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In a recent paper (Zhao et al., Phys Rev X, 2022, 12: 031,021), we reported

experimental observations of “ultrastable” states in a shear-jammed granular

system subjected to small-amplitude cyclic shear. In such states, all the particle

positions and contact forces are reproduced after each shear cycle so that a

strobed image of the stresses and particle positions appears static. In the

present work, we report further analyses of data from those experiments to

characterize both global and local responses of ultrastable states within a shear

cycle, not just the strobed dynamics. We find that ultrastable states follow a

power-law relation between shear modulus and pressure with an exponent β ≈
0.5, reminiscent of critical scaling laws near jamming. We also examine the

evolution of contact forces measured using photoelasticimetry. We find that

there are two types of contacts: non-persistent contacts that reversibly open

and close; and persistent contacts that never open and display no measurable

sliding. We show that the non-persistent contacts make a non-negligible

contribution to the emergent shear modulus. We also analyze the spatial

correlations of the stress tensor and compare them to the predictions of a

recent theory of the emergent elasticity of granular solids, the Vector Charge

Theory of Granular mechanics and dynamics (VCTG) (Nampoothiri et al., Phys

Rev Lett, 2020, 125: 118,002). We show that our experimental results can be fit

well by VCTG, assuming uniaxial symmetry of the contact networks. The fits

reveal that the response of the ultrastable states to additional applied stress is

substantially more isotropic than that of the original shear-jammed states. Our

results provide important insight into the mechanical properties of frictional

granular solids created by shear.
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1 Introduction

Granular materials are athermal collections of particles that

interact with each other only when they form direct, frictional

contacts. These materials can jam into solid packings that

statically resist applied stresses [3–8]. Shear-induced jamming

occurs in a variety of disordered, complex systems, including

granular suspensions [9–11] and dry granular materials with

[12–17] or without friction [18–20]. The stability of shear-

jammed states, however, remains at best partially understood.

In a recent experiment [1], the stability of shear-jammed states in

a frictional granular system was systematically examined by

monitoring their evolution under small-amplitude, volume-

conserving cyclic shear. Many shear-jammed packings relaxed

to a stress-free, diffusive steady state under cyclic strain

amplitude as small as 1%. However, in some cases, the shear-

jammed system relaxed into an unexpected state in which all

microscopic degrees of freedom, including particle positions,

orientations, and contact forces, remain the same for

thousands of shear cycles. These states were termed

“ultrastable” to distinguish them from originally formed

shear-jammed states that would deform plastically under a

single shear cycle with same strain amplitude. They emerged

in athermal, frictional granular packings and are thus

qualitatively different from the states of glasses obtained using

vapor deposition that have also been termed ultrastable [21].

Nevertheless, the two systems are similar in that the ultrastable

shear-jammed granular packings have smaller pressure and

behave more like an elastic ordinary solid than other shear-

jammed packings, and ultrastable glasses have lower energy and

are more stable against shearing than ordinary glasses [21, 22].

In our earlier work [1], we found that a reversibility transition

and a jamming/unjamming transition coincide at the phase

boundary between the two types of nonequilibrium steady

states induced by cyclic shearing: the ultrastable states that

return to the same microscopic configuration after each cycle

and the fluid-like unjammed states in which particles undergo

diffusive displacements. Without changing the volume fraction,

the different types of steady states can be realized by changing

either the shear strain γI used to form an original shear-jammed

state or the cyclic strain amplitude δγ. A stability diagram is given

in Ref. [1]. Notably, ultrastable states formed by larger γI survive

under larger δγ. The transition from ultrastable states to

unjammed states with increasing δγ or decreasing γI may be

viewed as a yielding transition. This transition is similar to the

oscillatory yielding of amorphous solids [23–27], which is

accompanied by a microscopic reversibility transition that can

be classified as an absorbing-state transition [25, 28, 29]. The

ultrastable states reported in Ref. [1] are both reversible and

mechanically stable and are thus similar to the absorbing states of

amorphous solids under cyclic shear with a strain amplitude

below the threshold for oscillatory yielding [25], but different

from other absorbing states that do not have a mechanically

stable structure as in the case of dilute suspensions [30]. The

global stress-strain curves for the ultrastable states reported in

Ref. [1] appear to be highly elastic, but the internal deformation

occurring within individual shear cycles was not examined for

evidence of reversible plastic events [26] or loops in particle

trajectories [31–33].

In addition to characterizing the grain scale deformations

occurring in the ultrastable state, we study the relation between

the global elasticity features and the local stresses at the grain

scale. A recent theory, termed the Vector Charge Theory of

Granular mechanics and dynamics (VCTG) [2, 34], suggests a

promising approach for relating the global elastic behaviour to

features of the contact forces between individual particles. VCTG

is a stress-only framework for amorphous solids; it does not rely

on a unique reference structure to define strain. This theory maps

the mechanical response of granular solids to the static, dielectric

response of a tensorial electromagnetism with the electric

polarizability of the medium mapping to emergent elastic

moduli. VCTG relates the spatial correlations of the stress-

tensor to these elastic moduli, which emerge from the

underlying contact and force network. While previous

experiments confirmed some features of the stress correlation

functions predicted by the theory [2], there has not been a direct

comparison of the elastic constants obtained from fitting the

stress correlations to the elastic constants measured from stress-

strain curves in experiments. It is thus of interest to examine our

data in the framework of such a theory.

In the present work, we report a detailed analysis of the elastic

properties of the previously reported ultrastable shear-jammed

states [1]. We find that the emergent shear modulus follows a

power-law relation with pressure with an exponent consistent

with some numerical models. However, the shear response

contains a special non-linear feature: there are many contacts

that reversibly open and close under low amplitude cyclic shear.

These non-persistent contacts contribute a non-negligible

portion to the global effective shear modulus. We also

examine the relation between the global elastic constants and

internal stress correlations predicted by VCTG. The analysis

leads to intriguing scalings of the emergent elastic properties of

the system and uncovers a feature that reflects how cyclic shear

modifies the elastic properties of a jammed packing. Our results

bring new insights to the elasticity of frictional granular materials

near jamming.

2 Materials and methods

The analyses in the present paper are performed on the same

set of experiments reported in Ref. [1]. In this work, we focus on

the evolution of the system within several shear cycles after an

ultrastable state is formed while Ref. [1] focused on the strobed

states. The materials and experimental protocols are briefly

summarized here. More details can be found in Ref. [1].
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Our model granular system consists of a bidisperse layer of

photoelastic disc with same height, 6.8 mm, but different

diameters: db = 15.9 mm and ds = 12.7 mm. The static friction

coefficient between the particles is μs = 0.87 ± 0.03. Under static

diametric loading, the normal contact force law is roughly

Hertzian. For a small disc squeezed between to rigid surfaces,

we measure

fn ≈
ϵs
rs

δ/ds( )3/2 (1)

where fn is the normal contact force, δ/ds is the diametric strain, rs
is the radius of the small disc, and ϵs = 2.73 N·m. (This expression

slightly overestimates the weak forces. Details on contact force

law calibration are given in Appendix A of Ref. [1].) The discs are

placed in a simple shear box with a parallelogram boundary and a

multi-slat base that promotes homogeneous shear when the angle

between the boundaries changes. A schematic of the shear

apparatus is shown in Figure 1A, and more details can be

found in Refs. [35, 36]. The number of particles is fixed at

1040 for all experiments. The area of the shear box is also

kept constant throughout. The packing fraction, defined as the

total area of particles divided by the area of the shear box, is ϕ =

0.816 for all experiments, which is below the frictionless isotropic

jamming point ϕJ ≈ 0.835 estimated using the same

apparatus [35].

At the beginning of each experiment, the particles are

randomly placed in a zero-stress, unjammed configuration.

When the boundary walls impose a volume-conserving simple

shear deformation, the parallel bottom slats move accordingly to

impose a uniform internal shear strain field. Static friction causes

the particles to move with the slats in an unjammed

configuration. Such a substrate-assisted shear protocol avoids

boundary-induced density heterogeneity and leads to

homogeneous shear-jammed states [36]. The frictional forces

between particles and the slats are, however, much smaller in

magnitude than the mean contact force in the jammed states.

Starting from the unjammed initial state, each shear

experiment consists of two stages: (i) an initial shear that

forms a shear-jammed state; and (ii) a number of consecutive

shear cycles that cause the shear-jammed state to transform. The

two stages are sketched in Figure 1B. In the initial shear stage, we

apply a shear strain γI that transforms an initial chosen

FIGURE 1
Experimental protocol and the ultrastable states. (A) A schematic top view of the multi-slat shear cell. Bottom slats move together with
boundary walls to impose a uniform simple shear profile. (B) The applied strain as a function of time. An initial large forward shear is followed by
multiple periods of small-amplitude cyclic shear. The shear rate is always in the quasistatic regime. The light blue rectangle indicates the period of
interest for the present work. Open circles schematically indicate the times of data snapshots. Both (A) and (B) are adapted from Ref. [1] (C–F)
Snapshots of the force chain network for four independent runs with different γI. Each column shows images in the original configuration, the shear-
jammed configuration following the initial forward shear, and the configurations reached after 1000 and 2000 shear cycles. As indicated by the
shapes of the original configurations, the initial forward shear used to reach the rectangular configuration increases from left to right. All systems in
(C–F) have same packing fraction ϕ =0.816, and the amplitudes of the cyclic shear are the same δγ =0.95%. The images are taken through a
polariscope and thus only particles that bear finite stress are visible. Two ultrastable states are formed in (E) and (F) as the system locks in jammed
states that do not change over at least a thousand shear cycles.
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parallelogram into a rectangle. Note that the jammed states

formed by different γI have different features of the contact

and force networks [12, 14, 37]. In the cyclic shear stage, we apply

a series of N small-amplitude shear cycles with strain amplitude

δγ ≪ γI. The value of N is at least 1500, and the largest one we

used is 4800. In this stage, we only monitor states before and after

each complete shear cycle, as sketched by the small circles in

Figure 1B. In the last two or three cycles, where an ultrastable

state has been formed, we also record images of the system within

the shear cycles. The present work focuses on these cycles, as

highlighted by the light blue region in Figure 1B.

At all stages, the imposed shear can be considered quasistatic; the

system reaches mechanical equilibrium much faster than the overall

shearing rate [1]. A high-resolution camera is used to take images of

the system, and physical quantities of interest are measured using

image processing techniques. For each state of interest, we measure

all the vector contact forces between individual particles using a

nonlinear fitting algorithm [38], details of which can be found in

Appendix C of Ref. [1]. The stress tensor is calculated from the

measured contact forces as in Refs. [12, 39, 40].

σ̂ � 1
S
∑Np

i≠j
rij ⊗ f ij, (2)

where fij is the vector force applied to partilce i particle by the

particle j, rij is the displacement of the contact point of particles i

and j from the center of particle i, and the summation runs over

particle indices i and j from 1 to the number of particles Np. We

exclude the particles that are in direct contact with the boundary

walls, and S in Eq. 2 is the total Voronoi area for the particles that

do not belong to the boundary layer.

Ultrastable states are formed when γI is large and δγ is small. For

smaller γI or larger δγ, the system relaxes to an unjammed, fluid-like

state. Figure 1 shows snapshots illustrating the different behaviors.

Figures 1C–F shows example images obtained from typical runs with

different γI. All of the images are taken through a polariscope so that

only the discs supporting finite stress are visible. The second row

(labeled n = 0) shows the stress state after the initial shear γI, and the

third and fourth rows show the states after 1000 and 2000 shear cycles

with δγ = 0.95%. The nearly blank images in columns (C) and (D)

indicate that the system has relaxed to a steady state with nearly zero

pressure. The close similarity between images in the third and fourth

rows of columns (E) and (F) indicate that ultrastable states are

reached within 1000 cycles. Our focus in this paper is on the elastic

properties of these ultrastable states.

3 Results

3.1 Emergent shear modulus

We first examine the global shear modulus G for the

ultrastable states under cyclic shear. The insert panel of

Figure 2A plots an example σxy evolution in a shear cycle. The

filled red circle is the ultrastable state being considered. The

behavior appears similar to a viscoelastic material in a highly

elastic regime. The finite area enclosed by the curve suggests that

there is measurable energy dissipation inside the system,

although this hysteresis in the stress-strain curve is much

smaller than that of shear-jammed states formed by initial

shear alone [1]. The microscopic mechanisms responsible for

this small dissipation could be the sliding of particles over the

base and the confining walls or the sliding at inter-particle

contacts. We have examined the distribution of the tangential

to normal contact force ratio and find that most force-carrying

contacts are far from the Coulomb threshold for sliding.

However, we cannot exclude the existence of reversible sliding

at weak contacts. In addition, the viscoelasticity of the

polyurethane photoelastic discs leads to small but measurable

hysteresis in the force-displacement curve for a single particle

under cyclic diametric loading, as shown in Appendix A in Ref.

[1]. This material effect may also contribute to the global

hysteresis in the stress-strain curve.

From numerical simulations, it is known that both the elastic

constants and the stresses of jammed granular materials follow

scaling laws in the vicinity of the jamming point [41–43]. While

the exponents associated with stresses and contact numbers have

been examined in experiments [4], the scaling of elastic moduli

remains largely unexplored, especially for frictional systems.

Previous experiments measured the scaling indirectly through

acoustic propagation [44]. Our experimental system allows us to

study the scaling of the shear modulus of the ultrastable states.

We define the shear modulus G as the slope of the curve in

the vicinity of the ultrastable state. In practice, we fit a straight

line to the rising branch of the curve and obtain the fitted slope.

The jamming point has zero pressure. Thus, the pressure p serves

as the measure of distance to the jamming point. While the excess

contact number may be a more fundamental quantity, pressure is

measured with higher accuracy than contact number in

photoelastic experiments. Thus, in this paper, we focus on the

relation between G and p. We also note that this relation is of

great engineering interest [44], as in real applications it is easier

to control the pressure in a packing than the average contact

number. Figure 2A shows the measured values of G plotted as a

function of pressure for various small values of δγ. Without any

rescaling, the data falls on a single curve, suggesting that all the

ultrastable states are governed by a universal scaling relation

despite the rather special protocol used to generate them. The

independence of δγ also suggests that the ultrastable states are

below the onset of softening [45]. The solid curve shows a power-

law fit of the form

G � G0p
β, (3)

with the fit parameters G0 = (95 ± 15)N/m and β = 0.50 ± 0.06. A

log-log plot of same data is shown in Figure 2B. Interestingly, the
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shear modulus measured using sound propagation exhibits

similar dependence on pressure [44]. Numerical simulations

with frictionless spherical particles near jamming interacting

through linear spring force laws also show β = 0.5 for both

isotropic [41, 43, 46] and shear-jammed systems [19]. For

frictionless Hertzian contact models simulations give β = 2/3

over the range of dimensionless pressures studied in our system

[41, 47]. Simulations of 2D packings of frictional spheres with

Hertz-Mindlin forces and with friction coefficients similar to

ours show β between 1/2 and 2/3 [42]. As mentioned above, the

contact force law between our discs is roughly Hertzian, and our

measured β appears similar to those obtained in numerical

simulations. In addition, the range of dimensionless pressures

in our experiments falls in the range studied in simulations,

suggesting that our system is indeed close enough to the jamming

point to be in the scaling regime. We note that a recent

simulation of 2D frictional particles under oscillatory shear

with linear-dashpot contact model also found β = 1/2 for the

small-strain plateau shear modulus [45]. Another recent

simulation shows that β can be different for deformable

particles whose shape is controlled by surface tension rather

than internal bulk stresses [48].

3.2 Persistent and non-persistent contacts

The internal deformation of the system exhibits non-trivial

features. Particle displacements are non-affine, and many force-

bearing contacts are activated and deactivated reversibly during a

shear cycle. These contacts contribute to the emergent elastic

moduli through a nonlinear process that can not be predicted by

analyzing a single contact network.

We here report experimental characterizations of the two

types of contacts that contribute to the emergent elastic modulus

of the packing in a shear cycle. The non-persistent contacts are

those that break reversibly during a shear cycle, while the

persistent contacts never break once the ultrastable state is

reached.

3.2.1 Non-persistent contacts
We first demonstrate the existence of non-persistent

contacts in an example ultrastable state formed by initial

shear γI = 14.7% and cyclic shear amplitude δγ = 0.95%. After

the system has settled in the ultrastable state for thousands of

cycles, we examine the response of the system during the next

three shear cycles. Figure 3A plots the global shear strain for

these three shear cycles.

We show that the contact between particles 672 and

827 shown in Figure 3C is a non-persistent contact. The

magnitude of the normal component of the contact force, fn,

on this contact is plotted in Figure 3B. It reversibly drops to zero.

To further show that the contact actually opens, we show

snapshots of the system in five typical states A to E in

Figure 3C. In state D, as shown by the snapshot in the third

column of Figure 3C, the contact is clearly opened. In state B, the

clearly visible photoelastic fringes confirm that the contact is

carrying finite forces. Thus, this contact opens and closes

reversibly in a shear cycle, and is called a non-persistent

contact in this paper. See Supplementary Video S1 for a video

of this process. Note that the evolution of fn is consistent with the

FIGURE 2
The emergent shear modulus of ultrastable states formed by different γI and δγ as a function of pressure. (A) Insert: an example evolution of
shear stress σxy versus strain under cyclic shear for an ultrastable state. The shearmodulusG is defined as the slope of the forward branch of the curve.
Main panel: Measurements of the shearmodulusG for the ultrastable states created by cyclic shear with different strain amplitude δγ. Each data point
corresponds to an independent packing. The brown axes show the corresponding dimensionless values for pressure and shear modulus where
rs and ϵs are from Eq. 1. The black curve shows a power-law fit of the form G∝ pβ with β =0.5. (B) Log-log plot of the data as in the main panel of (A).
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global shear. The branch vector pointing to contact

672–827 from the center of particle 672 is roughly parallel to

the y′ direction (see Figure 1A), along which the system is

compressed from state A to state B and is stretched from B to

D. Accordingly, fn on contact 672–827 grows from A to B and

drops from B to D, during which it opens.

To quantitatively classify the contacts and characterize the

behavior of the non-persistent contacts, we consider two

characteristic quantities: (1) the fraction of time that the

contact is open, ρopen, defined as the number of steps in one

complete shear cycle for which fn < 0.01 N divided by the total

number of steps in the cycle; and (2) the maximum value of fn for

FIGURE 3
Non-persistent and persistent contacts. All data in this figure are from a single example ultrastable state formed by γI =14.7% and δγ =0.95%. (A)
The boundary shear strain as function of shear steps during three shear cycles with same strain amplitude after the ultrastable state is formed (i.e., the
strobed states remained unchanged for at least a thousand of cycles before the three cycles shown here). Each shear cycle contains 20 shear steps.
(B) The normal forcemagnitude, fn, on the contact between particles 672 and 827 (purple circles) and on the contact between particles 672 and
381 (blue stars). The horizontal dashed line marks a threshold value 0.01 N. The number of shear steps that a contact remains open is noted as topen.
(C) Snapshots of regions from five different states taken from the cycle shown in (A). Each column shows, from top to bottom, a small region of the
packing imagedwithout the polarizer, the same region imaged through the polarizer, a region around a single contact (particles 672 and 827) imaged
without the polarizer, and the same region imaged with the polarizer. Note that in column D, contact 672–827 is clearly opened (see the visible gap
between particles in the third row), while in B it bears a force ~ 0.1 N. The shape at the bottom of each column shows the boundary configuration of
the shear cell. See Supplementary Video S1 for a video of this process. (D) Scatter plot of ρopen, the ratio between topen and the total number of shear
steps per cycle, versus fn.max, the largest fn over a shear cycle, for all contacts. The contacts in the purple region are selected as the non-persistent
contacts and are indicated by purple circles in (G). (E) Scatter plot of fn,min, the smallest fn over a shear cycle, versus fn,max for all contacts. The contacts
in the blue region are selected as the persistent contacts and are indicated by blue line segments in (G). (F) The probability density function for the
discrepancy between the measured action and reaction normal forces. The black curve shows a Guassian fit with a width near 0.03 N. (G) Image
showing the classified contacts. Purple circles mark non-persistent contacts and blue line segments indicate persistent contacts. Stressed particles
that have unclassified contacts are unmarked but visible in underlying polarized image taken at state A as shown in (A).

Frontiers in Physics frontiersin.org06

Zhao et al. 10.3389/fphy.2022.1048683

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1048683


this contact over the whole shear cycle, fn,max. Figure 3D shows a

scatter plot of fn,max and ρopen for all contacts measured over three

consecutive shear cycles.

By definition, a non-persistent contact should have a non-

zero ρopen and a non-zero fn,max. For present purposes, we detect

the non-persistent contacts with ρopen > 0.1 and fn,max > 0.06 N

(the points in the purple region in Figure 3D. We intentionally

choose a large value for ρopen to ensure that the contact actually

opens and a large value for fn,max to ensure that the contact

actually closes. We emphasize that the goal here is to demonstrate

the existence of non-persistent contacts and their relevance in

contributing to the elastic responses of the packing. This

conservative classification method ensures that a positive

result is meaningful.

The threshold for fn,max is chosen based on the uncertainty of

our force solving algorithm. Figure 3F plots the probability

density function of the difference between action and reaction

contact forces determined by our fitting algorithm for all contacts

detected in 61 jammed states over the three shear cycles. The

width of this distribution is an estimation of the uncertainty of

our force measurements because Newton’s third law ensures that

these differences must actually be zero. A Gaussian fit gives a

width around 0.03 N. Thus, a contact is convincingly closed at

least once in a shear cycle if fn,max > 0.06 N.

The threshold for ρopen is chosen based on our sampling

frequency. For a shear cycle with strain amplitude δγ = 0.95%,

there are 20 quasi-static data collection steps per cycle, as shown

in Figure 3A. Thus, the resolution of ρopen is 1/20. Therefore, we

expect that a threshold value of 1/10 probes contacts that actually

opens during a shear cycle. In Figure 3D there appear to be some

data points with ρopen between 0 and 1/20 because they are

averaged values over three shear cycles.

The detected non-persistent contacts for the example

ultrastable state are plotted on top of the photoelastic fringes

in Figure 3G. These contacts are scattered in space and do not

form a percolating network. As a measure of the prevalence of

non-persistent contacts, we calculate fnpc, the number of non-

persistent contacts divided by the total number of contacts that

were ever closed during a shear cycle. Figure 5A plots fnpc as a

function of the initial shear strain γI for ultrastable states formed

using same δγ = 0.95%. We find that fnpc is larger for smaller γI
and can be as large as about 10%.

Notably, reversible plastic events observed in frictionless

systems (e.g. in two-dimensional foams [49]) also involve

reversibly activated inter-particle contacts. A distinction in our

frictional system is that there is no obvious T1 event as observed

in Ref. [49]. For example, the reversible activation of contact

672–827 in Figure 3C is not accompanied by a neighbor

switching event for the four particle 672, 827, 381 and 584. In

other words, there is no obvious local plastic event triggered by

an opening of a non-persistent contact. Thus, the particles with

non-persistent contacts are not equivalent to bucklers in isostatic

FIGURE 4
No evidence of sliding at persistent contacts. All data in this figure are from the same ultrastable state as in Figure 3. (A) The evolution of μ = ft/fn
for an example persistent contact over three consecutive shear cycles. (B) The evolution of forces on several example persistent contacts. Different
colors represent different contacts. See Supplementary Video S2 for one example. The two dashed lines mark the conditions for the onset of sliding,
where μs =0.87 is the static friction coefficient. The grey regions are inaccessible. The black data corresponds to the example contact shown in
(A). The inserted schematic plots the sign convention for the tangential force components. (C) The number distribution of Δμ for all persistent
contacts. The dashed line marks the value expected for a sliding contact.
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frictionless packings [50], where breaking a contact will

immediately induce the formation of a new contact.

3.2.2 Persistent contacts
For an ultrastable state, most of the contacts are persistent;

they remain closed throughout the shear cycle. One example is

the contact between particles 672 and 381, shown in Figure 3C. It

always bears a finite normal force component fn under cyclic

shear, as shown in Figure 3B. In practice, we classify a contact as

persistent if the minimum normal force during a whole cycle,

fn,min, is greater than 0.06 N. The threshold is chosen as twice our

force measurement uncertainty to make sure that fn,min is

convincingly larger than 0. Figure 3E plots all the contacts for

the example ultrastable state in the fn,min and fn,max plane; all the

contacts in the light blue region are classified as persistent

contacts.

Unlike the scattered non-persistent contacts, the persistent

contacts form a percolating network. Figure 3G shows the

network formed by the persistent contacts (light blue lines).

Notably, the persistent contact network formed shown in

Figure 5G features large holes reminiscent of the sponge-like

structures revealed by rigidity analysis [51].

We find that there is no measurable sliding at the persistent

contacts. The ultrastable states show the same strobed state over

thousands of shear cycles, and the particles do not rotate from

cycle to cycle, as can be seen from the supplementary videos of

Ref. [1]. The lack of rotation contrasts with recent experiments

where particles do not move much but rotate significantly

under cyclic loading, displaying contact sliding that leads to

energy dissipation [52, 53]. For an ultrastable state, there should

be only two possible cases for a given persistent contact: (1)

there is no sliding at contact; or (2) the two particles slide

against each other during a shear cycle but return to the same

position and stress states after a complete cycle. In the latter

case, the tangential to normal force ratio μ = ft/fn should reach

both + μs and − μs in a cycle, where μs = 0.87 is the static friction

coefficient of the particles. The evolution of μ on an example

contact is shown in Figure 4A. We measure the magnitude of

variation of μ, denoted as Δμ in Figure 4A. The example contact

plotted in Figure 4A has the largest Δμ among all persistent

contacts in the ultrastable state shown in Figure 4. In an

ultrastable state, a contact that slides must have Δμ ≈ 2μs. (If

sliding occurs in only one direction during the cycle, it would

necessarily produce relative rotations of the two particles,

which is not observed.) Figure 4C plots the number statistics

of Δμ for all persistent contacts in the example ultrastable state

shown in Figure 3. Clearly, almost no persistent contact has Δμ
near 2μs, suggesting that these is no reversible sliding. We note

that rolling without sliding is allowed and was observed at

persistent contacts, but a complete characterization of rolling is

beyond the scope of this paper. For completeness, we show the

evolution of some example persistent contacts in the (fn, ft)

space in Figure 4B. We did not perform the same analysis to

non-persistent contacts because the measured μ becomes

unreliable for weak forces due to the resolution limit of

photoelastic force measurements. Extremely slow

accumulation of plasticity induced by ratchet-like sliding on

weak contacts, as found in numerical simulations [54, 55],

cannot be completely ruled out.

The conditions that we used to identify persistent contacts

and non-persistent contacts give high true positive ratio and a

small true negative ratio. There are many contacts in our system

that do not satisfy either criterion. Whether these contacts are

persistent or non-persistent could conceivably be resolved in

future experiments with higher force, distance, and time

resolutions. These unclassified contacts are not plotted in

Figure 3G.

3.2.3 Contribution to the global elastic modulus
We now show that the non-persistent contacts contribute a

non-negligible amount to the emergent global elastic modulus.

We calculate the shear stress contributed from the non-persistent

contacts (npc) as

σnpcxy � 1
S

∑
over all npc i,j( )

rij,xfij,y (4)

where the summation is only over all non-persistent contacts.

Figure 5B plots the total σxy and σnpcxy for an example ultrastable

state under cyclic shear. The contribution from non-persistent

contacts to the shear modulus, Gnpc, is the slope of σnpcxy , as

sketched in Figure 5D. Figure 5C plots the ratio Gnpc/G for

ultrastable states formed under δγ = 0.95% but different γI. We

see that the contribution to the shear modulus from the non-

persistent contacts can be as large as 10% for γI near the onset

value for creating ultrastable states, and the actual contribution

could be even larger because some unclassified contacts are likely

non-persistent ones. Thus, the non-persistent contacts make an

appreciable contribution to the mechanical response of our

ultrastable packings. In addition, the importance of the non-

persistent contacts suggests that grains that might be identified as

rattlers during some portion of the cycle may actually contribute

to the elastic behavior observed for finite amplitude shear

deformations. It also worth mentioning here that the scaling

relation of Eq. 3 is a global relation that contains contributions

from all contacts. A detailed discussion of the separate

contributions of persistent and non-persistent contacts to G(p)

is beyond the scope of the present paper.

3.3 Particle center trajectories

Characterizing the particle motion within a shear cycle gives

valuable insights into the nature of the mechanical responses of

the packing. If an ultrastable packing deforms like a linear elastic

continuum, all the particle displacements should define an affine
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deformation field. However, in our ultrastable states, the particles

display clearly detectable, spatially correlated, non-affine

displacements. In addition, some particle trajectories form

loops with measurable enclosed area.

Figure 6A shows all the particle center trajectories in a shear

cycle for the example ultrastable state shown in Figure 3. The

trajectories are nearly vertical lines that appear roughly

consistent with an affine simple shear deformation field,

suggesting that both the non-affine displacements and the

enclosed loop areas are small. Figure 6B plots the non-affine

displacements of particles measured in the strain interval

between state B to state D in Figure 3A. Here, the non-affine

displacement of particle i, δrna,i, is defined as

δrna,i � δri −
∑Np

j�1Θ 1.5rs − |xi − xj|( )δrj∑Np

j�1Θ 1.5rs − |xi − xj|( ) (5)

whereΘ(x) is the Heaviside step function, xi is the x coordinate of

particle i, δri is the real displacement of particle i, rs is the radius

of the small particle, and Np is the total number of particles. In

Figure 6B, the arrows are colored according to the magnitude of

the non-affine displacements |δrna|, and the lengths of the arrows

are 20 times |δrna|. While the particles go back exactly to the same

position after a full cycle, it is clear that their displacements

within a shear cycle often contain significant non-affine

components. In the future, it could be interesting to compare

our results to a recent theory which considers non-affine

deformations while assuming no sliding at frictional

contacts [56].

We further show that there are measurable loops formed by

particle center trajectories, and also by the non-affine center

trajectories. Figure 6 shows center trajectories (C-E) and their

corresponding non-affine center trajectories (F-H) calculated from

Eq. 5 for three example particles over three consecutive shear cycles.

Note that the non-affine displacements appear noisier because they

are near the accuracy of our particle center detection (about 0.01ds).

The trajectory in (C) clearly is a loop and the one in (E) does not

showmeasurable area. For the non-affine trajectories, only (G) shows

a noticeable loop above the noise level. In numerical simulations of

frictional granular systems, loops in particle trajectories [31] and in

non-affine trajectories [32] were observed. In particular, the areas of

these loops were found to obey a scaling relation with the elastic

moduli of the system [32]. While relating these loops to global elastic

responses is beyond the scope of the present paper, our work

establishes their existence in this experimental frictional granular

system.

3.4 Stress correlations and emergent
properties

To obtain more insight on the stress responses of the

ultrastable states, we consider the Vector Charge Theory of

Granular mechanics and dynamics (VCTG) [2, 34]. VCTG

FIGURE 5
Statistics of the non-persistent contacts and their contributions to the emergent shear modulus. (A) The fraction of non-persistent contacts,
defined as the number of non-persistent contacts divided by the total number of contacts, plotted for ultrastable states formed under same
δγ =0.95% but different initial strains γI. Error bars are standard deviations computed frommultiple ultrastable states with same γI. (B) The shear stress
contributed from all contacts, σxy, and the shear stress only from the non-persistent contacts, σnpcxy for an ultrastable state under three
consecutive shear cycles. (C) The ratio between Gnpc and G calculated from ultrastable states with same δγ =0.95% but different γI. Error bars are
standard deviations computed from multiple ultrastable states with same γI. (D) shows a zoom-in to the purple curve (σnpcxy ) in (B).
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relates features of the stress correlations in the continuum limit to

emergent elastic properties of the packing. We show that such a

theory predicts forms of stress correlations that reasonably match

our data. Notably, the results obtained from fitting the data to

VCTG predictions uncover a feature that distinguishes the

ultrastable states from the original shear-jammed states

formed by initial shear alone.

3.4.1 Defining ensembles with similar stress
states

To obtain the correlation functions, we group ultrastable

states with similar stress fields to form ensembles and calculate

the averaged correlation functions over these ensembles. As

shown in Figures 7A,B, we show that all ultrastable states fall

roughly on a same curve when plotting the non-rattler contact

number Znr versus pressure p or when plotting the shear stress

σxy versus p. This observation suggests that we group states

according to p, and the states with similar p will have similar

σxy and Znr. Specifically, we group states with a pressure

interval of 3 N/m, and the averaged state variables for

ultrastable states in these intervals are plotted using purple

circles in Figures 7A,B. The error bars mark the standard

deviations.

For completeness, we also plot data from the original

shear-jammed states that are formed by initial shear only in

Figures 7A,B. Comparing ultrastable states and original states

provides additional insights into how cyclic shear modifies

the mechanical properties of a jammed granular packing.

Notably, for packings with similar p, ultrastable states

usually contain more contacts and exhibit lower shear

stress, suggesting that they are more stable and less

anisotropic. We also group the original states according to

intervals of pressure and apply the same stress correlation

analysis below.

FIGURE 6
Particle center trajectories display non-affine components and loops. All data in this figure are from the same example ultrastable state as in
Figure 3. (A) Particle center trajectories averaged over three complete shear cycles plotted on top of an unpolarized image taken at the start of a cycle
(state A in Figure 3A). The color of trajectories indicates the normalized enclosed area of the trajectory A/As, where As is the area of the small disc.
Particle outlines are also colored as a guide to the eye. (B) The non-affine displacement field from state B to state D in Figure 3A superimposed
on the same unpolarized image as in (A). The arrow lengths are 20 times larger than the actual displacements, and colors indicate the displacement
magnitudes |δrna|/ds, where ds is the diameter of the small disc (C–H) Three example particle center trajectories (C–E) and their corresponding non-
affine trajectories (F–H) calculated using Eq. 5. In (C–H), each data point on the black curve represents an average over three consecutive shear
cycles in the ultrastable state. The trajectories for each of these cycles are also plotted.
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3.4.2 Stress correlation functions
We calculate the correlation functions between components of

the stress tensor following the procedure detailed in Ref. [2] and Ref.

[34]. We note that it is more convenient to examine the stress

correlation functions in a reference frame x′y′ that is rotated 45° from
the original reference frame xy (see Figure 1). After the rotation, x′ is
the principal dilation direction and y′ is the principal compression

direction of the initial shear. The force chains in Figure 3G mostly

align with direction y′. We consider below correlation functions and

stress tensor expressions in this rotated frame.

The correlation functions in Fourier space are calculated as

follows [2].

Ci′j′k′l′ q( ) � 〈δ̃σ i′j′ q( )δ̃σk′l′ −q( )〉, (6)

where δσi′j′ = σi′j′ − 〈σi′j′〉 and 〈σi′j′〉 is the spatially averaged

value in a packing and the 〈〉 in Eq. 6 refers to average over

different packings in an ensemble, and

δ̃σ i′j′ q( ) � 1
2π

∫ δσ i′j′ r( )e−iq·rdr. (7)

We have used primed indices to emphasize that all the

calculations are done in the rotated frame x′y′. More details

on the calculation of the stress correlation functions are provided

in the Supplementary Material S1.

As an example, Figure 8 shows the six stress-stress

correlation functions in Fourier space obtained from an

ensemble that contains 6 packings with a averaged pressure

p = 8.6 ± 0.7 N/m. We note that the general features of the

correlation functions are consistent with those reported in Refs.

[2, 34], including the pinch-point singularities at |q|→ 0 and the

obvious radial variation for wavelengths shorter than about 4ds,

where the continuuum theory is affected by the granularity of the

medium. In Figure 8 all correlation functions are normalized by

B, a parameter in the VCTG fitting form, which is presented

below (Eq. 17). Correlation functions for ultrastable states with

other stress states share similar features.

3.4.3 Elastic moduli from stress correlations
The emergent elastic moduli appear in the VCTG predictions

of stress correlations, and we compute these by fitting the data.

We first extract the angular dependence of the correlation

functions in the long-wavelength limit and compare them to

the VCTG predictions. Specifically, for each correlation function,

we average the data in a radial range between 2π/6ds and 2π/16ds
and plot the radially averaged data versus the azimuthal angle θ.

Note that 16ds is the size of the region of interest that we used to

calculate these correlation functions, and 4ds is the length below

which the correlation functions clearly deviates from the values at

smaller |q|. The radially averaged correlation functions are

plotted in Figure 9 for ultrastable states with different stress

states as labeled by color. Note that each curve is averaged over

several independent experimental realizations. We believe the

scattering of data originates from that the number of packings

used in the averaging process is rather small, and our system is

not large enough. Nonetheless, we find that these curves can be

reasonably characterized by the VCTG predictions.

FIGURE 7
Group ultrastable states and original states into ensembles according to their stress states. (A) The pressure of the original shear-jammed states
formed by initial shear alone (gray dots) and of the ultrastable states (purple dots) plotted versus the non-rattler contact number. The averaged values
for states used in calculating stress correlations are also plotted. (B) The shear stress of the original shear-jammed states formed by initial shear alone
(gray dots) and of the ultrastable states (purple dots) plotted versus pressure. The averaged values for states used in calculating stress
correlations are also plotted.

Frontiers in Physics frontiersin.org11

Zhao et al. 10.3389/fphy.2022.1048683

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1048683


A key prediction from the VCTG theory is the form of the

stress correlation functions in the long-wavelength limit [2].

Ci′j′k′l′ q( ) � ϵi′aϵj′bϵk′cϵl′dqaqbqcqd〈ψ q( )ψ −q( )〉, (8)
where

〈ψ q( )ψ −q( )〉 � Ai′j′ q( )Λi′j′k′l′Ak′l′ −q( )( )−1, (9)
and

Ai′j′ � q2δi′j′ − qi′qj′. (10)

Einstein notation applies to Eqs. 8–9, where ϵi′j′ and δi′j′
denote the Levi-Civita symbol and Kronecker delta. Detailed

derivations of Eq. 8 can be found in Refs. [2, 34]. Here, the only

unknown variables are the elements of the 4-rank tensorΛ. These
elements will be obtained by fitting the experimentally calculated

stress correlation functions to Eq. 8. In the VCTG framework, Λ
maps to the inverse elastic constant tensor. Using the symmetries

of the elastic constant tensor Λijkl = Λjikl and Λijkl = Λijlk, there is

〈ψ q( )ψ −q( )〉 � q4y′A + q4x′B + q2x′q
2
y′C − q3x′qy′D − qx′q

3
y′E( )−1

(11)

where

A � Λ1111

B � Λ2222

C � Λ1122 + 4Λ1212 + Λ2211

D � 2Λ1222 + 2Λ2212

E � 2Λ1112 + 2Λ1211

(12)

For subscripts of Λ we have used 1 and 2 to represent x′ and y′
for simplicity. Considerations of additional symmetries of the system

may lead to particular forms of the elastic constant tensor that

simplify the analysis [2, 34]. In shear-jammed systems, it is reasonable

to assume that the elastic moduli have uniaxial symmetry [57]. Note

that in these jammed states created by external stresses, the elastic

moduli are determined by the geometry and topology of the force-

bearing network that emerges from the jamming process [34]. In the

Voigt form [57], such an elastic modulus tensor reads:

E � 1
1 − ]x′]y′

Ex′ ]y′Ex′ 0
]x′Ey′ Ey′ 0
0 0 1 − ]x′]y′( )G′

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠. (13)

where Ex′ and Ey′ are the Young’s moduli along x′, y′ directions,
while ]x′ and ]y′ stand for the Poisson’s ratios along x′ and y′

FIGURE 8
Stress correlation functions in the Fourier space averaged over 6 ultrastable states with similar stress states. The mean pressure for the 6 states
used in the averaging process is p =8.6±0.7 N/m. All the correlation functions are normalized by B from the VCTG fitting (Eq. 17). Note that
Ci′j′k′l′(q) � 〈δ̃σ i′j′(q)δ̃σk′l′(−q)〉 by definition, and x′ and y′ are the principal dilation and compression directions of the initial simple shear strain field
(Figure 1A).
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directions. G′ is a shear modulus such that in the x′y′ coordinate
system there is σx′y′ =G′εx′y′.G′ is not the shear modulusGwhich

follows σxy = Gγ. In addition, our imposed simple shear strain

field has εx′y′ = 0. Thus, G′ can not be extracted from our

measured stress-strain curves.

The inverse elastic tensor then reads

E−1 �
1/Ex′ −]y′/Ey′ 0

−]x′/Ex′ 1/Ey′ 0

0 0 1/G′
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠. (14)

Note that this tensor maps to the Λ tensor in the VCTG

framework as following,

E−1 ↔ Λ �
Λ1111 Λ1122 2Λ1112

Λ2211 Λ2222 2Λ2212

Λ1211 Λ1222 2Λ1212

⎛⎜⎝ ⎞⎟⎠. (15)

Comparing Eq. 14 and Eq. 15 we get Λ1211 = Λ1222 = Λ1112 =

Λ2212 = 0. Thus, according to Eq. 12, we expect D � E � 0 and

A � Λ1111 � 1
Ex′

B � Λ2222 � 1
Ey′

C � 4Λ1212 + Λ1122 + Λ2211 � 2
G′ −

]y′
Ey′

− ]x′
Ex′

(16)

Thus, we fit the correlation functions Ci′j′k′l′(θ) to the

following form.

Ci′j′k′l′ θ( ) � ϵi′aϵj′bϵk′cϵl′dqaqbqcqd
q4y′A + q4x′B + q2x′q

2
y′C (17)

Note that, we fit all six correlation functions together with

three parametersA, B, and C. In Figure 9 we plot both the raw

data and the fitted curves. All data and fitted curves are

normalized by the fitting parameter B which depends on p.

Notably, the fitted curves matches with the experimental data

reasonably well. In addition, it also appears that most of the

data collapse after the normalization by B, suggesting

roughly constant A/B and C/B for ultrastable states with

different p.

3.4.4 Emergent elastic response
The emergent elastic moduli, determined from fitting the

measured stress-stress correlations to the VCTG predictions,

depend on preparation protocols and the average stress state

of a shaer-jammed solid. Here, we analyze the dependence of

the three fitting parameters, A, B, and C, on the pressure p of

the ultrastable states. We note that as the system unjams at

p = 0, what we are considering is scaling of the emergent

properties near jamming. However, according to Eq. 16,

while A and B can be directly related to the two Young’s

moduli, we can not extract the shear modulus and the

Poisson’s ratios from just the three fitting parameters.

There are 5 unknowns but only three equations in Eq. 16.

Reference [34] demonstrates that additional equations can be

obtained by considering material responses to additionally

FIGURE 9
Angular variation of the stress correlations for ultrastable states in the long-wave-length limit and the fitted results from VCTG assuming an
uniaxial symmetry. Correlation functions are normalized by the VCTG fitting parameter B, whose variation with p are shown in Figure 10A. The long-
wavelength limit values are estimated by averaging data with q between 2π/6ds and 2π/16ds where ds is the diameter of the smaller disc particle in our
packings.
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applied forces. In the present work, we report only scalings

for the fitting parameters, and we leave the actual solutions

for the shear modulus and Poisson’s ratios to future

investigations.

We plot A and B as functions of p in Figure 10A. While

A>B for all p, they both decay with increasing p. Notably,

they appear to follow power laws with same exponent ~ − 1.6.

The divergence of these parameters suggest the Young’s

moduli vanish at the jamming point. We plot the ratios

A/B and C/B in Figure 10B. Both ratios appear to be

roughly constant. Notably, A/B ≈ 4, meaning that the

system is always stiffer along the y′ direction. It is

interesting that C/B ≈ 0. We do not yet have a clear

understanding of this feature.

3.4.5 A feature that distinguish ultrastable states
from original shear-jammed states

We show that the ratio A/B can be used as a indicator to

distinguish ultrastable states and the original shear-jammed

states that are formed by initial shear alone. Figures 10A,B

also show fit results obtained by performing same analysis on

ensembles of the original shear-jammed states. Interestingly

A and B follow power law scaling versus p with same

exponent as the ultrastable states. We find, however, that

the ratio A/B ≥ 10 for original shear-jammed states, which is

much larger than for the ultrastable states. This means the

original states have much more anisotropic elastic properties

compared to the ultrastable states. We thus show that small-

amplitude cyclic shearing changes the elastic response of a

jammed packing. We emphasize that this observation is not

equivalent to the changes of stress states as can be evidenced

in Figure 7B. Instead, it highlights that elasticity of these

shear-jammed solids is truly an emergent phenomenon

reflecting a rigidity that emerges from the complex

interplay of local and global force and torque balance

contstraints [2, 34].

4 Concluding discussion

In summary, we report a set of analyses on both global

and local features of ultrastable shear-jammed granular

materials in response to cyclic shear. We present three

major findings.

First, we show that the emergent shear modulus G for

ultrastable states formed by different γI and δγ falls on a

single curve when plotted versus pressure p. A critical scaling

near jamming between G and p is examined extensively in

numerical simulations [41, 42, 45, 46, 58, 59], and is of key

interests in the scaling theories of jamming [43]. Notably, the

ultrastable states follow G ~ pβ with β ≈ 0.5, consistent with a

numerical simulation with particles having similar friction

coefficient and contact force law [42]. To our knowledge, the

range of boundary strain within which a frictional system

behaves elastically is usually very small because boundary

strain may induce sliding at contacts [60–63]. Thus the shear

modulus has typically been determined from measurements

of sound speeds [44] rather than from stress-strain curves.

FIGURE 10
The VCTG fit results for the ultrastable states and the original states. A, B, and C are defined in Eq. 17 (A) The VCTG fit results A and B plotted
versus pressure for original and ultrastable states. Note that an interpretation is Ex′ � 1/A and Ey′ � 1/Bwhere Ex’ and Ey’ are the Young’s moduli of the
anisotropic system along the principal dilation and compression directions of the initial shear respectively. (B) The ratios of the VCTG fit results A/B
and C/B plotted versus pressure for original and ultrastable states. The ratioA/B is clearlymuch larger for original states, constituting a feature to
distinguish these two types of states.
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Consistent with this picture, the original shear-jammed states

in our experiments were observed to deform plastically under

any given cyclic strain amplitude [1]. As previously reported,

highly elastic ultrastable states emerged under cyclic

shearing, which induces changes in the distribution of

friction forces at contacts [1]. We have now found that

there is no measurable sliding for the persistent contacts

that carry the majority of the forces in these ultrastable states.

Second, we find nontrivial grain scale motions within a shear

cycle in an ultrastable state. A measurable fraction of contacts open

and close reversibly during a cycle, and these contacts make a non-

negligible contribution to the emergent elastic modulus. Thus

predictions based on a contact network with a fixed geometry

presumably cannot completely account for the macroscopic

elasticity of these states. It is known that the distribution of

small inter-particle gaps and weak contact forces are intimately

connected to packing stability [50, 64, 65]. Our work demonstrates

that reversible activation of these gaps may lead to non-trivial

dynamical phases in a frictional, shear-jammed system. We also

observe non-affine particle displacements, with some particles

moving around loops with finite enclosed area. It would be

interesting to compare the observed particle displacement fields

to the low-frequency vibrational modes that can be calculated from

the experimental data [66], where onemay find analogies to features

found in model glasses, such as string-like dynamical defects [67].

Third, we examine the relation between the spatial stress

fluctuations and the emergent elastic constants of the

ultrastable states from the perspective of the Vector

Charge Theory of Granular mechanics and dynamics

(VCTG) [2, 34]. In the long-wavelength limit, the stress-

stress correlation functions measured from ultrastable and

original shear-jammed states matches well with the

predictions by VCTG for an anisotropic system with

uniaxial symmetry. Fitting our data to the theory, we

extract the values of three parameters. Two of these are

the Young’s moduli Ex′ and Ey′, and the third is a linear

combination of the Poisson ratios ]x′, ]y′ and a shear

modulus G′. Note that x′ and y′ are the principal dilation

and compression directions of the initial shear. We find that,

for both original shear-jammed states and the ultrastable

states, Ex′ and Ey′ scale as power-laws with pressure p, sharing

same exponent α ≈ 1.6. The vanishing of the Young’s moduli

as p → 0 is consistent qualitatively with the vanishing of the

shear modulus G measured independently from the stress-

strain curves. The relation between the exponent α and the

exponent β that links G and p is an interesting topic for

further investigation. We note that the elastic moduli

obtained from VCTG fittings are linear elastic constants,

while stress-strain curves contain contributions from non-

linear features like the non-persistent contacts. The ratio Ex′/

Ey′ is always at least twice as large for original shear-jammed

states as for the ultrastable states, suggesting that small-

amplitude cyclic shearing significantly alters the elastic

properties of a jammed packing. In addition, the ratio Ex′/

Ey′ does not approach 1 as p → 0, suggesting that the system

remains anisotropic at jamming point, which is a feature of

the shear jamming transition [12, 19, 68, 69]. Additional

experiments and analysis probing the system response to a

point force [34] may help to determine the Poisson ratios and

the shear modulus G′.

Data availability statement

The raw data supporting the conclusion of this article will be

made available by the authors, without undue reservation.

Author contributions

YiZ, BC, and JS contributed to conception and design of the

study and collaborated on the interpretation of the experimental

results. YiZ, YuZ, DW, and HZ designed the experimental

procedure and calibrated the apparatus. YiZ and YuZ

conducted the experiments. YiZ performed the data analysis.

YiZ, BC, and JS wrote the first draft of the manuscript. All

authors contributed to manuscript revision, read, and approved

the submitted version.

Funding

This work was primarily supported by NSF grant DMR-

1809762. BC was supported by NSF grants CBET-1916877, and

CMMT-2026834, and BSF-2016188.

Acknowledgments

YiZ thanks Yinqiao Wang for helpful discussions on

calculating the correlation functions. YiZ thanks Peter K.

Morse, Shuai Zhang, Yuliang Jin, and Deng Pan for helpful

discussions about the scaling of shear modulus.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

Frontiers in Physics frontiersin.org15

Zhao et al. 10.3389/fphy.2022.1048683

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1048683


affiliated organizations, or those of the publisher, the editors

and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fphy.2022.

1048683/full#supplementary-material

References

1. Zhao Y, Zhao Y, Wang D, Zheng H, Chakraborty B, Socolar JES. Ultrastable
shear-jammed granular material. Phys Rev X (2022) 12:031021. doi:10.1103/
PhysRevX.12.031021

2. Nampoothiri JN, Wang Y, Ramola K, Zhang J, Bhattacharjee S, Chakraborty B.
Emergent elasticity in amorphous solids. Phys Rev Lett (2020) 125:118002. doi:10.
1103/PhysRevLett.125.118002

3. Liu AJ, Nagel SR. Jamming is not just cool any more. Nature (1998) 396:21–2.
doi:10.1038/23819

4. Majmudar TS, Sperl M, Luding S, Behringer RP. Jamming transition in
granular systems. Phys Rev Lett (2007) 98:058001. doi:10.1103/PhysRevLett.98.
058001

5. van Hecke M. Jamming of soft particles: Geometry, mechanics, scaling and
isostaticity. J Phys: Condens Matter (2009) 22:033101. doi:10.1088/0953-8984/22/3/
033101

6. Sarkar S, Bi D, Zhang J, Behringer RP, Chakraborty B. Origin of rigidity in dry
granular solids. Phys Rev Lett (2013) 111:068301. doi:10.1103/PhysRevLett.111.
068301

7. Luding S. So much for the jamming point. Nat Phys (2016) 12:531–2. doi:10.
1038/nphys3680

8. Behringer RP, Chakraborty B. The physics of jamming for granular materials: A
review. Rep Prog Phys (2018) 82:012601. doi:10.1088/1361-6633/aadc3c

9. Peters IR, Majumdar S, Jaeger HM. Direct observation of dynamic shear
jamming in dense suspensions. Nature (2016) 532:214–7. doi:10.1038/nature17167

10. Han E, James NM, Jaeger HM. Stress controlled rheology of dense suspensions
using transient flows. Phys Rev Lett (2019) 123:248002. doi:10.1103/PhysRevLett.
123.248002

11. Morris JF. Shear thickening of concentrated suspensions: Recent
developments and relation to other phenomena. Annu Rev Fluid Mech (2020)
52:121–44. doi:10.1146/annurev-fluid-010816-060128

12. Bi D, Zhang J, Chakraborty B, Behringer RP. Jamming by shear.Nature (2011)
480:355–8. doi:10.1038/nature10667

13. Vinutha HA, Sastry S. Disentangling the role of structure and friction in shear
jamming. Nat Phys (2016) 12:578–83. doi:10.1038/nphys3658

14. Wang D, Ren J, Dijksman JA, Zheng H, Behringer RP. Microscopic origins of
shear jamming for 2d frictional grains. Phys Rev Lett (2018) 120:208004. doi:10.
1103/PhysRevLett.120.208004

15. Zhao Y, Barés J, Zheng H, Socolar JES, Behringer RP. Shear-jammed, fragile,
and steady states in homogeneously strained granular materials. Phys Rev Lett
(2019) 123:158001. doi:10.1103/PhysRevLett.123.158001

16. Vinutha H, Sastry S. Force networks and jamming in shear-deformed sphere
packings. Phys Rev E (2019) 99:012123. doi:10.1103/physreve.99.012123

17. Otsuki M, Hayakawa H. Shear jamming, discontinuous shear thickening, and
fragile states in dry granular materials under oscillatory shear. Phys Rev E (2020)
101:032905. doi:10.1103/PhysRevE.101.032905

18. Kumar N, Luding S. Memory of jamming–multiscale models for soft and
granular matter. Granular Matter (2016) 18:58. doi:10.1007/s10035-016-0624-2

19. Baity-Jesi M, Goodrich CP, Liu AJ, Nagel SR, Sethna JP. Emergent so(3)
symmetry of the frictionless shear jamming transition. J Stat Phys (2017) 167:
735–48. doi:10.1007/s10955-016-1703-9

20. Babu V, Pan D, Jin Y, Chakraborty B, Sastry S. Dilatancy, shear jamming, and
a generalized jamming phase diagram of frictionless sphere packings. Soft Matter
(2021) 17:3121–7. doi:10.1039/D0SM02186E

21. Ediger MD. Perspective: Highly stable vapor-deposited glasses. J Chem Phys
(2017) 147:210901. doi:10.1063/1.5006265

22. Kim S, Hilgenfeldt S. Structural measures as guides to ultrastable states in
overjammed packings. Phys Rev Lett (2022) 129:168001. doi:10.1103/PhysRevLett.
129.168001

23. Regev I, Lookman T, Reichhardt C. Onset of irreversibility and chaos in
amorphous solids under periodic shear. Phys Rev E (2013) 88:062401. doi:10.1103/
PhysRevE.88.062401

24. Fiocco D, Foffi G, Sastry S. Oscillatory athermal quasistatic deformation of a
model glass. Phys Rev E (2013) 88:020301. doi:10.1103/physreve.88.020301

25. Hima Nagamanasa K, Gokhale S, Sood AK, Ganapathy R. Experimental
signatures of a nonequilibrium phase transition governing the yielding of a soft
glass. Phys Rev E (2014) 89:062308. doi:10.1103/PhysRevE.89.062308

26. KeimNC, Arratia PE. Mechanical andmicroscopic properties of the reversible
plastic regime in a 2d jammed material. Phys Rev Lett (2014) 112:028302. doi:10.
1103/PhysRevLett.112.028302

27. Kawasaki T, Berthier L. Macroscopic yielding in jammed solids is
accompanied by a nonequilibrium first-order transition in particle trajectories.
Phys Rev E (2016) 94:022615. doi:10.1103/PhysRevE.94.022615

28. Ness C, Cates ME. Absorbing-state transitions in granular materials close
to jamming. Phys Rev Lett (2020) 124:088004. doi:10.1103/PhysRevLett.124.
088004

29. Reichhardt C, Regev I, Dahmen K, Okuma S, Reichhardt CJO. Perspective on
reversible to irreversible transitions in periodic driven many body systems and
future directions for classical and quantum systems. arXiv preprint arXiv:
2211.03775 (2022).

30. Corté L, Chaikin PM, Gollub JP, Pine DJ. Random organization in periodically
driven systems. Nat Phys (2008) 4:420–4. doi:10.1038/nphys891

31. Royer JR, Chaikin PM. Precisely cyclic sand: Self-organization of periodically
sheared frictional grains. Proc Natl Acad Sci U S A (2015) 112:49–53. doi:10.1073/
pnas.1413468112

32. Otsuki M, Hayakawa H. Shear modulus and reversible particle trajectories of
frictional granular materials under oscillatory shear. Eur Phys J E (2021) 44:70.
doi:10.1140/epje/s10189-021-00075-0

33. Nagasawa K, Miyazaki K, Kawasaki T. Classification of the
reversible–irreversible transitions in particle trajectories across the jamming
transition point. Soft matter (2019) 15:7557–66. doi:10.1039/c9sm01488h

34. Nampoothiri JN, D’Eon M, Ramola K, Chakraborty B, Bhattacharjee S.
Tensor electromagnetism and emergent elasticity in jammed solids. arXiv preprint
arXiv:2204.11811 (2022).

35. Ren J, Dijksman JA, Behringer RP. Reynolds pressure and relaxation in a
sheared granular system. Phys Rev Lett (2013) 110:018302. doi:10.1103/
PhysRevLett.110.018302

36. Ren J.Nonlinear dynamics and network properties in granular materials under
shear. Ph.D. thesis. Durham, NC: Duke University (2013).

37. Sarkar S, Bi D, Zhang J, Ren J, Behringer RP, Chakraborty B. Shear-induced
rigidity of frictional particles: Analysis of emergent order in stress space. Phys Rev E
(2016) 93:042901. doi:10.1103/PhysRevE.93.042901

38. Majmudar TS, Behringer RP. Contact force measurements and stress-induced
anisotropy in granular materials. Nature (2005) 435:1079–82. doi:10.1038/
nature03805

39. Christoffersen J, Mehrabadi MM, Nemat-Nasser S. A micromechanical
description of granular material behavior. J Appl Mech (1981) 48:339–44. doi:10.

Frontiers in Physics frontiersin.org16

Zhao et al. 10.3389/fphy.2022.1048683

https://www.frontiersin.org/articles/10.3389/fphy.2022.1048683/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphy.2022.1048683/full#supplementary-material
https://doi.org/10.1103/PhysRevX.12.031021
https://doi.org/10.1103/PhysRevX.12.031021
https://doi.org/10.1103/PhysRevLett.125.118002
https://doi.org/10.1103/PhysRevLett.125.118002
https://doi.org/10.1038/23819
https://doi.org/10.1103/PhysRevLett.98.058001
https://doi.org/10.1103/PhysRevLett.98.058001
https://doi.org/10.1088/0953-8984/22/3/033101
https://doi.org/10.1088/0953-8984/22/3/033101
https://doi.org/10.1103/PhysRevLett.111.068301
https://doi.org/10.1103/PhysRevLett.111.068301
https://doi.org/10.1038/nphys3680
https://doi.org/10.1038/nphys3680
https://doi.org/10.1088/1361-6633/aadc3c
https://doi.org/10.1038/nature17167
https://doi.org/10.1103/PhysRevLett.123.248002
https://doi.org/10.1103/PhysRevLett.123.248002
https://doi.org/10.1146/annurev-fluid-010816-060128
https://doi.org/10.1038/nature10667
https://doi.org/10.1038/nphys3658
https://doi.org/10.1103/PhysRevLett.120.208004
https://doi.org/10.1103/PhysRevLett.120.208004
https://doi.org/10.1103/PhysRevLett.123.158001
https://doi.org/10.1103/physreve.99.012123
https://doi.org/10.1103/PhysRevE.101.032905
https://doi.org/10.1007/s10035-016-0624-2
https://doi.org/10.1007/s10955-016-1703-9
https://doi.org/10.1039/D0SM02186E
https://doi.org/10.1063/1.5006265
https://doi.org/10.1103/PhysRevLett.129.168001
https://doi.org/10.1103/PhysRevLett.129.168001
https://doi.org/10.1103/PhysRevE.88.062401
https://doi.org/10.1103/PhysRevE.88.062401
https://doi.org/10.1103/physreve.88.020301
https://doi.org/10.1103/PhysRevE.89.062308
https://doi.org/10.1103/PhysRevLett.112.028302
https://doi.org/10.1103/PhysRevLett.112.028302
https://doi.org/10.1103/PhysRevE.94.022615
https://doi.org/10.1103/PhysRevLett.124.088004
https://doi.org/10.1103/PhysRevLett.124.088004
https://doi.org/10.1038/nphys891
https://doi.org/10.1073/pnas.1413468112
https://doi.org/10.1073/pnas.1413468112
https://doi.org/10.1140/epje/s10189-021-00075-0
https://doi.org/10.1039/c9sm01488h
https://doi.org/10.1103/PhysRevLett.110.018302
https://doi.org/10.1103/PhysRevLett.110.018302
https://doi.org/10.1103/PhysRevE.93.042901
https://doi.org/10.1038/nature03805
https://doi.org/10.1038/nature03805
https://doi.org/10.1115/1.3157619
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1048683


1115/1.3157619

40. Radjai F, Wolf DE, Jean M, Moreau JJ. Bimodal character of stress transmission in
granular packings. Phys Rev Lett (1998) 80:61–4. doi:10.1103/PhysRevLett.80.61

41. O’Hern CS, Silbert LE, Liu AJ, Nagel SR. Jamming at zero temperature and
zero applied stress: The epitome of disorder. Phys Rev E (2003) 68:011306. doi:10.
1103/PhysRevE.68.011306

42. Somfai E, van Hecke M, Ellenbroek WG, Shundyak K, van Saarloos W.
Critical and noncritical jamming of frictional grains. Phys Rev E (2007) 75:020301.
doi:10.1103/PhysRevE.75.020301

43. Goodrich CP, Liu AJ, Sethna JP. Scaling ansatz for the jamming transition.
Proc Natl Acad Sci U S A (2016) 113:9745–50. doi:10.1073/pnas.1601858113

44. Makse HA, Gland N, Johnson DL, Schwartz L. Granular packings: Nonlinear
elasticity, sound propagation, and collective relaxation dynamics. Phys Rev E (2004)
70:061302. doi:10.1103/PhysRevE.70.061302

45. Ishima D, Hayakawa H. Scaling laws for frictional granular materials confined
by constant pressure under oscillatory shear. Phys Rev E (2020) 101:042902. doi:10.
1103/PhysRevE.101.042902

46. VanderWerf K, Boromand A, Shattuck MD, O’Hern CS. Pressure dependent
shear response of jammed packings of frictionless spherical particles. Phys Rev Lett
(2020) 124:038004. doi:10.1103/PhysRevLett.124.038004

47. Wang P, Zhang S, Tuckman P, Ouellette NT, Shattuck MD, O’Hern CS. Shear
response of granular packings compressed above jamming onset. Phys Rev E (2021)
103:022902. doi:10.1103/PhysRevE.103.022902

48. Treado JD, Wang D, Boromand A, Murrell MP, Shattuck MD, O’Hern CS.
Bridging particle deformability and collective response in soft solids. Phys Rev
Mater (2021) 5:055605. doi:10.1103/PhysRevMaterials.5.055605

49. Lundberg M, Krishan K, Xu N, O’Hern CS, Dennin M. Reversible plastic events in
amorphous materials. Phys Rev E (2008) 77:041505. doi:10.1103/PhysRevE.77.041505

50. Charbonneau P, Corwin EI, Parisi G, Zamponi F. Jamming criticality revealed
by removing localized buckling excitations. Phys Rev Lett (2015) 114:125504. doi:10.
1103/PhysRevLett.114.125504

51. Liu K, Kollmer JE, Daniels KE, Schwarz JM, Henkes S. Spongelike rigid
structures in frictional granular packings. Phys Rev Lett (2021) 126:088002. doi:10.
1103/PhysRevLett.126.088002

52. Peshkov A, Girvan M, Richardson DC, Losert W. Reversibility of granular rotations
and translations. Phys Rev E (2019) 100:042905. doi:10.1103/PhysRevE.100.042905

53. Benson ZA, Peshkov A, Yunger Halpern N, Richardson DC, Losert W.
Experimentally measuring rolling and sliding in three-dimensional dense
granular packings. Phys Rev Lett (2022) 129:048001. doi:10.1103/PhysRevLett.
129.048001

54. Alonso-Marroquín F, Herrmann HJ. Ratcheting of granular materials. Phys
Rev Lett (2004) 92:054301. doi:10.1103/PhysRevLett.92.054301

55. McNamara S, García-Rojo R, Herrmann HJ. Microscopic origin of granular
ratcheting. Phys Rev E (2008) 77:031304. doi:10.1103/PhysRevE.77.031304

56. Ishima D, Saitoh K, Otsuki M, Hayakawa H. Theory of rigidity and density of
states of two-dimensional amorphous solids of dispersed frictional grains in the
linear response regime. arXiv preprint arXiv:2207.06632 (2022).

57. Otto M, Bouchaud JP, Claudin P, Socolar JES. Anisotropy in granular media:
Classical elasticity and directed-force chain network. Phys Rev E (2003) 67:031302.
doi:10.1103/PhysRevE.67.031302

58. Morse PK, Roy S, Agoritsas E, Stanifer E, Corwin EI, Manning ML. A direct
link between active matter and sheared granular systems. Proc Natl Acad Sci U S A
(2021) 118:e2019909118. doi:10.1073/pnas.2019909118

59. Pan D, Meng F, Jin Y. Shear hardening in frictionless amorphous solids near
the jamming transition. arXiv preprint arXiv:2208.08793 (2022).

60. Assimaki D, Kausel E, Whittle A. Model for dynamic shear modulus and
damping for granular soils. J Geotech Geoenviron Eng (2000) 126126:85910–69.
doi:10.1061/(asce)1090-0241(2000)126:10(859)

61. Alonso-Marroquín F, Luding S, Herrmann HJ, Vardoulakis I. Role of
anisotropy in the elastoplastic response of a polygonal packing. Phys Rev E
(2005) 71:051304. doi:10.1103/PhysRevE.71.051304

62. Otsuki M, Hayakawa H. Discontinuous change of shear modulus for frictional
jammed granular materials. Phys Rev E (2017) 95:062902. doi:10.1103/PhysRevE.
95.062902

63. Sun A, Wang Y, Chen Y, Shang J, Zheng J, Yu S, et al.Turbulent-like velocity
fluctuations in two-dimensional granular materials subject to cyclic shear. Soft
Matter (2022). doi:10.1039/D1SM01516H

64. Babu V, Sastry S. Criticality and marginal stability of the shear jamming
transition of frictionless soft spheres. Phys Rev E (2022) 105:L042901. doi:10.1103/
PhysRevE.105.L042901

65. Wang Y, Shang J, Jin Y, Zhang J. Experimental observations of marginal
criticality in granular materials. Proc Natl Acad Sci U S A (2022) 119:e2204879119.
doi:10.1073/pnas.2204879119

66. Zhang L, Zheng J, Wang Y, Zhang L, Jin Z, Hong L, et al. Experimental studies
of vibrational modes in a two-dimensional amorphous solid. Nat Commun (2017)
8:67. doi:10.1038/s41467-017-00106-5

67. Hu YC, Tanaka H. Origin of the boson peak in amorphous solids. Nat Phys
(2022) 18:669–77. doi:10.1038/s41567-022-01628-6

68. Chen S, Bertrand T, Jin W, Shattuck MD, O’Hern CS. Stress anisotropy in
shear-jammed packings of frictionless disks. Phys Rev E (2018) 98:042906. doi:10.
1103/PhysRevE.98.042906

69. Xiong F, Wang P, Clark AH, Bertrand T, Ouellette NT, Shattuck MD, et al.
Comparison of shear and compression jammed packings of frictional disks.
Granular Matter (2019) 21:109. doi:10.1007/s10035-019-0964-9

Frontiers in Physics frontiersin.org17

Zhao et al. 10.3389/fphy.2022.1048683

https://doi.org/10.1115/1.3157619
https://doi.org/10.1103/PhysRevLett.80.61
https://doi.org/10.1103/PhysRevE.68.011306
https://doi.org/10.1103/PhysRevE.68.011306
https://doi.org/10.1103/PhysRevE.75.020301
https://doi.org/10.1073/pnas.1601858113
https://doi.org/10.1103/PhysRevE.70.061302
https://doi.org/10.1103/PhysRevE.101.042902
https://doi.org/10.1103/PhysRevE.101.042902
https://doi.org/10.1103/PhysRevLett.124.038004
https://doi.org/10.1103/PhysRevE.103.022902
https://doi.org/10.1103/PhysRevMaterials.5.055605
https://doi.org/10.1103/PhysRevE.77.041505
https://doi.org/10.1103/PhysRevLett.114.125504
https://doi.org/10.1103/PhysRevLett.114.125504
https://doi.org/10.1103/PhysRevLett.126.088002
https://doi.org/10.1103/PhysRevLett.126.088002
https://doi.org/10.1103/PhysRevE.100.042905
https://doi.org/10.1103/PhysRevLett.129.048001
https://doi.org/10.1103/PhysRevLett.129.048001
https://doi.org/10.1103/PhysRevLett.92.054301
https://doi.org/10.1103/PhysRevE.77.031304
https://doi.org/10.1103/PhysRevE.67.031302
https://doi.org/10.1073/pnas.2019909118
https://doi.org/10.1061/(asce)1090-0241(2000)126:10(859)
https://doi.org/10.1103/PhysRevE.71.051304
https://doi.org/10.1103/PhysRevE.95.062902
https://doi.org/10.1103/PhysRevE.95.062902
https://doi.org/10.1039/D1SM01516H
https://doi.org/10.1103/PhysRevE.105.L042901
https://doi.org/10.1103/PhysRevE.105.L042901
https://doi.org/10.1073/pnas.2204879119
https://doi.org/10.1038/s41467-017-00106-5
https://doi.org/10.1038/s41567-022-01628-6
https://doi.org/10.1103/PhysRevE.98.042906
https://doi.org/10.1103/PhysRevE.98.042906
https://doi.org/10.1007/s10035-019-0964-9
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1048683

	Microscopic reversibility and emergent elasticity in ultrastable granular systems
	1 Introduction
	2 Materials and methods
	3 Results
	3.1 Emergent shear modulus
	3.2 Persistent and non-persistent contacts
	3.2.1 Non-persistent contacts
	3.2.2 Persistent contacts
	3.2.3 Contribution to the global elastic modulus

	3.3 Particle center trajectories
	3.4 Stress correlations and emergent properties
	3.4.1 Defining ensembles with similar stress states
	3.4.2 Stress correlation functions
	3.4.3 Elastic moduli from stress correlations
	3.4.4 Emergent elastic response
	3.4.5 A feature that distinguish ultrastable states from original shear-jammed states


	4 Concluding discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


