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Magnification endoscopy with narrow-band imaging (ME-NBI) technology is

widely used in the early diagnosis of precancerous lesions and gastric cancer,

which is critical to reducing the incidence of gastric cancer and improving the

survival rate of gastric cancer patients. The diagnosis based on ME-NBI image is

mostly in manual way in clinics. In order to improve its objectivity and efficiency,

here we proposed a lightweight attention mechanism deep learning model to

automatically classify ME-NBI images for artificial intelligence (AI) diagnosis of early

gastric cancer, low-grade intraepithelial neoplasia, and non-neoplasm. We

collected 4,098 images from 990 patients for model training and validation and

evaluated the performance of our model by comparisons with that of other

models, such as the benchmark model. An additional 587 images from

296 patients were collected as an independent test set to further evaluate our

method’s performance. The validation set showed that the overall accuracy, recall,

precision, F1 score, and the area under the curve of our method were higher than

those of other methods. The independent test set showed that our method

achieved state-of-the-art classification for low-grade intraepithelial neoplasia

(accuracy = 93.9%, sensitivity = 92.6%). Our method displayed the advantages

of lightweight and high effectiveness in classifying effectiveness, which is the

potential for AI diagnosis of early gastric cancer, low-grade intraepithelial

neoplasia, and non-neoplasm.

KEYWORDS

gastric cancer and precancerous lesions, deep learning, magnification endoscopy with
narrow-band imaging, artificial Intelligence, automatic classification

OPEN ACCESS

EDITED BY

Xunbin Wei,
Peking University, China

REVIEWED BY

Jinchao Feng,
Beijing University of Technology, China
Xiaohua Qian,
Shanghai Jiao Tong University, China

*CORRESPONDENCE

Ting Li,
liting@bme.cams.cn
Aiming Yang,
yangaiming@medmail.com.cn

†These authors share first authorship

SPECIALTY SECTION

This article was submitted to Optics and
Photonics,
a section of the journal
Frontiers in Physics

RECEIVED 31 August 2022
ACCEPTED 03 October 2022
PUBLISHED 19 October 2022

CITATION

Wang L, Yang Y, Li J, Tian W, He K, Xu T,
Fang Z, Yang A and Li T (2022),
Automatic classification of gastric
lesions in gastroscopic images using a
lightweight deep learning model with
attention mechanism and cost-
sensitive learning.
Front. Phys. 10:1033422.
doi: 10.3389/fphy.2022.1033422

COPYRIGHT

© 2022 Wang, Yang, Li, Tian, He, Xu,
Fang, Yang and Li. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 19 October 2022
DOI 10.3389/fphy.2022.1033422

https://www.frontiersin.org/articles/10.3389/fphy.2022.1033422/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1033422/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1033422/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1033422/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1033422/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1033422/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.1033422&domain=pdf&date_stamp=2022-10-19
mailto:liting@bme.cams.cn
mailto:yangaiming@medmail.com.cn
https://doi.org/10.3389/fphy.2022.1033422
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.1033422


1 Introduction

Gastric cancer (GC) is the third leading cause of cancer death

worldwide, with one million new cases and 783,000 additional

deaths reported globally in 2021 [1]. GC has a series of evolution

processes, gradually developing from chronic gastritis (CGT),

intestinal metaplasia (IM), and low-grade intraepithelial

neoplasia (LGIN) [2]. With the progression of lesions, the risk

of cancer significantly increases. For example, patients with IM

and LGIN are about 10 and 25 times more likely to develop GC

than ordinary people[2, 3]. The 5-year overall survival rate of

patients with pathological early gastric cancer (EGC) is higher

than 90% [4], while in Asian countries such as South Korea and

Japan, the survival rate for patients with advanced gastric cancer

is less than 20% [5, 6]. Therefore, timely detection and accurate

classification of precancerous lesions and EGC are crucial for

providing proper treatment, reducing the incidence of gastric

cancer, and improving the survival rate of EGC patients.

Endoscopy is the primary tool for examining and diagnosing

various gastric injuries [7]. Standard endoscopes include white-

light imaging (WLI) endoscopy, narrow-band imaging (NBI)

endoscopy, and magnification endoscopy with narrow-band

imaging (ME-NBI). Compared with WLI and NBI, ME-NBI

can observe the morphology of gastric mucosal surface

microstructures and microvessels in detail, which has been

widely used in diagnosing clinical gastric lesions, especially

EGC [8, 9]. However, there are many problems in clinical

gastroscopy. First, the diagnosis of endoscopic images is often

subjective and depends on the professional knowledge and

experience of endoscopists; when endoscopists are

inexperienced, misdiagnosis or missed diagnosis will be caused

[10, 11]. Secondly, endoscopy will produce many images, so the

artificial classification of endoscopic images is a labor-intensive

process; when the number of patients is large, the lack of

endoscopists and fatigue will further aggravate the missed

diagnosis or misdiagnosis of patients[12]. Computer-aided

diagnosis (CAD) provides an objective and automatic

classification method; it can help doctors make more effective

decisions in a shorter diagnosis cycle. Studies have shown that

CAD can improve the efficiency and accuracy of diagnosing

gastrointestinal lesions [13–15].

Early CAD systems were usually based on manual feature

extraction algorithms[16–19]. Kanesaka et al.[14] designed 8

gray level co-occurrence matrix (GLCM) features and

developed a CAD system based on these manual features

and the coefficient of variation of feature vectors for GC

detection. Van D S F et al. [16] developed a CAD system for

early esophageal cancer detection in high-definition endoscopic

images by calculating local color and texture features based on

the original and Gabor-filtered images. However, these methods

rely on human-designed algorithms for feature extraction and

fail to realize automatic identification of gastric lesions.

Moreover, the manual features are insufficient to fit the

diversified features of actual lesions[20] and cannot be

generalized to practical diagnostic applications.

Deep learning (DL) can automatically capture the subtle

features in images and has better accuracy and flexibility than

manual feature extraction methods. It has made significant

progress in the application of computer vision[21–24] and has

been widely used in the field of medical images to solve

automatic classification [25–28], segmentation [29–31],

localization [32–34], and other tasks. Several scholars have

recently demonstrated DL’s applicability in automatic

endoscopic image analysis[35–38]. Horiuchi et al.[39]

proposed a classification method based on GoogleNet, which

could automatically identify EGC and gastritis in ME-NBI

images with an accuracy of 85.3%. Yan T et al. [40]

developed a diagnostic system for IM detection based on the

EfficientNet B4 network, and the accuracy for patients reached

88.8%. In terms of detecting LGIN, Cho et al.[41] developed a

classification system for gastric lesions based on 5017 WLI

images and the DL model, and the accuracy for LGIN was

78.5%, lower than that of endoscopists. Lui et al.[42] developed

a classification system based on 3000 NBI images that could

automatically classify LGIN, high-grade intraepithelial

neoplasia (HGIN), and GC and achieved better classification

performance than primary endoscopists. Liu et al.[43]

automatically classified gastritis, LGIN, and EGC based on

the transfer learning method and ME-NBI images and

achieved an average accuracy of 96%.

However, there are still some problems in the automatic

classification of gastric lesions based on deep learning. First,

existing studies use transfer learning methods, but there is no

study on using an end-to-end training model to classify images in

small sample datasets. The transfer learning method can solve the

problem that training on small sample datasets is challenging to

fit, but this method assumes that the source domain datasets and

the target domain datasets are correlated, which may reduce the

accuracy when the images of the two datasets are quite different

[44]. In addition, the traditional DL model has relatively high

structural complexity and large volume; even when combined

with transfer learning, it still has problems of slow convergence

or overfitting on small sample datasets. Second, no research

group has classified non-neoplasm (gastritis, IM), LGIN, and

EGC based on ME-NBI images and deep learning. Third, the

classification performance of precancerous lesions in existing

studies needs to be improved.

The attention mechanism can improve the classification

performance of deep learning models [45], which has been

confirmed in medical image analysis tasks [46, 47]. Inspired

by F. Wang et al. [48], this study proposed a deep learning model

of attention mechanism. Based on this model, an automatic

classification framework for non-neoplasm, low-grade

intraepithelial neoplasia, and early gastric cancer based on

ME-NBI images was developed. The main contributions of

this paper are as follows:
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1) A deep learning model with the attention mechanism and

cost-sensitive learning was proposed, which can strengthen

the discrimination ability of subtle feature differences of

gastric lesions and solve the problem of class imbalance in

the dataset. This is the first time an attention mechanism

model has been introduced into the endoscopic analysis of

gastric lesions.

2) The lightweight model was implemented, which allows the

model to be trained from scratch on the small sample

gastroscopy dataset and does not require pre-trained

weights, and significantly reduces the training and

deployment time of the model.

3) An automatic classification method was developed based on

the proposed model, and the classification of non-neoplasm

(including gastritis and IM), LGIN, and EGC based on ME-

NBI images were performed for the first time, and state-of-

the-art performances were obtained in the classification of

LGIN. This method can be used as an additional diagnostic

tool in diagnosing gastric lesions under clinical endoscopy.

2 Materials and methods

2.1 Materials

This study was conducted in accordance with the Declaration

of Helsinki and approved by the Institutional Review Board of

Peking Union Medical College Hospital, Beijing, China. This was

a retrospective study, and the data were analyzed anonymously,

so informed consent from patients was not required. Endoscopic

images were captured using the GIF-H260 Z endoscope with an

EVIS LUCERA CV-290 endoscopic video imaging system

(Olympus OpticalCorp, Tokyo, Japan), and saved as graphic

files of type JPEG (Joint Photographic Experts Group) with two

resolutions: 1920 × 1080 pixels and 1440 × 1080 pixels.

All ME-NBI images were collected retrospectively from

patients admitted to the Department of Gastroenterology,

Peking Union Medical College Hospital, from February

2014 to February 2020. Images of poor quality due to under-

inflation, defocus, mucus, blur, and lack of pathological diagnosis

were excluded from the study. Finally, 4098 ME-NBI images

from 990 patients were collected, including 336 EGC images

from 101 patients, 1182 LGIN images from 324 patients, and

2580 non-neoplasm images from 565 patients.

All patients were confirmed by biopsy pathology, with

pathological diagnosis as the gold standard. The final

pathological results were determined by endoscopic

submucosal dissection or surgical resection for suspected

cancerous lesions during endoscopy. Two Peking Union

Medical College Hospital pathologists made the pathological

diagnosis based on tissue sections. Patients with EGC, LGIN,

and non-neoplasm confirmed by histology were eligible for this

study. Three endoscopists from the Department of

Gastroenterology, Peking Union Medical College Hospital,

evaluated and classified the gastroscopic images: first, two

endoscopists (with more than 7 years of gastroscopy

experience) carefully reviewed all ME-NBI images according

to the pathology report, those images that did not match the

anatomical location in the pathology report were discarded, and

the final retained images were captured at almost the exact

location as the biopsy or surgical location where the doctor

suspected the abnormality, and have corresponding tissue

samples; later, according to pathological diagnosis, two

endoscopists divided the remaining images into EGC, LGIN,

and non-neoplasm (including gastritis and IM); when two

endoscopists have different opinions on image classification,

the third endoscopist (with more than 10 years of gastroscopy

experience) will review, verify, and determine the image category.

In this study, a 5-fold cross-validation was performed on the

training set. The training set was divided into five groups using a

patient-based random sampling method. The images of a single

patient with a type of lesion were only assigned to one

group. When a patient had different lesions, the images of

each type of lesion might appear in different groups, and the

number of patients with the same type of lesion in different

groups was the same. Then, five iterations of training and

validation were performed, with one different group for

validation in each iteration and the remaining four groups for

training. The number of images acquired in this study is minor.

In order to improve the robustness of the system, the data

augmentation strategy was implemented for the training

group. We augmented the training group by rotation (±15°),

flip (vertical and horizontal), and other transformations that did

not affect the image features, while the validation group was not

augmented.

Another new dataset was collected and used as the

independent test set. All ME-NBI images with pathologically

confirmed were collected from consecutive patients who

underwent gastroscopy at Peking Union Medical College

Hospital from March 2020 to December 2020. With the same

exclusion criteria as above, a total of 587 ME-NBI images from

296 patients were finally collected. The overall median age of the

test set was 56, with a range of 24–89, and the sex ratio between

males and females was 177/119. Table 1 shows the image

category composition of the datasets used in this study and

the population characteristics of the patients in the test set.

2.2 Methods

2.2.1 Data preprocessing and cost-sensitive
learning

The original gastroscopy image contains a black border and

text information that does not contribute to disease identification

and may contain patient information. Therefore, in the

preprocessing process, the black border of the original image
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is firstly removed by cropping, then the text information is

removed to protect the patient’s privacy. After that, the image

size was uniformly adjusted to 224 × 224 pixels.

There is a severe class imbalance problem in our dataset;

that is, the number of samples in the minority class is

significantly less than that in the majority class, which will

make the model obtain more prior information from the

majority class samples, resulting in the classification results

biased toward the majority class, and thus affecting the

classification accuracy. Cost-sensitive learning uses a unique

penalty term or weight value for each class to characterize the

importance of different classes. Usually, it uses a smaller

weight value for the majority class and a larger weight

value for the minority class to adjust the loss value of each

class to minimize the cost of misclassification and alleviate the

bias of class imbalance. In order to solve the problem of class

imbalance in our dataset, this study introduced cost-sensitive

learning into the model and redesigned the loss function. We

first set each category’s penalty or weight value; the method for

obtaining the weight value is shown in Equation 1:

Wj � Ntotal

C ·Nj
. (1)

In the above equation, j represents the category, Wj

represents the weight value of the category, Ntotal represents

the total number of samples, C represents the number of

categories and Nj represents the number of samples of

category j. Then, we introduced the weight value into the loss

function and got the weighted loss function, as shown in

Equation 2:

Loss � − 1
N

∑
N

i�1
∑
C

j�1
Wj · Yij · log(Pij). (2)

In the above equation, N represents the number of batch

samples,i represents the sample, Yij represents the actual label of

samples, and Pij represents the predicted probability value. In the

calculation process, Yij is presented as one-hot and contains only

0 and one elements. In order to avoid unnecessary calculation,

only Yij with the value of one and the predicted value of the

corresponding position are kept. The modified weighted loss

function is shown in Equation 3:

Loss � − 1
N

∑
N

i�1
∑
C

j�1
Wj · 1[ij′] · log(Pij′). (3)

In Equation 3, j, represents the actual category label of the ith

sample.

2.2.2 Lesion classification framework
The Attention Module [48] adopts the (bottom-up, top-

down) encoding and decoding structure, which can refine the

attention to the image in feedforward learning, highlight the

subtle feature differences between different lesions, enhance

feature selection, and promote gradient update in feedback

learning. The separable convolution layer [49] maps cross-

channel correlation and spatial correlation separately,

improving the model’s performance without increasing the

number of model parameters and computational complexity.

The Inception module [50] can effectively reduce

parameters, extend network depth through factorizing

convolution, and combine multi-layer feature fusion

technology to achieve better performance with lower

computational cost. Dilated convolution [51, 52] expands

the convolution range by inserting spaces between the

elements of the small-size convolution kernel; it can

obtain the same “receptive field” and feature learning

ability as the large-size convolution kernel under the

condition of occupying a few parameters. Inspired by these

techniques, this study designs a new lightweight convolution

neural network model and develops a framework for

automatically classifying EGC, LGIN, and non-neoplasm

gastroscopy images based on this model. The details are as

follows:

Firstly, by referring to the structural characteristics of the

attention module, this study designs two types of attention

modules, the AttenSeparableConv block and the

AttenInception block. The two attention modules have the

same branching structure. AttenSeparableConv block uses

stacked separable convolution layers as convolution units of

TABLE 1 Demographics of the dataset used in this study.

The training set The test set

No. Of
images

No. Of
patients

No. Of
images

No. Of
patients

Median age
(range)

Sex (M/F)

Overall 4,098 990 587 296 59 (24–89) 177/119

EGC 336 101 50 36 68 (36–87) 23/13

LGIN 1,182 324 169 96 57 (32–89) 57/39

non-neoplasm 2,580 565 368 164 52 (24–77) 97/67
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trunk branches, while AttenInception block uses stacked

Inception units as convolution units of trunk branches.

Secondly, the unit composed of two separable convolution

layers and the Maxpooling layer is used as the dimension

reduction unit to reduce the dimension of the feature map, and

the trade-off between the bottleneck of the feature map and

pooling can be effectively balanced. In order to reduce the

number of model parameters and computational complexity,

we replace the convolution kernels of all separable convolution

layers in the model with the dilated convolution kernels of size

2 × 2 and dilated rate 2 and name the new convolution layer as

Dilated SeparableConv layer. The final model structure is

shown in Figure 1. The model contains four dimension

reduction units, two AttenSeparableConv blocks, and three

AttenInception blocks. The dimension reduction units are

located at the starting position and the low, middle, and

high-level feature extraction positions to reduce the

dimension of the feature map timely. Affected by structural

differences, at the same position of the model, the number of

parameters occupied by the separable convolution layer far

exceeds that occupied by the factorization convolutional layer.

For example, the number of parameters occupied by

AttenInception block 1 is 1.28 million. If an

AttenSeparableConv block 3, in which the structure is the

same as AttenSeparableConv block1-2, is set at this location,

the number of parameters occupied by this block is

2.38 million. And the parameters difference between the

two blocks increases with the depth of the position.

Therefore, we only use AttenSeparableConv blocks in the

shallow layer of the model and use AttenInception blocks

in the deeper layer of the model to extend the network depth,

to effectively balance the number of parameters and

performance. We set the AttenSeparableConv block after

the first and second dimension reduction units for low-level

feature extraction. The AttenInception block is set after the

third and fourth dimension reduction units for middle and

high-level feature extraction. Another three separate Dilated

SeparableConv layers are used for head and tail feature

learning, respectively. The above components make up the

feature extractor. The global average pooling layer, the fully

connected layer, and the softmax loss function compose the

classifier. After the ME-NBI image is input to the network, the

feature extractor identifies the feature, and the classifier

outputs the probabilities that the image belongs to three

gastric lesions.

The schematic diagrams of the AttenSeparableConv block

and AttenInception block are shown in Figure 2. The trunk of the

AttenSeparableConv block is composed of two stacked

Unit1 units, each of which contains three Dilated

SeparableConv layers. We added a RELU activation function

and a batch normalization layer before and after each Dilated

SeparableConv layer. Relevant studies have shown that a short-

time connection can improve the classification performance of

attention-oriented structures [48], so we added a short-time

connection to Unit1 to improve the classification performance

of AttenSeparableConv blocks. The trunk of the AttenInception

block is composed of stacked Unit2 units, and different

AttenInception blocks contain different amounts of

Unit2 units in the trunk. The trunk of AttenInception block1-

2 at the middle-level feature extraction position contains three

Unit2 units, and the trunk of AttenInception block3 at the high-

level feature extraction position contains two Unit2 units.

Unit2 adopts the Inception block. In the original literature,

the Inception block has convolution kernels of various sizes

(1×n, n×1, n = 3,5,7) [50]. In this study, a relatively large

convolution kernel (n = 5 or 7) is used in the Unit2 of

FIGURE 1
The framework of the classification method of gastric lesions.
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AttenInception block1-2, while a small convolution kernel (n =

3) is used in the Unit2 of AttenInception block3. The attention

branches of the two types of attention modules both use the

Maxpooling layer as the bottom-up structure and the linear

interpolation layer as the top-down structure to retain the

characteristics of the original attention branch structure, and

the Sigmoid function is retained for the mixed attention

constraint. Unlike the original attention branch structure, this

study only retained one convolution layer and added the RELU

function to this convolution layer to enhance the

learnable feature change space. The weight of the trunk

feature map is realized by multiplying and then adding the

output of the attention branch and the output of the trunk

feature map.

2.2.3 Training details
Adam was used as the network optimizer for all CNN

models with a learning rate of 0.0001, training epochs of 150,

and a batch size of 8. All experiments were performed on an

AMD Ryzen 7-1700X eight-core processor

CPU and a GeForce GTX 1080 Ti GPU(graphics processing

units).

2.2.4 Evaluation metrics
Accuracy (ACC), recall (RE), precision (PRE), F1 score (F1),

and the area under the curve (AUC) were used to evaluate the

classification performance of the model, and each metric was

calculated for an independent category. ACC and F1 evaluation

comprehensive classification ability, RE represents the

susceptibility to disease, PRE representative disease

recognition accuracy, and receiver operating characteristic

(ROC) curve can measure classifier robustness. The AUC

value is automatically calculated according to the ROC curve,

which can intuitively reflect the comprehensive classification

ability of the model, and its range is between 0 and 1. The

larger the value, the better the performance of the classification

model. The calculation of each metric is shown in

equations (4)–(7):

ACC � TP + TN

TP + TN + FP + FN
, (4)

RE � TP

TP + FN
, (5)

PRE � TP

TP + FP
, (6)

F1 � 2 ×
PRE × RE

PRE + RE
. (7)

TP, TN, FP, and FN stand for True Positive, True Negative,

False Positive, and False Negative, respectively. To evaluate the

overall performance of the model, the overall accuracy (OA),

recall (OR), precision (OP), F1 Score (OF1), and AUC (O-AUC)

were obtained by adding and calculating the average metric of

each category. For the 5-fold cross-validation experiments, the

average results of multiple cross-validation experiments were

evaluated using the evaluation metrics with 95% confidence

intervals (CI).

3 Results
We first evaluated the model’s performance on the validation

set. In order to demonstrate the effectiveness of the proposed

method for three types of gastric lesions classification, we

performed ablation studies, cost-sensitive learning tests, and

comparison tests with other advanced methods on the

validation set. We used the 5-fold cross-validation method;

the whole training set was divided into five groups and

performed five experiments. In each experiment, a different

group was used as the validation set, and the remaining four

groups were used for training. We evaluated the model

performance on the validation set. The final result was the

average of five experiments. OA, OR, OP, OF1, and O-AUC

were used as evaluation metrics to evaluate the classification

FIGURE 2
The proposed AttenSeparableConv Block and AttenInception Block.
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performance. The number of parameters of each model was

counted to indicate the computational complexity of different

models. In addition, the classification performance of the

proposed method was further evaluated on an independent

test set.

3.1 Ablation studies

We first performed ablation studies to demonstrate the

proposed attention mechanism model’s effectiveness. Xception

[49]and Inception-ResNetV2 [50] with ImageNet pre-trained

weights were used as benchmark models and compared with

our three models: Our model 1 and Our model 2, which were

obtained by removing the attention branch, and MainNet (the

model in Figure 1), which was obtained by adding attention

branch based on Our model 2. The difference between Our

model 1 and Our model 2 is the factorization convolution kernel

in Unit2 of AttenInception block1 to 2 (Figure 1). In Our model

1, the convolution kernel size was 1 × 5,5 × 1, while in Our model

2, the convolution kernel size was 1 × 7,7 × 1. The classification

performance of our three models (Our model 1, Our model 2,

and MainNet) was compared with that of the benchmark model

to prove the performance of the designed models, and the

proposed models can be compared with each other to show

the role of attention mechanism further. In order to ensure the

fairness of the comparison, the training conditions of all models

were the same (learning rate = 1E-4, batch size = 8, epochs = 150),

and the input image size was consistent with the original

network, that was, the input image size of Inception-

ResNetV2 and Xception model was 299 × 299, while the

input image size of our three models was 224 × 224.

Table 2 summarizes the overall classification performance

of five methods for three kinds of gastric lesions. The values in

bold in the Table 2 represent the optimal values. Compared

with other methods, MainNet obtained the highest OA, OR,

OP, OF1, and O-AUC, which were 93.7%, 84.9%, 88.7%,

85.4%, and 97.5%, respectively. MainNet had 11.4M

parameters, nearly half the number of parameters for the

Xception and less than one-fifth of the number for

Inception-ResNetV2. These results showed that our

attention mechanism model achieves lightweight while

maintaining high classification performance. In addition,

Our model 1 and Our mode 2 achieved comparable

classification performance with Inception-ResNetV2,

proving the superiority of our backbone model. In terms of

speed, the prediction time of our three models was 0.54 ms for

each image, which was less than the prediction time of

the benchmark model, which verified that the model

trained from scratch proposed in this study was more

conducive to the classification of endoscopic images of

gastric lesions than the transfer learning model pre-trained

on the natural image dataset. In addition, the

overall classification performance of MainNet was

better than that of Our model 1 and Our model 2;

Our model 2’s classification performance was better than that of

Our model 1. These comparison results showed that using the

attention mechanism can effectively improve the model’s

classification performance, and using a large convolution kernel

in the middle-level feature extractor helps improve the model’s

classification accuracy.

3.2 Cost-sensitive learning test

In order to prove the effectiveness of cost-sensitive

learning in solving the problem of class imbalance in

dataset, the performance of MainNet with and without

cost-sensitive learning is compared. The results are shown

in Table 3. As can be seen from Table 3, the classification

performance of MainNet with cost-sensitive learning was

significantly better than that of MainNet without cost-

sensitive learning, and the difference in OR was particularly

prominent, reaching 3.3%. This indicated that combining

cost-sensitive learning with our attention mechanism model

can effectively improve the model’s sensitivity to minority

samples in the imbalanced dataset and the overall

classification performance.

TABLE 2 Statistical comparison of ablation studies.

Methods OA,%
(95% CI)

OR,%
(95% CI)

OP,%
(95% CI)

OF1,%
(95% CI)

O-AUC,%
(95% CI)

P (M) Time (ms)

Inception-
ResNetV2 [50]

91.6 (88.4–94.8) 78.5 (69.9–87.1) 87.6 (82.0–93.2) 81.2 (72.8–89.6) 96.0 (94.0–98.0) 55.9 0.96

Xception [49] 92.9 (90.0–95.8) 82.2 (72.9–91.5) 88.2 (83.8–92.6) 84.4 (77.0–91.8) 97.4 (96.1–98.7) 22 0.60

Our model 1 (N1, N2) 90.8 (85.5–96.1) 81.9 (72.7–91.1) 86.7 (78.6–94.8) 82.6 (71.7–93.5) 96.1 (93.0–99.2) 10.4 0.54

Our model 2 (N1, Y2) 92.5 (88.8–96.2) 83.5 (82.5–84.5) 87.3 (80.2–94.4) 84.6 (76.5–92.7) 96.5 (93.8–99.2) 10.8 0.54

MainNet (Y1, Y2) 93.7 (90.4–97.0) 84.9 (74.8–95.0) 88.7 (82.2–95.2) 85.4 (82.1–88.7) 97.5 (95.6–99.4) 11.4 0.54

N1, no use of attention branch in all blocks of the model; N2, The small size factorization convolution kernel of 1* 5,5 *1 was used in Unit2 of AttenInception Block1 to three; Y1, attention

branch was used in all blocks of the model; Y2, a large size factorization convolution kernel of 1* 7,7 *1 was used in Unit2 of AttenInception Block1 to three; P, parameters; M, million.
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3.3 Comparison with other advanced
methods

To further verify the proposed method’s effectiveness, we

compared our method’s classification performance with other

advanced methods on our dataset. We selected some

characteristic classification methods for gastric lesions, which

either have lighter models[53] or better classification

performance [40, 54]. These advanced methods include: the

classification method of intestinal metaplasia proposed by Yan

et al. [40], the classification method of chronic atrophic gastritis

proposed by Zhang et al. [53], and the classification method of

atrophic gastritis and intestinal metaplasia proposed by Zheng

et al.[54]. The models in these advanced methods are pre-trained

in ImageNet. While for our model, we trained it from scratch on

the gastric lesion dataset. Other training conditions of all

methods are the same to ensure the fairness of comparison.

The statistical results of the evaluation metrics are shown in

Table 4. As can be seen from Table 4, the OA, OR, OP, OF1, and

O-AUC obtained based on MainNet are significantly higher than

those obtained by other methods. In terms of the number of

parameters, our model’s parameters are higher than that of

Zhang et al.’s method (11.4M vs 8.1M), which is much lower

than that of Yan T et al.’s 19.5M and Zheng et al.’s 25.6M. In

terms of computational efficiency, the average test time of our

method is 0.54 ms per image, while the average test time of Zhang

et al., Yan T et al., and Zheng et al. are 0.45 ms, 0.60 ms, and

0.79 ms per image, respectively. Zhang et al.’s method show lower

parameters and higher computational efficiency. However,

compared with their method, the proposed method achieves

3.1%, 7.2%, and 5.5% performance increments in OA, OR, and

OP, respectively. The results show that compared with other

advanced methods, our method can achieve a better balance

among classification performance, number of parameters and

computational efficiency.

Supplementary Table S1 summarizes the performance of

several methods in per-category classification. It can be seen

that in the identification of EGC, the ACC, RE, F1, and AUC

obtained based on MainNet were higher than those obtained by

other advanced methods, and only the PRE was lower than that

obtained by Zheng et al. [54]. In identifying LGIN, our method

obtained the highest ACC, PRE, F1, and AUC, and only the RE

was lower than that of Zheng et al. [54]. In identifying non-

neoplasm, the proposed method performed better than all other

methods and achieved the highest values of ACC, RE, PRE, F1,

and AUC.

3.4 Model evaluation on the independent
test set

We further evaluated MainNet’s classification performance

on the independent test set. A total of 587 ME-NBI images from

296 patients were included in the test set, including 50 EGC

images from 36 patients, 169 LGIN images from 96 patients, and

368 non-neoplasm images from 164 patients. The classification

performance of the MainNet on the test set was compared with

the results of other studies, and our best-performing model was

compared with human experts.

3.4.1 Comparison with other research results
First, MainNet was trained on the training set using the 5-fold

cross-validation method, and then the average results on the

independent test set were counted and compared with the

TABLE 3 Statistical comparison of MainNet with different class imbalance processing methods.

Methods OA,%
(95%CI)

OR,%
(95%CI)

OP,%
(95%CI)

OF1,%
(95%CI)

O-AUC,%
(95%CI)

MainNet (without CSL) 92.5 (89.1–95.9) 81.6 (73.2–90.0) 86.8 (80.7–92.9) 83.5 (75.7–91.3) 96.2 (92.7–99.7)

MainNet (with CSL) 93.7 (90.4–97.0) 84.9 (74.8–95.0) 88.7 (82.2–95.2) 85.4 (82.1–88.7) 97.5 (95.6–99.4)

CSL, cost-sensitive learning.

TABLE 4 Statistical comparison with other related advanced methods.

Methods OA,% (95% CI) OR,% (95% CI) OP,% (95% CI) OF1,% (95% CI) O-AUC,% (95% CI) P (M) Time (ms)

[53] 90.6 (88.4–92.8) 77.7 (71.5–83.9) 83.2 (77.8–88.6) 79.4 (75.1–83.7) 95.4 (93.9–96.9) 8.1 0.45

[40] 91.7 (89.6–93.8) 78.5 (70.4–86.6) 83.8 (78.8–88.8) 80.1 (74.5–85.7) 96.1 (94.4–97.8) 19.5 0.60

[54] 91.4 (88.4–94.4) 79.1 (71.2–87.0) 87.3 (83.1–91.5) 81.8 (74.7–88.9) 96.2 (94.4–98.0) 25.6 0.79

MainNet 93.7 (90.4–97.0) 84.9 (74.8–95.0) 88.7 (82.2–95.2) 85.4 (82.1–88.7) 97.5 (95.6–99.4) 11.4 0.54

P, parameters; M, million.
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average results of Cho et al. [41] which was obtained in their

independent test based on 5-fold cross-validation. We adopted

the same evaluation metric as the literature[41]. The results are

shown in Table 5. It can be observed that the accuracy (ACC),

sensitivity (SE), specificity (SP) and AUC of the proposed method

for each category were higher than those of Cho, et al., and only the

SP of LGIN (95.4% vs. 96.1%) and SE of non-neoplasm (82.9% vs.

92.2) were lower than those of Cho, et al. The comparison results

showed that the proposed method improved classification

performance in classifying EGC, LGIN, and non-neoplasm

gastric lesions images. Based on deep learning, Liu et al.[43]

divided gastric ME-NBI images into EGC, LGIN, and chronic

gastritis (CGT). Their recall (which means the same as our SE)

for EGC and LGINwere 99% and 92%, respectively. Compared with

the SE of our method for EGC and LGIN(93.2%, 92.6%,

respectively), it can be seen that the classification performance of

ourmethod for LGINwas better than that of Liu et al., but the SE for

EGC was lower than that of Liu et al.

3.4.2 Comparison with endoscopists
Our best model’s classification results were further compared

with those of two endoscopists with more than 8 years of

endoscopy experience on the independent test set. The best

model refers to a MainNet model that achieves the best

classification performance on the test set by 5-fold cross-

validation. Two endoscopists classified the images without

knowing the image category labels. Overall accuracy (OA),

sensitivity (OS), specificity (O-SP), and Kappa is used to

measure the agreement among raters, which can quantify the

degree of agreement between the classifier and the gold standard.

Table 6 summarizes the overall classification performance of

our best model and two endoscopists on EGC, LGIN, and non-

neoplasm. It can be seen that the Kappa, OA, OS, and O-SP of the

best model were 0.859, 95.0%, 93.2%, and 96.1%, respectively, which

were higher than those of Endoscopist 1 and Endoscopist 2 (the

optimal values were bolded). Figure 3 compares accuracy, sensitivity,

and specificity for each category between our bestmodel and the two

endoscopists. It can be seen that the best model’s accuracy for EGC

and LGIN was better than that of the two endoscopists, while the

accuracy for non-neoplasm was slightly lower than that of

Endoscopist 1 and the same as that of Endoscopist 2. Besides,

our best model showed higher sensitivity to EGC and LGIN, but

slightly lower sensitivity to non-neoplasm.

We calculated the correlation between the predicted and

actual labels for each image by the best model and the two

endoscopists and reflected the results in the confusion matrix

shown in Figure 4. As can be seen from Figure 4, in the

identification of EGC images, the best model had the lowest

number of misclassified images; two out of 50 images were

misclassified as non-neoplasm, while there were four

misclassified images for Endoscopist 1 and Endoscopist 2. In

the identification of LGIN, the number of misclassified images of

the best model was 16, much lower than the 38 images of

Endoscopist 1 and 27 images of Endoscopist 2. In identifying

non-neoplasm, the number of images correctly identified by the

best model was 342, which was lower than that of Endoscopist 1

and Endoscopist 2 (363 and 348, respectively).

3.4.3 Model binary classification
To further evaluate the binary classification performance of

MainNet on gastric lesions, three groups of tests were performed,

including classification tests for cancer or non-cancer (EGC vs Others),

LGIN or non-LGIN(LGIN vs Others), non-neoplasm or neoplasm

(non-neoplasmvsOthers).Weplotted theROCcurve of the best binary

classification model in each group of tests and obtained the AUC, as

shown in Figure 5. In the discrimination of cancer or non-cancer, the

AUC reached 0.981; In the discrimination of LGIN or non-LGIN, the

AUC reached 0.984; In the discrimination of non-neoplasm or

neoplasm, the AUC reached 0.988. The binary classification results

show that the performance of MainNet was well decomposed.

TABLE 5 Per-category average classification performance according to the 5-fold cross-validation.

Methods Classes ACC,%
(95%CI)

SE,%
(95%CI)

SP,%
(95%CI)

AUC,%
(95%CI)

[41] EGC 80.8 (77.9–83.4) 52.4 (45.0–59.8) 89.2 (86.5–91.5) 70.8 (67.5–73.9)

LGIN 87.1 (84.6–89.3) 22.2 (14.5–31.7) 96.1 (94.4–97.4) 59.1 (55.7–62.6)

non-neoplasm 83.1 (80.4–85.6) 92.2 (89.0–94.8) 75.8 (71.6–79.7) 84.0 (81.3–86.5)

MainNet EGC 96.8 (95.1–98.5) 93.2 (89.9–96.5) 97.1 (95.0–99.2) 98.8 (98.0–99.6)

LGIN 93.9 (93.4–94.4) 92.6 (88.4–96.8) 95.4 (91.5–99.3) 97.6 (97.1–98.1)

non-neoplasm 92.9 (91.7–94.1) 82.9 (74.2–91.6) 97.3 (95.5–99.1) 98.5 (98.4–98.6)

TABLE 6 Statistical comparison of two endoscopists and the best
model’s performance in three-category classification.

Methods OA (%) OS (%) O-SP (%) Kappa

Endoscopist 1 94.7 89.4 94.5 0.842

Endoscopist 2 94.2 90.2 95.2 0.834

The best model 95.0 93.2 96.1 0.859
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4 Discussion and conclusion

Although ME-NBI can provide imaging of gastric mucosal

surface microstructure and microvascular morphology and is

widely used in clinical diagnosis of early gastric cancer and

precancerous lesions, qualitative assessment of ME-NBI

images requires much training, and even experienced

endoscopists may misdiagnose or miss a diagnosis. In

addition, in the case of limited medical resources, it is

unrealistic to manually examine a large number of ME-NBI

images, which may cause missed diagnosis or misdiagnosis.

Therefore, it is significant to realize the accurate and

FIGURE 3
Bar charts compare the per-category accuracy, sensitivity, and specificity between two endoscopists and the best model.

FIGURE 4
Three confusion matrixes for two endoscopists and the best model’s predictions, respectively.

FIGURE 5
ROC curve for the three best binary classification models. ROC, receiver operating characteristic; AUC, area under the curve; EGC, early gastric
cancer; LGIN, low-grade intraepithelial neoplasia.
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automatic diagnosis of gastric lesions in clinical practice. In this

study, we developed an automated diagnosis system based on a

deep learning model with the attention mechanism, which could

automatically classify ME-NBI images in a small sample dataset

into EGC, LGIN, and non-neoplasm. The classification

performance of the proposed method is verified on the

validation set and independent test set, respectively.

In this paper, we first conduct ablation studies on the

validation set to verify the role of the attention module. The

attention module in MainNet adopted the structure of the

attention branch combined with the trunk. The encoding and

decoding structure of the attention branch can refine the

attention to the image and use the branch’s output to weight

the trunk’s output to enhance feature selection. Then the

attention module was embedded into the model in a stacked

manner to refine attention to subtle lesion features. We used

efficient convolution layers such as the separable and

factorization convolutional layers as the basis and introduced

a dilated convolution kernel to reduce the parameters further. By

adopting this attention-guided feature learning mode, combined

with the parameter reduction strategy, MainNet achieves better

classification performance than the backbone and the benchmark

models when the parameters are only 11.4M. Our proposed three

models are relatively lightweight (10.4M, 10.8M, and 11.4M

parameters, respectively) but achieve similar or even better

classification performance than Inception-ResNetV2. This

phenomenon is related to model complexity. Inception-

ResNetV2 demonstrates excellent classification performance

on large natural image datasets by increasing network

complexity and parameters; however, in practical applications,

these heavyweight characteristics limit the implementation of

Inception-ResNetV2 on small sample datasets (such as most

medical image datasets). On the contrary, Our models are

relatively simple and effectively balance computational

complexity and task requirements, ultimately achieving

classification performance comparable to Inception-ResNetV2.

Our dataset has a severe class imbalance problem, and the

deep learning model will tend to over-classify the majority

category in the imbalanced dataset. When the appropriate

solution is not taken, the accuracy of the majority category

may be high, while the overall accuracy is low. As seen in

Table 3, the classification performance of MainNet using cost-

sensitive learning was higher than that of MainNet without cost-

sensitive learning. This indicates that the introduction of cost-

sensitive learning can effectively solve the problem of class

imbalance in data sets and improve the classification accuracy

of gastric lesions.

In the comparison experiment with other advanced methods,

the overall classification performance of the MainNet was better

than other methods, OA was improved by at least 2.0%, OR was

improved by at least 5.8%, and most of the evaluation metrics of

per-category classification were also significantly improved. It is

worth noting that MainNet outperforms other advanced

methods even without using cost-sensitive learning. This

indicates that the proposed method could effectively improve

the classification performance. It is especially noted that for these

advanced methods, we adopted the same training mode as in the

original literature; we fine-tuned these pre-trained models on the

gastric lesion dataset. While for our model, we trained it from

scratch on the gastric lesion dataset. Experimental results show

that our end-to-end training model outperforms these pre-

trained models on the gastric lesions dataset.

The classification performance of MainNet on an

independent test set was further compared with the results of

related studies. As seen in Table 5, compared with Cho et al. [41],

our method’s ACC for EGC, LGIN, and non-neoplasm increased

by 16.8%, 6.8%, and 9.8%, respectively. We believe that the

model’s superiority and the practical solution to the class

imbalance problem are one of the reasons that make our ACC

better than those of Cho et al. Still, the most important reason is

the difference in image modality. ME-NBI images were used in

this study, while Cho et al. conducted their analysis based onWLI

images. However, gastric lesions usually show changes in

mucosal surface microstructure. It is difficult for conventional

WLI to capture subtle disease features, especially for LGIN. Liu

et al. [43] performed EGC, LGIN, and chronic gastritis (CGT)

classification based on deep learning and ME-NBI images. Liu

et al. obtained 92% and 99% sensitivity for LGIN and EGC,

respectively, while the sensitivity of our method for LGIN and

EGC was 92.6% and 93.2%, respectively. In general, the

sensitivity of our method for LGIN exceeds that of Liu et al.

and achieves state-of-the-art classification performance.

However, the sensitivity of our method to EGC is lower than

that of Liu et al., which may be related to the small sample size of

EGC in our dataset. In this study, there are only 369 EGC images

in the training set and 50 EGC images in the test set. In such

conditions, the feature variation space that the model in training

can learn is limited, and the generalization effect and accuracy of

the test set are affected. This problem can be solved by including

more EGC samples.

Besides, the classification performance of the best model was

compared with that of human experts in the independent test set.

The results in Table 6 showed that the overall classification

performance of the proposed method was better than that of

the two endoscopists. In addition, it can be observed from

Figure 3 that the diagnostic accuracy of EGC, non-neoplasm,

and LGIN decreased successively in both the proposed method

and the two endoscopists. For endoscopists, EGC is a severe

gastric disease with significant imaging features associated with

significant mortality, so they will emphasize identifying such

lesions. For our method, although the number of EGC samples in

our dataset is small, the attention mechanism model can

strengthen the learning of subtle feature differences, and cost-

sensitive learning can solve the classification bias that tends to the

majority classes. Those make our method achieve better

classification performance than endoscopists. On the contrary,
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LGIN is a lesion characterized by cellular atypia of mucosal

structure, different degrees of atypia and different feature

patterns also make it difficult to identify accurately, so the

accuracy of LGIN by both us and endoscopists is relatively

low. However, benefiting from the attention-guided feature

learning model, the accuracy of our method for LGIN exceeds

that of endoscopists.

Although our method performs better than other methods in

gastric ME-NBI image lesion classification, this study still has

some limitations. First of all, the data of this study were collected

in the same hospital, and the endoscopic equipment in different

centers and the characteristics of different populations may have

an impact on the method’s performance; in the subsequent study,

we will collect endoscopic images from different centers and

analyze them. Secondly, there are few EGC and non-neoplasm

samples in the dataset of this study, which may affect the

accuracy; more samples will be included in subsequent studies

to improve the system’s accuracy further. In addition, we only

analyzed gastric lesions in this study; after more cases were

included, esophagitis and early esophageal cancer will be

included in the system to increase the clinical application

value of the system. Besides, grading the severity of the

lesions is crucial to the prognosis and formulation of

treatment plans; so far, only the classification of lesions has

been completed in this study, and the severity of lesions will be

further graded in subsequent studies. Finally, the proposed

method is a supervised learning method, which still requires

doctors to carry out a large amount of data annotation work in

the early stage, causing a specific workload for doctors; in

subsequent studies, methods based on self-supervised deep

learning models can be used to solve this problem.

In this study, we designed an attention-guided deep learning

model and introduced cost-sensitive learning into the model.

Based on this model, we developed an automatic classification

method for gastric lesions, which achieved good diagnostic

performance on a limited number of ME-NBI images and

outperformed other advanced methods. In addition, we

achieved the most advanced classification performance for

LGIN and non-neoplasm. Through an in-depth literature

review, we found that this was the first time to automatically

classify non-neoplasm, LGIN, and EGC based on the deep

learning model and gastric ME-NBI images. And the first

time to introduce the attention mechanism model into the

automatic classification of gastric lesions. The number of

parameters in our model was only 11.4 million, which allowed

the model to be trained end-to-end on small sample medical

datasets and can shorten the prediction time per image. The

prediction time of each image of our method was only 0.54 ms,

whichmet the demand for real-time diagnosis. In conclusion, our

approach can provide objective and accurate guidance

information for endoscopists in real time and has an excellent

clinical application prospect.
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