
Multiple radionuclide
identification using deep learning
with channel attention module
and visual explanation

Yu Wang, Quanhu Zhang*, Qingxu Yao, Yonggang Huo,
Man Zhou and Yunfeng Lu

Xi’an Research Inst of Hi-Tech, Xi’an, China

As a rapid and automatic method, multiple radionuclide identification using

deep learning has drawn wide interest from researchers in the field of nuclear

safety and nuclear security. However, the network model in deep learning often

appears in the form of a black box, which makes it difficult for people to

understand its decision-making basis. It is necessary to develop an interpretable

deep learning model for multiple nuclide identification. In the work on nuclide

identification using deep learning, very few interpretable studies have been

conducted. In this paper, channel attention weights are used for interpretable

radionuclide identification for the first time. We propose a multiple radionuclide

identification method using deep learning with channel attention module and

visual explanation. A dataset of gamma spectra simulated by Geant4 was

created, containing 256 combinations of 8 radionuclides. These gamma

spectra were used to train using a convolutional neural network (CNN) with

a channel attention module. The obtained accuracies on training, validation,

and test sets are 97.8%, 97.6%, and 97.1%, respectively. The result of

interpretation of spectral features show that based on the channel attention

module, the CNN can make full use of the feature information of the

photoelectric peak and Compton edge and suppress the background and

noise interference. In addition, the t-distributed stochastic neighbor

embedding (t-SNE) method was used to visualize the inner working process

of the CNN and visually illustrate the correctness of feature extraction. This

research will promote the application of artificial intelligence algorithms in

nuclide identification instruments.
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Introduction

Airborne radionuclide identification is an important

technology in the Comprehensive Nuclear-Test-Ban Treaty [1,

2]. In order to improve the coverage and efficiency of the

monitoring, it is necessary to analyze the gamma-ray

spectrum measured in a short period of time. With this limit,

the counting fluctuation error of the spectrum is large, and the

photoelectric peak is easily overwhelmed by the background. In

addition, the calibration of detector is prone to deviation due to

temperature changes. In this case, it is difficult to identify

radionuclides by traditional methods.

Some of the latest works with machine learning methods for

nuclide identification have achieved rapid, real-time, and automatic

results. Intelligent nuclide identification methods have received

more and more attention. Bayesian inference [3], support vector

machines [4], and artificial neural networks [5–11] are applied to

nuclide identification and quantification. Based on artificial neural

networks, some variants of neural networks, such as convolutional

neural network (CNN) [12–15], hybrid neural network [16], and

generative adversarial network [17], have been applied to nuclide

identification. The performance of these methods on nuclide

identification tasks is better than that of traditional methods.

However, intelligent identification methods, especially deep

learning models, have a problem that plagues researchers because

of their “black box” features. It is difficult for deep neural

networks to give a basis for decisions, which leads to a lack of

trust for researchers [18, 19]. Although CNN has the ability to

extract features, it must be ensured that the network can correctly

and effectively utilize the extracted key features from the gamma

spectrum. Among the deep learning studies related to

radionuclide identification, few works have investigated the

interpretability of neural networks for gamma spectral

analysis. The interpretability can help people understand the

process about how a neural network processes the gamma

spectrum and increase people’s interest and confidence in

using neural networks for nuclide identification.

Attention mechanism has become a research hotspot in the

field of deep learning in recent years. The idea of the attention

mechanism comes from the attention mechanism of the human

brain. The human brain will consciously ignore unimportant

information and focus on information closely related to the

target. Applying attention to the CNN structure can improve

the ability of feature maps to encode key information and

improve the learning effect of the middle layer [20, 21]. The

use of attention mechanisms to explain the internals of neural

networks is a hot research topic.

In this study, we propose a CNN model with a channel

attention module [20]. A gamma spectroscopy dataset was

established for multiple radionuclide identification. We try to

explain and understand how CNN processes features using

channel attention. By using the t-distributed stochastic

neighbor embedding (t-SNE) [22] dimensionality reduction

algorithm, the inner working process of the neural network is

visualized.

The main contributions of the paper are listed here:

• The created dataset includes 256 combinations of

8 nuclides. Data augmentation was performed on the

gamma spectra of the dataset.

• We analyzed the interpretation results of the neural

network by the channel attention weights. It was found

that the neural network can use the photoelectric peak and

Compton edge in the spectrum to identify the nuclide

while excluding the influence of background and noise.

• The data distribution was visualized by t-SNE. The results

show that the channel attention module is able to improve

the performance of the neural network.

The proposed model

Convolutional neural network model

The proposed model of the neural network is mainly

composed of an input layer, an output layer, three

convolution modules, and a channel attention module, as

shown in Figure 1.

The input to the neural network is the entire gamma

spectrum (1024 × 1). It is followed by three convolutional

modules, each of which contains three convolutional layers

and a max-pooling layer. The convolution layer is responsible

for extracting the features of the input gamma-ray spectrum, and

the max pooling layer reduces the dimension of the data and the

number of parameters, which can improve the training speed.

The number of convolution kernels increases with the

deepening of the network. In fact, processing gamma spectra

with a one-dimensional convolution kernel can be regarded as a

filtering operation, and different convolution kernels correspond

to the features of different channel outputs. Different features are

of different importance to the identification of radionuclides. The

features that are more representative of the characteristics of

nuclides should be paid attention to. Considering the above

reasons, a channel attention module is added after the highest

convolutional module.

Channel attention module

The inspiration for using the channel attention module comes

from Squeeze-and-Excitation Networks [20]. The channel attention

module can calculate the importance of features extracted by

different convolution kernels. In general, it is divided into three

steps: squeeze, excitation, and reweight. Specifically, data

compression is first performed on the data of each channel, and

the one-dimensional data output by each channel is compressed into
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a single value, corresponding to Fsq(·) in Figure 1. Then use the

shared Multi-layered perceptron (MLP) to perform the excitation

operation to generate a corresponding channel attention weight for

each channel. Channel attention weights are used to represent the

importance of features output by different channels. Figure 2 is a

specific schematic diagram of the channel attention operation. The

feature maps are input to the average pooling layer and the max

pooling layer, respectively, both of which are connected to the shared

MLP. The shared MLP is a fully connected network with three

layers, and the number of neurons in themiddle layer network is less

than that of the two side layers. The two outputs of the shared neural

network are connected together, and after passing through the

sigmoid activation function, the channel attention weights are

obtained.

Finally, the channel attention weights are multiplied by each

feature to get the features with the channel attention weights. The

output layer follows the global average pooling layer. It consists of

9 neurons, whose output value is between 0 and 1 due to the

limitation of the sigmoid activation function. Its physical

meaning is the probability of the existence of 8 nuclides and

the related background.

Determination of hyperparameters

The neural network model proposed in this paper has the

following hyperparameters: The number of filters, the size of the

kernel, the activation function, the initial learning rate, the batch

size, and the number of neurons of the shared MLP. A reasonable

setting of hyperparameters is conducive to better performance of

the neural network. After some experience attempts, more

suitable hyperparameters are explored. The final neural

network hyperparameters are shown in Table 1. Table 2 is a

model summary of the network.

The loss function of the neural network is the categorical cross-

entropy function. The neural network weights are updated

iteratively based on the training data using the Adam optimizer.

The running environment of the program is python3.8.12 and

tensorflow2.5.0-GPU [23].

Creation of the dataset

Geant4 simulation

The deep learning model requires a large amount of data for

training. The Geant4 simulation toolkit [24] was used to create

the data, i.e., the gamma-ray spectra. First, a Φ3″ × 3″ NaI (Tl)

detector was modeled using Geant4, as shown in Figure 3. The

detector is mainly composed of NaI (green), a magnesium oxide

film (purple), and Al protective shell (orange). The red balls

represent point radionuclide sources. The green rays are gamma

rays emitted by the sources.

The total number of channels is 1,024, and the step size is

2 keV. For 137Cs, the energy resolution at 0.662 keV is 7.5%. The

G4EmStandardPhysics was added to the physis list to simulate the

FIGURE 1
Schematic diagram of the proposed model.

FIGURE 2
Schematic diagram of channel attention operation.
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physical process of photoelectric reaction. The

G4RadioactiveDecayPhysics and G4DecayPhysics were added to

the physis list to simulate the physical process of the decay of

radioactive sources.

Gaussian broadening

Geant4 can only obtain the deposition energy of particles

in the detector and cannot simulate the response process of

the detector. The energy deposition simulated by Geant4 is

very different from the energy actually measured and recorded

by the detector. The energy deposition simulated by Geant4 is

processed with Gaussian broadening, and Eqs 1, 2 are the

broadening formulas.

FWHM � a + b
�������
E0 + cE2

0

√
(1)

E � FWHM

2
�����
2 ln 2

√ g + E0 (2)

Where FWHM is the full width at half maximum. a, b, c, are

the corresponding coefficients, which are determined by the

TABLE 1 Hyperparameters of the proposed neural network.

Hyperparameters
of the model

Value

Number of filters 64, 64, 64, 128, 128, 128, 256, 256, 256

Size of the kernel 3

Activation function ReLU

Initial learning rate 2 × 10–4

Batch size 128

The number of neurons of the shared MLP 85,256

TABLE 2 Model summary of the CNN with channel attention module.

Layer (type) Output shape Param Connected to

input_1 (InputLayer) [(None, 1,024, 1)] 0

conv1d (Conv1D) (None, 1,022, 64) 256 input_1 [0][0]

conv1d_1 (Conv1D) (None, 1,020, 64) 12,352 conv1d [0][0]

conv1d_2 (Conv1D) (None, 1,018, 64) 12,352 conv1d_1 [0][0]

max_pooling1d (MaxPooling1D) (None, 339, 64) 0 conv1d_2 [0][0]

conv1d_3 (Conv1D) (None, 337, 128) 24,707 max_pooling1d [0][0]

conv1d_4 (Conv1D) (None, 335, 128) 49,280 conv1d_3 [0][0]

conv1d_5 (Conv1D) (None, 333, 128) 49,280 conv1d_4 [0][0]

max_pooling1d_1 (MaxPooling1D) (None, 111, 128) 0 conv1d_5 [0][0]

conv1d_6 (Conv1D) (None, 109, 256) 98,560 max_pooling1d_1 [0][0]

conv1d_7 (Conv1D) (None, 107, 256) 196,864 conv1d_6 [0][0]

conv1d_8 (Conv1D) (None, 105, 256) 196,864 conv1d_7 [0][0]

max_pooling1d_2 (MaxPooling1D) (None, 35, 128) 0 conv1d_8 [0][0]

channel_avgpool (GlobalAveragePooling1D) (None, 256) 0 max_pooling1d_2 [0][0]

channel_maxpool (GlobalMaxPooling1D) (None, 256) 0 max_pooling1d_2 [0][0]

channel_fc1 (Dense) (None, 85) 21,845 channel_avgpool [0][0], channel_maxpool [0][0]

channel_fc2 (Dense) (None, 256) 22,016 channel_fc1 [0][0], channel_fc1 [1][0]

add (Add) (None, 256) 0 channel_fc2 [0][0], channel_fc2 [1][0]

channel_sigmoid (Activation) (None, 256) 0 add [0][0]

channel_reshape (Reshape) (None, 1, 256) 0 channel_sigmoid [0][0]

tf.math.multiply (TFOpLambda) (None, 35, 256) 0 max_pooling1d_2 [0][0], channel_reshape [0][0]

global_average_pooling1d (GlobalMaxPooling1D) (None, 256) 0 tf.math.multiply [0][0]

dense (Dense) (None, 9) 2,313 global_average_pooling1d [0][0]
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fitting of the gamma-ray spectrum measured in practice. E0 is

the deposition energy simulated by Geant4. g is a random

variable that obeys a standard normal distribution, that is

g ~ N(0, 1). E is the expanded energy. Figure 4 is a

comparison of the gamma-ray spectra of 137Cs and 60Co

mixed nuclides before and after energy broadening. The

broadened gamma-ray spectrum has a lower resolution at

the photoelectric peak, which is more in line with the actual

situation.

Referring to the four types of common radioisotopes listed

in the IAEA technical guidance reference manual for nuclear

security [25], a dataset of gamma spectra simulated by

Geant4 was created. It contains 256 combinations of

8 radionuclides, they are, 241Am, 133Ba, 57Co, 60Co, 137Cs,
131I, 40K, and 235U. A background gamma-ray spectrum

obtained from a long-term measurement is used as a

FIGURE 3
Detector model established with Geant4.

FIGURE 4
Gamma spectra before and after Gaussian broadening.

FIGURE 5
Template for sampling simulation and simulated background
spectrum.
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template. The background gamma-ray spectrum is simulated

based on this template, as shown in Figure 5.

Data augmentation

The dataset needs to contain gamma spectra simulated in

different situations to prevent overfitting when the neural

network training data. In deep learning, this practice is called

data augmentation. It was realized with three methods:

Randomize the gross counts, randomize the radionuclide

activity ratio, and perform the spectrum shift.

Figure 6 shows the comparison of 60Co and 137Cs mixed nuclide

gamma-ray spectra after data augmentation. Specifically, first, the

gross counts of the gamma-ray spectrum were randomly selected

between 103 − 105 following a logarithmic distribution. Figure 6A

shows the gamma-ray spectra of different total counts after count

normalization. Second, randomize the radionuclide activity ratio.

The spectrum of mixed nuclides is a composite spectrum formed by

linearly superimposing the spectra of single nuclides. The activity

ratios of different nuclides were simulated by changing the number

of particles. Figure 6B shows the comparison of the activity ratios of
137Cs and 60Co at 4 and 0.25, respectively. In our dataset, the activity

ratios of individual nuclides ranged from 0.2 to 5. Finally, the shift of

the spectra was simulated by means of interpolation, as shown in

Figure 6C. The magnitude of shift was randomly selected between

0.9 and 1.1.

For each combination of radionuclides, 1,000 spectra were

simulated. Referring to the proportion of the small sample

dataset [26], the dataset were divide into training set,

validation set, and test set according to the ratio of 3:1:1.

Results and discussion

Training results of neural networks

Only when all existing nuclides are accurately identified, and

no excess nuclides are incorrectly identified can the neural

network be considered to have successfully completed the

FIGURE 6
Example of the data augmentation; (A) spectra with different gross counts, (B) spectra with different radionuclide activity ratios, (C) spectra with
different magnitude of shift.
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identification. TensorFlow’s own metrics, such as accuracy and

binary_accuracy, do not meet our requirements. So, we define

our own metrics. To describe our own defined metrics, we use

Table 3 as an example. Table 3 lists the labels of the three gamma

spectra for a certain combination and the identification output of

spectra. The three gamma spectra have the same labels and are

named spectrum a, spectrum b, and spectrum c respectively.

Then use different metrics to calculate the accuracy to illustrate

the difference between different metrics.

We set 0.5 as the threshold for the network to judge the

existence of nuclides. When the output value of a certain output

channel is greater than 0.5, the network considers that the nuclide

exists. Among the identification output of spectra, for the

identification output of spectrum b, the neural network did

not recognize the existence of 40K, but the rest of the

prediction results were correct. According to the metrics we

defined, the accuracy should be 66.6% at this time. However, the

binary_accuracy that comes with tensorflow will calculate the

accuracy for each output channel separately. At this time, the

accuracy is 26/27 × 100% � 96.3%, which is obviously a wrong

calculation result. The accuracy directly affects the adjustment of

parameters during training, which is why it is necessary to strictly

define the metrics.

The training accuracy and verification accuracy of each

epoch of training in the training process are shown in

Figure 7. The accuracy of training increases rapidly in the

early stage and reaches saturation in the late stage. During

training, the learning rate was halved every 20 epochs. This

allows us to quickly adjust the neural network parameters at the

beginning of training and fine-tune the parameters at the end of

training. In the later stage of training, it is necessary to slow down

the speed of neural network updating weights to make the

accuracy reach a stable value. This is the reason why the

fluctuation of accuracy in the early training period is larger

than that in the late training period, as shown in Figure 7.

The basis for stopping training is that the accuracy of the

validation set no longer increases for 10 consecutive epochs. In

the local magnification of Figure 7, the accuracy of the validation

set does not grow after the 56th epoch. The accuracy of the

validation set was no more than 98.3% in epochs 56 to 66, so the

training was stopped at epoch 66 to prevent overfitting.

To highlight the role of the channel attention module. We

train the network without adding channel attention. During

training, we still use the metrics we defined. Table 4 shows

Training accuracy and validation accuracy of CNN with channel

attention and without channel attention at the end of the

training. Compared with the CNN without channel attention

module, the CNN with channel attention module improves the

training accuracy and validation accuracy.

In total, gamma-ray spectra for 256 combinations were

simulated. Let the number of existing nuclides is i(0≤ i≤ 8),
then the number of cases follows the combination Ci

8. i � 0

means only background exists. When the test set is input into the

trained neural network, the total accuracy is 97.1%. Figure 8

shows the accuracy of a different number of nuclides in the test

set. When the number of nuclides is between 1-7, the accuracy

gradually decreases with the increase of the number of nuclides.

Even so, all of them are at least 90%. According to the JJF 1687-

2018 measurement standard [27], our proposed algorithm can be

applied to radionuclide identification instruments. Compared

with the CNN without the channel attention module, the

performance of the CNN with channel attention module is

better on the test set.

The network is trained and tested on a notebook PC with

AMD Ryzen 7 5800H, a Nvidia GeForce RTX 3060 Laptop GPU

and 16 GB RAM in 64-bitWindows 11. In the test set, the average

TABLE 3 Labels and identification output for the three gamma spectra.

241Am 133Ba 57Co 60Co 137Cs 131I 40K 235U Background

Spectrum labels 0 1 0 1 1 0 1 0 1

Identification output of spectrum a 0.03 0.98 0.08 0.78 0.79 0.12 0.56 0.01 1

Identification output of spectrum b 0.01 0.92 0.01 0.86 0.90 0.01 0.32 0.01 0.99

Identification output of spectrum c 0.01 0.98 0.01 0.90 0.95 0.01 0.78 0.01 1

FIGURE 7
Training accuracy and validation accuracy during model
training.
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time to identify each spectrum is 0.285 ms. The proposedmethod

is a rapid and automatic method for nuclide identification.

Interpretation of spectral features by
channel attention weights

CNN relies on convolutional layers to extract features from

spectral data. The deeper the convolutional layers, the more

abstract the features are. These features may represent different

spectral peaks, including but not limited to photoelectric peaks,

Compton edges, and background. We hope that through the

channel attention module, the neural network can assign

different attention weights to these features so as to better

utilize the features that are beneficial to nuclide identification.

Figure 9 shows several feature maps of gamma spectroscopy

for several different convolution kernels in the highest

convolutional layers. Figure 9A is the original gamma

spectrum input to the neural network. Figures 9B–D are

several feature maps, which are named feature maps 1, 2, and

3, respectively. Although they do not include all feature maps,

they are still representative. These feature maps may be abstract

to people, but they are still understandable. In Figure 9B, onemay

see the characteristics of the photoelectric peaks of 137Cs and
60Co. In Figure 9C, one may perceive not only the characteristics

of the photoelectric peaks of 137Cs and 60Co, but also the related

Compton edge. In Figure 9D, the main features come from the

background. In addition, comparing Figures 9A,C, Figure 9C

does not have the noise of the statistical fluctuation distribution

in Figure 9A, which is due to the automatic noise filtering

operation in the neural network. Neural networks can extract

features such as photoelectric peaks, Compton edges, and

backgrounds in gamma spectra, but what is more important

may be how to use these features in a targeted manner.

Table 5 shows the channel attention weights of the neural

network for these three features. Due to the limitation of the

sigmoid activation function, the attention weights are

constrained to be between 0 and 1. The channel attention

weight of feature map 1 and feature map 2 is 1, and the

weight of feature map 3 is 0. This indicates that the neural

network considers photoelectric peaks and Compton edges to be

important information for nuclide identification. Background

information is interfering information which does not require the

attention of the neural network. This is in line with the logic of

people identifying nuclides. People mainly rely on photoelectric

peaks to identify nuclides rather than relying on the

characteristics of the background. Here, the neural network

automatically completes the gamma spectrum analysis work.

Only spectra and labels are input, then the neural network

completes the nuclide identification work that is consistent

with people’s cognitive logic.

Feature visualization using t-distributed
stochastic neighbor embedding

In order to further analyze the process of feature extraction

by the neural network, the features of the gamma spectra of four

nuclide combinations in the test set were selected for

visualization. Each combination contains two nuclides, they

are, 241Am + 133Ba, 57Co+60Co, 137Cs + 131I, 40K + 235U. t-SNE

is a nonlinear dimensionality reduction method. Despite the high

computational cost, t-SNE is still effective for visualizing high-

dimensional data containing multiple manifolds simultaneously.

The t-SNE algorithm was used to convert gamma spectral

features in high-dimensional space into vector data in two-

dimensional space. The transformed two-dimensional vector

preserves the structure of the high-dimensional space.

TABLE 4 Training accuracy and validation accuracy of CNN with channel attention and without.

Training accuracy (%) Validation accuracy (%)

CNN with channel attention 97.8 97.6

CNN without channel attention 97.0 95.1

FIGURE 8
Identification accuracy of the spectra with different numbers
of nuclides in the test set.
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FIGURE 9
Examples of mixed nuclides of 60Co and 137Cs; (A) original gamma-ray spectrum, (B) feature map 1, (C) feature map 2, (D) feature map 3.

FIGURE 10
Results of feature visualization using t-SNT; (A) Visualization of the outputs of channel_maxpool in Table 2, (B) global_average_pooling1d in
Table 2, (C) dense in Table 2.
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The data distribution of the average pooling layer before the

channel attention, the global average pooling layer after the channel

attention, and the output layer of the neural network were analyzed.

Figures 10A–C correspond to the outputs of channel_maxpool,

global_average_pooling1d and dense in Table 2, respectively. For

each combination of nuclides, there are 200 gamma spectra as test

samples, corresponding to 200 discrete points for each color in

Figure 10. The 2D vector data after t-SNE dimensionality reduction

were normalize, so the coordinates on the graph were constrained to

be between 0 and 1. In general, the closer the points of the same color

are on the graph, the better the classification performance of the

neural network. Compared to the data distributions in Figure 10A,

all points of the same color are clustered together in Figure 10B,

which proves the effectiveness of the channel attention module. The

data distribution in Figure 10C visually shows the recognition results

of the neural network. Figure 10A–C visually shows the process of

processing data inside the neural network.

Conclusion

This paper proposes a convolutional neural network with a

channel attention module for multiple radionuclide identification.

The NaI detector model was modeled by Geant4. The gamma-ray

spectra of multiple nuclides were simulated. Data augmentation is

achieved by randomizing the gross counts, randomizing the

radionuclide activity ratio, and performing the spectrum shift.

With the data augmentation, a gamma-ray spectral dataset that

can be used for multiple radionuclide identification has been

obtained. During training, a gradually decreasing learning rate

method was used to stabilize the training results and an early

stopping method to prevent overfitting. We strictly define

metrics to calculate accuracy. Only when all the nuclides present

are accurately identified and no redundant nuclides are

misidentified can the neural network be considered to have

successfully completed the identification. The obtained accuracies

on training, validation, and test sets are 97.8%, 97.6%, and 97.1%,

respectively.

To the best of our knowledge, this paper is the first to use the

channel attention module for multiple radionuclide identification. It

is proved that the channel attention weights are able to explain how

the neural network analyses the gamma-ray spectrum. The CNN

extracts the features of the gamma spectrum through convolutional

layers, which contain information such as photoelectric peaks,

Compton edges, and background. The channel attention module

allows the neural network to make full use of the characteristic

information, such as the photoelectric peak and Compton edge of

the spectrum while suppressing the background and noise

interference. This is in line with people’s basic logical knowledge

when identifying nuclides because people mainly rely on the

photoelectric peaks in the spectrum to identify different nuclides.

Furthermore, t-SNE was used to visualize feature extraction. By

visualizing the feature data distribution, one may find that using the

channel attention module is able to enhance the training effect, and

also the process of processing the data inside the neural network is

explainable. These results vividly illustrate the correctness of feature

extraction.

Future work will build a database on measured gamma-ray

spectra, which is a long-term effort. With the development of deep

learning, more and more new neural network models have

appeared. It is interesting work to explore whether new network

models are suitable for nuclide identification. Future work may

include the use of transformer models and reinforcement Learning

represented by Q-learning [28–30] for nuclide identification.
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TABLE 5 Channel attention weights corresponding to different
feature maps.

Feature map number Channel attention weight

Feature map 1 1

Feature map 2 1

Feature map 3 0
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