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Estrus detection is an essential operation in the breeding of sows, and accurate

estrus detection is immensely important to maintain the productivity and

reproductive performance of sow. However, traditional sow estrus detection

relies on the manually back-pressure test, which is time-consuming and labor-

intensive. This study aimed to develop an automatic method to detect estrus. In

this study, a model based on the optimized yolov5s algorithm was constructed

to detect the four sow postures of standing, sitting, sternum, lateral, and

calculated the frequency of posture change in sows. Based on this, we

studied the behavior of sows before and after estrus. The method

embedded a convolutional block attention module into the backbone

network to improve the feature extraction capability of the model. In

addition, the object box judgment module was used to avoid interference

fromother sows in the detection region. Accelerate the optimizedmodel on the

TensorRT platform, ensuring that the embedded graphics card can run the

model with lower latency. The result shows that the precision of estrus

detection is 97.1%, and the accuracy of estrus detection is 94.1%. The

processing time of a single image on the embedded graphics card is 74.

4 ms, and this method could better meet the estrus detection demand in

sow production.
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1 Introduction

Estrus detection is an important link in reproductive management of sows, and the

accuracy and timeliness of estrus detection directly affect the judgments of swine farm

workers on ovulation time in post-weaning sows [1]. Behavioral expression of sow is a

reflection of dynamic changes of hormone levels [2]. In estrus, sow rest time decreased,

frequency and duration of activity, and standing time increased. Real-time detection of the

sow posture helps to automatically monitor their estrus status and health status [3].
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Some scholars have done some studies about sow’s visits to

boars or bionic boars. Houwers 1988) [4] used a ‘ticket-window’

to monitor the frequency of boar visits, and the results showed

that when sows were estrus, the frequency of sow visits gradually

increased significantly. However, when multiple sows were

present in the detection area, the system could not detect the

estrus status of the sows. In order to solve the above problems,

Bressers et al 1995) improved the ‘ticket-window’ and divided the

data into subsets according to time, the accuracy rate of the

proposed method was over 90%, and the false negative rate was

less than 5% [5]. On this basis, Korthals 1999) comprehensively

considered the sow’s behavior of visiting boars and the activity of

individual sows. The sensitivity and accuracy of the model were

further improved, but the response time of the system was slow

[6]. To reduce response time and the number of false alarms,

Ostersen et al (2010) modeled separately the duration and

frequency of sow visits, and then fused the two models. The

results showed that the model was more specific than this

previous study [7]. The above studies are all based on the

‘ticket window’ of boars, but few studies have been reported

based on the ‘contact window’ of bionic boars. Lei et al (2021)

used bionic boar and image acquisition device to detect estrus in

sows. The results showed that the interaction frequencies during

the estrus period was significantly higher than that of sows

during the non-estrus period [8]. In summary, the use of

boars or bionic boars to detect estrus is an effective method.

However, in recent years, with the outbreak of African swine

fever, large-scale pig farms have begun to reduce the use of boars.

In order to solve the problemmentioned above, many scholars

began to try to find some reliable alternative methods. Bressers

1993) used an accelerometer and set activity thresholds to detect

estrus in sows. Findings showed that the acceleration change range

of sows during the estrus period was significantly higher than that

of sows during the non-estrus period [9]. However, due to some

factors such as service life, wearable sensors cannot be popularized

and applied in large-scale pig farms. Freson et al 1998) used infra-

red sensor to continuously monitor the body activity of the sows.

According to the results, when using the daily body activity of sows

as themodel parameters, the accuracy rate of the estrus of sows was

86% [10]. This study is the first published literature on estrus

detection in individually housed sows. Jeong et al (2013) used the

wireless sensor network to measure the activity in real time, and

found that sows in estrus increase in activity [11]. Wang et al

(2020) put posture sensors on the neck of the sows to collect the

posture data, the results showed that when the recognition time of

estrus behavior was 30 min, the recognition error rate was 13.43%,

the recall rate was 90.63%, and the specificity was 81.63% [12].

However, the device used in this study needs to be worn on the

neck of the sow and cannot work for long periods of time.

According to the above, it is feasible to predict the estrus time

of a sow through detecting the frequency of posture change in sows.

With the development of the deep learning theories and

edge-computing device, the convolutional neural network

(CNN) has been widely applied in image classification,

image segmentation, object detection [13]. However, most

traditional CNN is limited by hardware resource, and made

it difficult to be deployed in the edge device or mobile terminal.

Lightweight design is the major Frontier to improve the

detection speed and minimize expenditures [14, 15]. At

present, lightweight CNN has been gradually applied in

space target detection, unmanned aerial systems (UAS) and

so on [16].

In modern sow production, estrus detection in sows still rely

largely on workers’ experience. After stimulation of the ribs,

abdomen and vulva, the estrus state is determined according to

the back-pressure test. However, this method is often time-

consuming and laborious and mainly depend on the

experience of the breeders, which is difficult to meet the needs

of real-time detection of sows in modern large-scale sow

production.

In response to the above problems, this paper proposes an

automatic estrus detection method based on lightweight CNN,

and deploy it on a low-cost embedded GPU. This research

approach is highly automated, contactless. The main

contributions of this paper are presented as follows.

1) The YOLOv5s model was used as the base models, and added

a convolutional block attention module (CBAM) for feature

fusion.

2) The estrus status of sows was analyzed according to the

frequency of posture change in sows.

3) The posture change characteristics of different types of

abnormal estrus sows was further explored.

2 Materials and methods

All experimental design and procedures of this study were

approved by the Animal Care and Use Committee of Nanjing

Agricultural University, in compliance with the Regulations for

the Administration of Affairs Concerning Experimental Animals

of China (Certification No. SYXK [Su]2011-0036).

2.1 Animals, housing, data acquisition

The data were collected at the Shangbao pig farm, Yancheng

City, Jiangsu Province, from 15 September 2021 to 12 January

2022.72 sows (Yorkshire × Landrace). We used 72 empty sows

(Yorkshire × Landrace) that were second or third parity sows.

They were transferred to gestation crates (2.2 m × 0.8 m × 0.7 m)

after lactation. House temperature was maintained at 24–27 °C,

and the relative humidity was 66–82%.

The video acquisition system was mainly composed of three

parts: the camera, the wireless, the embedded graphics card

(GPU). The system designed for this study is shown in
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Figure 1. The RGB camera (DS-2CD3346WD-I, HIKVISION,

Hangzhou, China) was installed 2.3 m above the gestation crate.

Each camera was connected to an embedded GPU (Jetson Nano

4 GB Developer Kit, Navidia, America) via an ethernet cable. For

the image acquisition device, the acquisition frequency was set to

1,500 fps, and the resolution was 2,560 (horizontal

resolution) ×1,440 (Vertical resolution). The wireless is used

for data transmission, and the embedded GPU is used for data

processing. During the experiment, the estrus of sows was

detected by artificial estrus check and hormone determination.

FIGURE 1
Sketch of video acquisition.

TABLE 1 Definition of different sow postures.

Posture Definition Sample

Lateral The limbs are fully extended and the breast region is clearly visible

Sternum The limbs are hidden under the body, and the breast area is not visible

Sit The head region is significantly higher than the tail region

Stand There is no contact between the abdomen and the ground, and there is no extrusion deformation of the body
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The estrus frequency was checked twice a day, at 9:00 a.m. and 3:

00 p.m.

2.2 Data set realization

Compared with the sows in non-estrus, most sows in estrus

are more active. In order to compare the activity of sows in estrus

and non-estrus, the postures were divided into four categories,

including lateral, sternum, sit, stand. The definition of each

posture is shown in Table 1.

In order to improve the generalization ability of the model

and ensure that the dataset could cover different times,

6,000 pictures were selected as data samples. Furthermore, the

images with high similarity were removed, and a total of

5,863 pictures were saved. In these pictures, sows in four

different postures (stand, sit, sternum, lateral) were annotated

using LabelImg software. The dataset is randomly partitioned

into three subsets: 80% of them as the training set, 10% as the

validation set, and the remaining 10% as the testing set.

2.3 Model building

This study developed a new method for estrus detection in

sows. The flow of the estrus detection algorithm is presented in

Figure 2. First, the images of the sows were captured regularly

using an embedded GPU. Second, use the optimized

yolov5 algorithm to detect the posture of the sow. Third, the

object box judgment module determines the coordinates of the

sow to be tested and outputs the posture with the highest

confidence. Fourth, according to the results of sow posture

detection, the frequency of posture transition before and after

the sow estrus and the activity characteristics of abnormal estrus

sows were analyzed. There are four types of abnormal estrus sows

studied in this paper, namely silent estrus, persistent estrus,

repeating estrus and postpartum anestrus. The silent estrus

sows are reduced feed intake and restlessness, but no

significant changes in vulva color and shape. The persistent

estrus sows remain depressed or excited, and their estrus go

exceeded the normal period, even for more than 10 days. The

estrus duration of repeating estrus sows is short, and it heat up

again a few days later. The postpartum anestrus sows have no

change in feed intake, no estrus symptoms, and no estrus within

10 days after weaning.

2.3.1 Program environment and training
parameter

The model of this paper relies on the Pytorch1.6 deep

learning framework. The processor model of the test platform

is Intel® CoreTM i7 - 11700 k, the graphics card model is

NVIDIA GTX3090, and the graphics card memory is 24G.

The deep learning environments such as Python3.8,

CUDA11.4, and Opencv4.5.1 are configured on the

Ubuntu18.04. Optimized model applied to embedded GPU.

The number of epochs was set to 300 to allow adequate time

for model convergence.

2.3.2 Basic model
YOLOv5 was selected to work as the base model in this study.

According to different network depth and width, YOLOv5 can be

divided into four basic network structures: YOLOv5s,

YOLOv5m, YOLOv5l and YOLOv5x [17]. The model is

mainly composed of four modules: the input module, the

backbone module, the neck module, the prediction module.

The input module is used to input the image of sow posture,

the backbone module for sow posture image feature extraction,

the neck module for sow posture image feature fusion, and the

prediction module for sow position prediction [18].

In input module, to improve generalization of the model,

image mosaic is used to enhance the datasets [19]. In backbone

module, it mainly includes the focus structure and the cross stage

partial Network (CSPNet). Among them, the focus structure is

mainly used to complete the slice operation, to extract the

posture features more fully, and effectively to reduce the loss

of data in the down-sampling process. The CSPNet is mainly

used to reduce the computational bottleneck and memory

overhead. Optimizing the core network with CSPNet can

improve the model detection performance, enhance the

FIGURE 2
The flow of the estrus detection algorithm.
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learning ability of CNN, and fully reduce the computation and

inference time. In neck module, it mainly includes the feature

pyramid network (FPN) and the path augmentation network

(PAN). Among them, FPN uses a top-down architecture to fuse

the feature of high-level layers. Conversely, PAN uses a down-top

architecture to transfer strong location features. In prediction

module, to improve location precision and recognition accuracy,

we used the generalized intersection over union (GIoU _loss) as

the loss foundation [20].

The performance evaluation indicators of the sow posture

classification model mainly include model size, precision, recall,

f1score, detection speed, parameters, The calculation method of

precision is shown in Eq. 1, the calculation method of recall is

shown in Eq. 2, and the calculation method of f1score is shown in

Eq. 3.

Precison � TP

TP + FP
, (1)

Recall � TP

TP + FN
, (2)

F1score � 2 ×
Precision × Recall

Precision + Recall
. (3)

2.3.3 The object box judgment module
The accurate detection of sow posture to be tested is the basis

of analyzing sow estrus status. Since multiple sows appear in the

region to be tested, we set a rectangular bounding box

surrounded by four pixels [150,350], [2,380,350] [150,1,020],

and [2380,1020]. Furthermore, due to the existence of transition

posture, a single sow has multiple output results. To solve this

issue, a judgment module was added after the prediction module,

and this ensured that the output is the highest degree of

confidence score.

2.3.4 CBAM module
Due to the influence of sow body pollution and poor light

conditions, it is difficult to extract the characteristics of limbs,

breast region and abdominal areas. Using the attentionmechanism

can suppress the redundant background information, enhance the

feature representation of the sow limb parts in the image, and

improve the recognition performance of the posture detection

model. The channel attention and spatial attention are combined

in the reverse residual block to highlight the target features in the

feature graph generated by the deep convolution and improve the

recognition performance of the model [21, 22]. The output feature

map of the CBAMmodule acting on the deep convolution. CBAM

is a simple and efficient attention module for feed-forward CNN,

which takes a given feature map in turn along the channel

attention module (CAM) and the spatial attention module

(SAM). CBAM can assist the sow posture detection model to

locate the region of interest and suppress useless information. The

overall flow of the CBAM module is shown in Figure 3.

In Figure 3, MC represents channel attention in the

Convolutional Block Attention Model, and MS represents

spatial attention model. The Mc calculation formula is shown

as in Eq. 4, The MS calculation formula is shown as in Eq. 5.

Mc(F) � σ(MLP(AvgPool(F)) +MLP(MaxPool(F))),
� σ(W1(W0(Fc

avg)) +W1(W0(F c
max ))),

(4)

Ms(F) � σ(f7×7([AvgPool(F);MaxPool(F)])),
� σ(f7×7([Fs

avg;F
s
max ])).

(5)

In Eq. 4, MLP is a Multi-Layer Perceptron Neural network

[23], Avg pool () represents the module averaging pooling of the

feature graph, Max pool () means the module maximizing

pooling of the feature graph, and Fc
avg ,F c

max represent the

global average pooling and the maximum average pooling of

the channel attention mechanism [24], respectively.

FS � σ(Conv(Cat(Favg, F max))) ⊗ FX,

� σ(f7×7([Fs
avg, F

s
max ])).

(6)

In Eq. 6: Cat represents the connection operation, f7×7 is a

convolution of 7 × 7, and Fs
avg , F

s
max represent the global average

pooling and the maximum average pooling operations of the

spatial attention mechanism, respectively. YOLOv5s has no

attention preference during feature extraction, and uses the

same weighting method for features of different degrees of

importance. In this study, we solve the problem of no

attention preference in the original network by introducing

CBAM modules respectively after three CSP modules,

enabling the network to pay more attention to the target of

interest during the detection process.

2.3.5 Model lightweight
To achieve rapid inference of the posture classification

model, the CNN model was optimized. First, to ensure that

the embedding can run this model with higher throughput and

FIGURE 3
CBAM structure.
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lower latency, we remove the useless output layer in the model.

Second, to achieve the vertical integration of the network

structure, the three layers of CONV, BN, and Leaky Relu were

integrated into one CBL layer. Third, to achieve a horizontal

combination of the network structures, the three 1 × 1 CBL layers

were fused into one 1 × 1 CBL layer. Fourth, to reduce the

transmission throughput, the contact layers in the network

structure were removed. After completing the above steps, the

model was deployed to the embedded GPU. The model

lightweight procedure is shown in Figure 4.

FIGURE 4
The lightweight process of the model.

FIGURE 5
Training and test results for the sow posture detection model. (A) Loss curve (B) Evaluate metrics curve.
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2.3.6 Contrast models
In order to select the optimal model, this study compared the

detection performance of different size YOLOv5 models

(YOLOv5x, YOLOv5l, YOLOv5m, YOLOv5s), multiple

attention mechanisms, including CAM, efficient channel

attention module (ECA), and squeeze and excitation module

(SE) [25, 26]. In addition, this study compared the optimization

effect of the bidirectional feature pyramid network and the

attention mechanism. Furthermore, we compared the

proposed model with some representative lightweight object

detection models, including MobileDets, NanoDet. MobileDets

is a model based on the extended search space series, which can

achieve a better balance between delay and accuracy on mobile

devices [27]. NanoDet is an ultra-fast and lightweight mobile

Anchor-free object detection model, and it is also convenient for

training and transplantation [28, 29].

3 Results and Discussion

In Section 3.1, this study analyzes the training and testing

results of the model. In Section 3.2, Section 3.3 and Section 3.4,

the sow posture detection performance of different models is

compared. In Section 3.5, the detection performance of the model

on night and daytime data is tested. In Section 3.6, the

characteristics of the frequency of posture change in empty

sows before and after estrus are analyzed and tested. In

Section 3.7, the characteristics of the frequency of posture

change in abnormal estrus sows were explored. In Section 3.8,

The shortcomings of the study are analyzed.

3.1 Training and testing results

The loss curve for posture detection model is shown in

Figure 5A. Train/Box_loss, Train/Obj_loss, Train/Cls_loss

represent the position coordinate prediction loss, confidence

prediction loss, and category prediction loss of the training

dataset, respectively. Val/Box_loss, Val/Obj_loss, Train/

Cls_loss represent the position coordinate prediction loss,

confidence prediction loss, and category prediction loss of the

validation dataset set, respectively. In the initial stage, the loss

value decreases rapidly, and then gradually stabilizes, which

means that the model gradually converges.

FIGURE 6
P-R curve.
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Figure 5B shows the test results of the sow posture detection

model. Where mAP 0.5 is the mean average precision (mAP) of

IoU (Intersection over Union) at 0.5, mAP 0.5:0.95 is the average

of IoU in the threshold range [0.5,0.95] (the average precision is

calculated every 0.05). As can be seen from the four curves, the

model can converge quickly and has high detection performance.

To evaluate the detection performance of the model, we

plotted and analyzed the PR curve, The PR curve is formed by the

precision and recall rate of the model. Among them, the recall (R)

is the x-axis, and the precision (P) is the y-axis. It can be seen

from Figure 6 that as the recall continues Increase, precision

gradually decreases, and gradually reaches a balance point. At

this time, recall and precision are both above 95%, which shows

that the model has better performance for sow posture detection.

3.2 Results of YOLOv5

Test results for different sizes of YOLOv5 are shown in

Table 2. YOLOv5s is the network with the smallest depth and

the smallest width of the feature map in the YOLOv5 series.

Although the detection accuracy is slightly lower than YOLOv5l,

and the recall rate is slightly lower than that of YOLOv5m, it still

can maintain a high F1score, and the number of parameters and

the detection times are greatly reduced. The model size is only

14.4 MB, which can meet the deployment and use of embedded

GPU. Therefore, YOLOv5s is selected for further optimization in

this paper.

3.3 Results of optimization methods

The test results of different optimization methods are

shown in Table 3. The Bi-FPN network has the best effect

on improving the precision of model detection, but with slightly

lower recall. Among the optimization methods based on

attention mechanism, ECA module has the best effect on

improving the precision of the model, and SE module has

the best effect on improving the precision of the model.

Based on different evaluation indexes, CBAM module has

the best comprehensive improvement effect on sow posture

detection.

TABLE 2 Experimental results of YOLOv5 with different sizes.

Model Size (MB) Precision (%) Recall (%) F1score (%) Speed (ms) Parameters

YOLOv5s 14.4 96.8 94.9 95.8 7.6 7.03×106

YOLOv5m 42.2 96.1 95.7 95.9 8.8 2.09×107

YOLOv5l 92.8 98.4 93.9 96.1 10.3 4.61×107

YOLOv5x 173.1 96.3 94.7 95.5 12.8 8.62×107

TABLE 3 Experimental results of different optimization methods.

Model Size (MB) Precision (%) Recall (%) F1score (%) Parameters

YOLOv5s 14.4 96.8 94.9 95.8 7.03×106

YOLOv5s + Bi-FPN 15.5 97.3 93.1 95.2 7.09×106

YOLOv5s + CA 14.8 95.1 96.1 95.6 7.22×106

YOLOv5s + ECA 14.7 97.2 95.2 96.2 7.20×106

YOLOv5s + SE 14.8 94.9 97.6 96.2 7.23×106

YOLOv5s + CBAM 14.8 97.1 96.1 96.6 7.23×106

TABLE 4 Experimental results of different lightweight models.

Model Size (MB) Precision (%) Recall (%) F1 score (%) Speed (ms)

YOLOv5s + CBAM 14.8 97.1 96.1 96.6 10.4

MobileDets 16.0 95.3 89.9 92.5 8.2

Nanodet 17.1 97.5 91.4 94.3 10.0
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3.4 Contrast model

The test results of different lightweight models are

shown in Table 4. Compared with the optimized model,

MobileDets can achieve faster detection of sow posture, but

precision and recall are lower than the optimized model.

The precision and detection speed of Nanodet model are

slightly faster than that of the optimized model, but the

recall is far lower than that of the optimized model.

Combining precision, recall, f1score and detection speed,

the optimized model has the best detection performance.

The test results show that the processing time of a single

picture on the embedded GPU is 74.4 ms, which can meet

the needs of real-time detection.

3.5 Model testing

To further test the performance of the model for sow posture

detection, 100 images of each of the four postures were selected

and tested. Among them, there are 50 images collected at night

and 50 during the day, for a total of 400 images. The detection

results of different sow posture are shown in Figure 7. Below the

white segmentation line is the manually marked sow posture

(blue line), and above the white segmentation line is the model

automatic detection result (orange line), the night image

annotation and identification results are gray background

area, and the daytime image annotation and identification

results are white background area. According to Figure 7, The

model classified stand, sit and lateral postures more well, but a

FIGURE 7
Different sow posture detection results.

FIGURE 8
The frequency of posture change in sow (sow-2) within 7 days after lactation.
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little inferior for sternum, that is because the inter class gap

between sternum and the others is smaller than that between

stand, lateral, and sit. Furthermore, there are a few missed

detections, which is caused by changes in light. Overall, the

model is able to accurately detect daytime and nighttime sow

posture.

3.6 Estrus analysis

To explore the daily patterns of empty sow behavior, this

study analyzed the frequency of posture change in 52 empty

sows within 7 days after lactation. The study selected the

remaining 20 sows as test samples. For a fifth day estrus sow

(sow-2), the statistical results are shown in Figure 8. The study

divides a day into three time periods: Time-1, Time-2, and

Time-3. Time-1 is 0–5 am, Time-1 is 6 am-6 pm, and Time-3 is

the remaining time.

The frequency of posture change in sow-2 on the first day

remained high after lactation, which is caused by the stress of

transfer group. At time-1, the average frequency of posture

change in sow was up to 6.98 times per hour. When sows

changed from stress to proestrus, the frequency of posture

change was significantly reduced, with the average frequency

of posture change in the sow decreased to 1.43 times per hour.

When the sow was in estrus, its frequency of posture change in

the sow increased significantly. With the average frequency of

posture change in sows up to 6.14 times per hour, which

generally increased 3-4 times compared with proestrus. When

the sow ends in the estrus period, its average PTF will gradually

increase, with the average frequency of posture change in sows

decreasing to 5.69 times per hour, generally down by

FIGURE 9
The time of each posture at 1–6 days after the end of the stress phase.

FIGURE 10
The frequency of posture change in different types of sows.
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0.2–0.3 from the estrus period. However, this trend is not

statistically significant for time-2 or time-3. The study further

analyzed the time of each posture after stress, and the results are

shown in Figure 9. It can be seen that when an empty sow is

estrus, the stand and sternum time increases and the lateral time

decreases. This is consistent with the conclusion of Lee et al [30].

Based on the above conclusions, the remaining 20 sows were

selected for testing in this study. Among the 20 sows, including

3 with abnormal estrus sows and 17 with normal estrus sows. The

test results showed that among the remaining 17 sows, only one

with estrus was wrongly detected, and 94.1% of estrus sows could

be accurately detected.

3.7 Abnormal estrus analysis

Due to nutrition, disease, sow house environment and other

factors, some sows are unable to estrus and ovulate normally after

weaning [31]. Abnormal estrus sows were placed into five main

categories: silent estrus, persistent estrus, repeating estrus and

postpartum anestrus, accounting for 12.5% of the experimental

sows. The frequency of posture change of different types of empty

sows is shown in Figure 10. Sow-1 is normal estrus sow, sow-2 is

silent estrus sow, sow-3 is persistent estrus sows, sow-4 is

repeating estrus sow, and sow-5 is postpartum anestrus sow.

For silent estrus (sow-2) or postpartum anestrus sow (sow-5), the

frequency of posture change remained relatively low. In the

Time-1, the average frequency of posture change of two kinds

of sows is less than 1.63 times per hour. For persistent estrus sows

(sow-3), the frequency of posture change is at high levels. In the

time-1, the average frequency of posture change of this kind of

sows is higher than 11.74 times per hour, significantly lower than

those in normal estrus. However, for postpartum anestrus sows,

the average frequency of posture change of this kind of sows

fluctuates up and down irregularly, which is usually caused by

sow malnutrition or ovarian dysfunction.

3.8 Current deficiencies and subsequent
studies

For this study, although the preliminary method for

detection of estrus had been achieved, there are still

shortcomings in this study. It was found that the light

condition had some influence on the sow posture detection.

The feature map of the five light conditions, including normal

light, nighttime light, uneven light, overexposure,

underexposure, were visualized, and class activation maps

(CAM) were generated, as shown in Figure 11. In normal

light, nighttime, overexposure, the model can accurately

identify the sow object and classify its postures. However, in

uneven light, the model can accurately predict sow position, but

there is some false detection of posture. Through testing, it was

found that due to the dim light in the breast area of some sow

FIGURE 11
Detection results in different light.
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images, the model could not accurately distinguish between the

lateral and sternum. In uneven light, the model had difficulty in

identifying sows. In the next phase of the study, we will synthesize

the dynamic detection results of the video data to further

improve the posture detection precision of the model.

4 Conclusion

In this past study, we proposed an algorithm for sow posture

detection based on optimized YOLOv5s and used it for activity

analysis of sows in estrus. It could be concluded from the testing

results and discussions that:

1) Combining a CBAM module with the YOLOv5 model

helped in the detection of sow postures. This method

could be used to continuously and automatically monitor

sow behavior.

2) The study found that when empty sows reached in estrus, the

frequency of posture change in most sows increased. The

standing and sternum time of sows increased, and the lateral

time decreased compared with the non-estrus period.

3) This study compared the frequency of posture change in

abnormal estrus abnormal estrus sows. In the follow-up

study, the testing range of abnormal estrus sows will be

further expanded
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