference between E+ and Es
+ is a bit larger than that of the linear splitter

since the level of radiation waves is somewhat stronger for the nonlinear
splitter, which is indicated by the NFT analysis.

4 Summaries

Our work introduced the basic idea of using NFT to analyze the
nonlinear wave contents for the soliton-based matter-wave
interferometry at the mean-field level. This idea is benefitting from
the nearly integrable nature of the quasi-1D GP equation with a
narrow potential barrier (when the normalized atom number fraction
near the barrier is very small). We have studied typical cases including
the soliton splitting and recombination at the linear and nonlinear
Gaussian-shape repulsive barrier (see Figures 1, 2, 4), as well as
scattering of the two-soliton molecules (see Figure 3). Our results
show that the soliton ingredients can be accurately detected by the
discrete solitonic eigenvalues of the nonlinear spectrum from the
outputs of the interferometers. In addition, the magnitudes of the
dispersive radiation waves separated from the soliton-barrier
interactions might also be estimated. We therefore expect the NFT
to be implemented as an effective tool in analyzing the simulation
results and even the experimental data when applicable.

On the other hand, we envision related explorations such as
applying the NFT to analyze the more complicated interferometry
setups [23, 27], or considering the influence of random noise on the
output data. Using the machine-learning networks for computing the
eigenvalue spectra [42] would be another interesting prospect, while
this type of technics has been successfully used in the quantum error
correction and proved to be efficient to some extent [43, 44].

FIGURE 4
(Color online) (A) Comparison of E± with Es

± for a soliton splitting at the nonlinear potential barrier, with its incident velocity varying from 0.2 to 2. Other
soliton parameters are chosen the same as in Figure 1. (B) Comparison of E+ with Es

+ for two-soliton interaction at the nonlinear barrier, with the ratio |v2/v1|
varying from 0.8 to 1. Other soliton parameters are the same as those in Figure 2.
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