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This study collects data on electric vehicle (EV) charging piles for various provinces in China
and analyzes the development of the network of EV chargers from the perspective of a
complex network. Features of the distribution of EV charging piles for the period from May
2016 to April 2019 and the spatio-temporal variations across provinces are thus analyzed.
The study then transforms time-series data of the EV charging piles into a complex network
by applying a visibility graph, uses several clustering methods to categorize different
provinces, and predicts the future development of the network of EV charging piles in
China. Additionally, the distribution of EV charging piles across time is analyzed for a
combination of national policies and new-energy vehicles. The results of the study will
guide provincial governments in creating policies that develop relevant industries
progressively and promote the sustainable development of EVs and green-energy
industry.
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INTRODUCTION

Electronic vehicles (EVs) are universally recognized as a practical solution to the problems of
reducing carbon emissions and improving air quality in the global sector of transportation [1]. Many
powerful economies are shifting their vehicle preference to electronic vehicles for eco-friendly
purposes, and the development of the supporting infrastructure of EVs is rapidly progressing.
However, short traveling distances and limited battery volumes due to current technical barriers are
holding back the expansion of EVs, and the construction of EV chargers is thus considered the most
effective way of promoting the adoption of EVs [2]. In recent years, European countries, along with
the United States, have expanded their distributions of EVs and EV charging piles [3], as shown in
Figure 1. From the viewpoint of the owners of EVs, the locations of EV charging piles are critical for
the convenience of recharging EV batteries. Home chargers have the lowest cost, while public
charging piles are becoming a necessary option for off-home charging [4]. Furthermore, public
charging piles are mostly high power and provide faster charging in urban areas, which is more
suitable for high-power charger installation than homes [5].

While wealthy countries are developing their EV infrastructure, China, a country with a large
population andmassive land area, is also creating a nationwide distribution of EVs. The charging pile
industry is in full development with the expansion of the investment blueprint of new infrastructure
in China. As new-energy vehicles are being promoted in China, the construction of charging piles, as
important infrastructure, has gradually attracted attention. The central government, provinces, and
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cities have successively introduced preferential policies and
measures that promote the development of the charging pile
industry, and the construction of charging piles in China has
undergone explosive growth, from 33,000 piles in 2014 to 777,000
piles in 2018, which is growth of more than 200% in 4 years.
Statistics show that the 2017 new-energy vehicle ownership,
public charging pile number, car pile ratio compared with
before 2012 decreased, but the rate of construction of charging
piles is not keeping up with the manufacture of new-energy
vehicles. China has built 55.7% of the world’s new-energy
charging piles, but the shortage of public charging resources
and user complaints about charging problems continues.
Additionally, there are many other problems; e.g., the layout
of the charging pile is unreasonable, there is an imbalance
between supply and demand, and the time required for
investment to turn into profit is uncertain.

This paper gives a new perspective of complex network to
study the growing distribution of EVs and charging piles in
China. This study investigates the historical development of
China’s new-energy vehicles and charging piles from May
2016 to April 2019 and how local policies have affected the
distribution of EVs in China. The data are analyzed by adopting
time series visualization, complex networks, and several
clustering methods. Combined with the model results, policies
and characteristics of provinces, it is believed that the results of
this study will provide a reference for the rapid development of
charging piles in China.

The remainder of the paper is organized as follows. Literature
Review reviews previous research on new-energy vehicles and
piles. Data and Model presents the models and methods used in
the paper, including the methodology and data collection. Results
and Discussion presents the estimation results and analysis.
Results and Discussion presents empirical research and
analyzes features and reasons that lead to these results.
Conclusion presents what we do in this study, our findings
and expectations.

LITERATURE REVIEW

Environmental problems have become a major concern in recent years.
Many papers have suggested that the cause of environmental problems,
such as environmental deterioration and frequent haze, lies in automobile
exhaust emissions,whichhas encouraged thedevelopmentofnew-energy
vehicles and their related industries [6,7,8]. The traditional-automobile
industry is driven by oil and consumes many precious resources.
Therefore, the promulgation of appropriate policies that promote the
innovative development of the new-energy vehicle industry will greatly
help solve environmental problems.

However, there are many problems to be solved in developing
new-energy vehicles. One problem is the development of new-energy
charging technology while another is the gulf between the rate of
manufacture of new-energy vehicles and the rate of construction of
new-energy vehicle charging piles, which continues to grow.

Scholars have found that the construction of charging pile facilities
plays a positive role in the development of new-energy vehicles. Policies
supporting EV construction cultivate the EV market, with technical
advances and subsidies in China promoting future progress of the EV
industry [9]. [10] found that improving the supporting infrastructure
has a more obvious effect on the market promotion of new-energy
vehicles than factors of technological progress [11]. showed that the
construction of charging pile infrastructure provides a stronger
incentive to the new-energy vehicle market than government
subsidies for vehicle companies. Improvements to charging piles
and the supporting facilities of charging stations can affect the
customer’s intention to purchase new-energy vehicles [12–16].

There is a lack of relevant empirical studies in the literature,
withmost studies considering simulated scenarios. The situation in the
simulated scenario tends to be more or less different from the actual
situation. Additionally, most studies have focused on different factors
and perspectives of the planning layout of the site selection, operation
mode, and system improvements of charging piles whereas there have
been few tracing studies on actual construction or studies providing a
macroscale or comparative perspective.

FIGURE 1 | Numbers of EV chargers in Europe and the United States (unit: thousands).
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This paper adopts real-world data to conduct a visual network
analysis of the overall development of new-energy vehicles and
charging piles based on the Chinese background of the
development of new-energy vehicle charging piles. In addition,
considering the formulation of new-energy vehicles and charging
pile development policies by province, complex network
clustering analysis is conducted on data of the development of
public charging piles in 31 provinces and cities in China. And
Figure 3 shows the process of construction of the time-series
network and extraction of features.

DATA AND MODEL

Data
Data are collected from the National Bureau of Statistics of China and
the China Electric Vehicle Charging Infrastructure Promotion
Alliance1. Eliminating the missing data and outliers, this study

FIGURE 2 | Trends of the numbers of new-energy vehicles, all charging piles, and public charging piles.

FIGURE 3 | Construction of the time-series network and extraction of features.

1All data of EVs in China were collected from online sources from website of
EVCIPA (http://www.evcipa.org.cn/)
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analyzes the data of new-energy vehicles and charging piles in China
for the period from May 2016 to April 2019.

Time series statistics of EVs in China are processed and
generated in MATLAB algorithms, and Gephi has been
applied to output the visibility graph and relevant coefficients.

Figure 2 shows obvious good trends of the manufacture of
new-energy vehicles and charging piles on the whole. However,
the difference in scale of the left and right vertical axes directly
reflects the mismatch of the manufacture of charging piles and
new-energy vehicles in China. The statistical results for all
charging piles and public charging piles in China are similar,
and different from those for new-energy vehicles.

The new monthly increase in the number of charging piles of
new-energy vehicles had small peaks in September 2016,
December 2018, February 2018, January 2019, and March
2019. Table 1 shows that important relevant policies were
launched before and after some of these peaks.

China’s ratio of new-energy vehicles to charging piles still does
not meet the requirements of the development guide. Accelerating
the planning and implementation of the reasonable construction of
charging piles is the cornerstone of further development.

Table 2 displays the statistical results of EVs, all charging piles,
and public charging piles in China during 2016–2019.

Principles of Time-Series Visualization
A time series is a series of data points indexed by the observation
time. Common tasks of time-series data mining are dimension
reduction, similarity measurement, classification, cluster analysis,

pattern discovery, and visualization. Different time-series analysis
methods, such as chaos analysis, fractal analysis, recursion graph,
complexity measurement, multi-scale entropy, and time-
frequency representation, have been developed. In the past
decade, scholars have increasingly adopted complex networks
to analyze dynamic systems based on time series, such as
investigating USA’s electricity market, stock prices and even
global efforts against terrorism [17-19].

The VGmethod adopted in this paper is based on the complex
network model proposed by [20]. Time series can be divided into
univariate time series (UTSs) and multivariate time series (MTSs)
according to the number of variables. Traditional methods such
as K-Shape and K-MS can be used for the rapid and accurate
clustering and classification of UTS data sets but they are
unsuitable for MTS data mining [21]. Used different
frequencies as multiple variables to construct complex
networks, detect community structure characteristics, and
analyze the relationship between the clustering coefficient and
system evolution. By constructing a common projection axis as
the prototype of each cluster, the tail removal algorithmMc2PCA
of the method is given and its time complexity is analyzed.

The constructed new graph inherits essential properties and
inherent features of the time-series data, allowing scholars to
conduct analyses and further interpret the original data with the
application of theoretical methods of complex networks and
graph theory. The VG algorithm transforms a time series {xi},
i � 1,. . ., n into a VG G � (V,E), where V(G) � {vi}, i � 1,. . ., n is a
set of vertices with vertex vi corresponding to data point xi. E(G) is

TABLE 1 | Policies relating to new-energy vehicles and charging piles.

Time National ministries and
commissions

The name of policy

2016/
08

the National Development and Reform Commission and the National Energy
Administration

The 13th Five-Year New Energy vehicle charging infrastructure incentive policy

2016/
12

the National Development and Reform Commission and the Ministry of Housing
and Urban-rural Development

Notice on accelerating the construction of charging piles and Supporting
Facilities for electric vehicles in residential areas

2018/
11

the National Development and Reform Commission and the National Energy
Administration

Action Plan to Improve the Charging Capacity of New Energy Vehicles

2019/
03

General Office of the Ministry of Industry and Information Technology and
General Office of the State Development Bank

Circular of the General Office of the Ministry of Industry and Information
Technology of the People’s Republic of China on Accelerating Industrial Energy
Conservation and Green Development

TABLE 2 | Statistical results of collected data of EVs, all charging piles, and public charging piles.

Attribute New energy vehicles All charging piles Public charging piles

Mean 77688.36111 8853.86 6569.916667
Variance 2206957726 75863784.35 88279834.65
Standard Deviation 46978.27 8709.982 9395.735
Standard Error 7829.711 1451.664 1565.956
Kurtosis 4.157038 7.613911667 6.739286817
Sum 2796781 318739 236517
Median 67889.00 5807.00 4112.00
Minimum 5682 −14 −19701
Maximum 225000 42011 40181
Jarque-Bera 8.854177 103.1986 61.25077
Skewness 1.068182 2.617011 1.466934
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the edge of the graph. We define A � {ai,j}, i, j � 1,. . ., n as the
adjacent matrix of the VG with ai,j � 1 for connected vertices and
ai,j � 0 for disconnected vertices. The element ai,j � 1 when the
geometrical criterion

xk < (xi − xj) ti − tk
ti − tj

− xi (1)

is fulfilled.
The principle of the transition is stated as follows. The graph is

deemed as a set of zeniths, which are nodes linked to each other
by lines called edges. The numbers of new-energy vehicles and
charging piles are first counted according to the set time.
Statistical histograms are then produced accordingly. The
height of the histogram reflects the volume at each time point
or month from May 2016 to April 2019.

The bottom line is the criterion determining whether two
points are set as being connected. The prerequisite for connecting
the two points in the network is whether the peaks of the two
histograms can be seen from each other (i.e., whether a straight
line can connect the peaks without crossing all the histograms). It
can then be transformed into the corresponding relationship
between the two pairs, which is shown as the connection of each
time points on the time dimension.

We next acquire the adjacency matrix by working on the time-
series nodes and edges, and we calculate the various features of
the subject networks.

By analyzing the original data, we visualize the time series data
and obtain the complex network characteristics of the new-
energy vehicles, all charging piles, and public charging piles.

As previously mentioned, we transform the time series data
into complex network forms. The network parameters are given
inTable 3. We find that among the three networks, the number of
edges and average degree are largest for the public charging piles,
reflecting that there are more peaks and troughs for these piles.
The diameters of the networks of the new-energy vehicles, all
charging piles, and public charging piles are respectively 3, 4, and
4; these values are the lowest number of edges between the two
time points with the longest distance. The average path lengths
are respectively 2.075, 2.111, and 2.129 for the three networks;
these values indicate the average number of edges between any
two time points.

Analysis of Centrality
Using data for the period from May 2016 to April 2019, we
conduct a quantification analysis of the daily networks, including

analyses of the degree centrality, betweenness centrality,
eigenvector centrality, strength, and clustering coefficient of
the complex network.

Degree of Centrality
The degree of centrality is the most direct measurement in the
analysis of a network and is the simplest measure characterizing the
connectivity properties of a single vertex in theory [22]. The
calculation of the degree of centrality of a node is simply the
counting of the number of edges associated with the subject node n.
The degree of centrality of a node is positively correlated to the
importance of the node in the network. In networkNwith k nodes,
the degree of centrality of node n, denoted Dc(n), is expressed as

Dc(n) � Deg(n)
k − 1

. (2)

In graph theory,Θ(V2) andΘ(E) are respectively the complexities
of calculating the degree of centrality in the dense adjacency
matrix and sparse adjacency matrix, where V is representative of
all nodes and E makes reference to all edges.

The definition of centrality can be extended from the node to
the graph [22]. Assume that n* is the node with the highest degree
of centrality in network N. X:�(Y,Z) is then defined as the
maximum:

H � ∑|n|
j�1[Dc(np) −Dc(nj)]. (3)

The centrality of network N is defined as

Dc(W) � ∑|n|
j�1[Dc(np) −Dc(nj)]

H
. (4)

If a node is linked to all other nodes in network W and all other
nodes only link to this central node, H of network W (which will
be a star graph) reaches a maximum [22]. Here, H � (k − 1) (k −
2), and the centrality of network N can be simplified as

Dc(W) � ∑|n|
j�1[Dc(np) −DC(nj)]

(k − 1)(k − 2) . (5)

Betweenness Centrality
The extent to which the location of a node is within the scope of
other nodes on a graph is a measure of betweenness. Nodes that
have higher betweenness centrality values are on the shortest path
from other nodes.

TABLE 3 | Network parameter analysis.

New energy vehicles All charging piles Public charging piles

Edge 122 120 125
Average degree 6.778 6.667 6.944
Diameter 3 4 4
Average path length 2.075 2.111 2.129
Density 0.194 0.19 0.198
Modularity 0.444 0.422 0.428
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FIGURE 4 | Histogram of the frequency distribution of the centrality of (A) new-energy piles, (B) all charging piles, and (C) public charging piles. One presents the
eccentricity, 2 presents the closeness centrality, 3 presents the harmonic closeness centrality, four presents the betweenness centrality, 5 presents the clustering
coefficient, and 6 presents the strength.
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According to Sanjiv and Purohit [22], in network N with n
nodes, the betweenness centrality Bc(n) of node n is calculated as
follows. First, all the shortest paths of each node pair (p, q) are
calculated, it is then evaluated whether node n is on the shortest
path of each node pair (p, q), the results are finally cumulated.
This process can be simplified as

Bc(n) � ∑
p≠ q≠ n∈N

βpq(n)
βpq

, (6)

where βpq is the number of shortest paths between nodes p and q
and βpq (n) is the number of shortest paths passing through node
n. Considering the scale of the network, it can divide the number
of pairs without node n to normalization. It is (k − 1) (k − 2) for
the directed graph and (k − 1) (k − 2)/2 for the undirected graph.

The computations of the betweenness and closeness centrality
are based on the computations of the shortest distance. In the
search for the shortest path for each node pair, the modified
Floyd–Warshall algorithm has complexity of Θ(W3). On a sparse

FIGURE 4 | (Continued)
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graph, the efficiency of the Johnson algorithm exceeds
O(W2logW +WE). O(WE) is the efficiency of calculating the
betweenness centrality on the weighted graph using the Brandes
algorithm.

On an undirected graph, weighted edges should not be
considered in the calculation of the betweenness and closeness
centrality of nodes. More importantly, the norm of graph

processing is not to use rings or weighted edges to render
relationships simple. In these circumstances, adopting the
Brandes algorithm will halve the ultimate centrality owing to
the double calculation of the shortest path.

Closeness Centrality
According to graph theory, closeness is a measure of the complex
centrality of a node. Shallower nodes (i.e., nodes having shorter
geodesic distances) have higher values of closeness. The nodes
that are more central have higher closeness values, and the
closeness thus represents the minimum path length in the
network. Additionally, closeness is often related to other
measurements. The closeness centrality is the average geodesic
distance (e.g., shortest path) from node n to other accessible
nodes [22]:

CC � ∑q∈N\ndW(n,q)
k − 1

, (7)

where k ≥ 2 is the distance of access section N from node n in the
network. The closeness centrality is a measure of the time that it
takes for a given node to propagate information to other
reachable nodes in a network. The closeness centrality CC(n)
of node n is defined as the reciprocal of the sum of the geodesic
distances to all other nodes N [22]:

Cc � 1
∑q∈N\ndW(n, q) . (8)

Closeness can be obtained using different methods and
algorithms. Dangalchev [23] modified the definition of
closeness so that it can be applied to a non-connected graph
and is easier to calculate:

Cc � ∑
q∈N\n 2

−dW(n,q). (9)

Eigenvector Centrality
Most hub nodes are found in line with the integral structure of the
network, and the eigenvector centrality is then measured. The
dimensions of the distance between nodes are acquired
through factor analysis. Each node in a network has a
relative index value based on the principle that the
contribution of a high-index node connecting to a node is
more than that of a low-index node [24].

Let pi be the (exponential) value of node i and Ai,j be the
adjacency matrix of the network. When node i is the neighboring
node of node j, Ai,j � 1, or conversely, Ai,j � 0.Generally, like the
case of a random matrix, each term of A can be a real number
representing the connection strength. For node i, the centrality is
proportional to the index sum of the nodes connecting with it.
Thus,

pi�
1
λ
∑

j∈M(i) pj � 1
λ
∑N

j�1 Ai,jpj, (10)

where M(i) is the set of nodes connected to node i, N is the
number of nodes, and λ is a constant. The matrix form is
P � 1

λAP, whereas the characteristic equation is AP � λP.

FIGURE 5 | Clustering of the three networks (where n1 to n36 represent
individual months from May 2016 to April 2019).
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TABLE 4 | Parameters of power law distributions.

New energy vehicle All charging piles Public charging piles

SSE 1.98 9.562 11.5
R-square 0.794 0.8509 0.7799
RMSE 0.3518 0.7984 0.8755

FIGURE 6 | Degree distributions of new-energy vehicles, all charging piles, and public charging piles.
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Strength
In a directed and weighted network, the strength denotes the total
weights of the edges connecting to one node [25]. In this paper,
the strength is a measure of the number of EVs in different
provinces. The strength is calculated as

Si � ∑
j≤Ni

wi,j, (11)

where Ni is the set of nodes connected to node i and wi,j is the
weight of the edge from node j to node i.

Clustering Coefficient
The clustering coefficient describes the characteristics of the
graph (or network). A graph G consists of a number of
vertices V and a number of lines (called edges) E
between vertices. Two adjacent vertices are called
adjacent points. The clustering coefficient of a network is
defined as [25]:

C(N) � 3 × number of triangles in the network

number of connected triples of vertices
. (12)

Clustering
Applying complex network theory to the primal data, the
relations within the data are represented on a graph as nodes
and edges. In this way, there is a great advantage over the traditional
static method in that we can capture the dynamic features and
community structures. Furthermore, the nodes and edges can be
clustered into different groups. The clustering is an analyzable
phenomenon in that the correlation between the set of nodes in a
subgroup is higher than that outside the group. In an attempt to obtain
an effective clustering result, we adopt a widely used principle
proposed by Newman [26]. The modularity Q is formularized as

Q � ∑K
i�1
[lini
L
− (di

2L
)

2

] � 1 − Linter

L
− 1
K
− 1
K

∑K
j−2

∑j−1
k�1

(dj − dk

2L
)′,
(13)

where K is the number of subgroups, L is the number of edges,
and lini and di � lini � linteri are respectively the number of edges in
the corresponding subgroup and the total number of sides of the
cluster i. Linter on behalf of the total number of intergroup edges.
The modularity Q is calculated as follows. We first calculate the

FIGURE 7 | (A) Betweenness centrality, (B) closeness centrality, (C) clustering, and (D) degree of centrality for all provinces in China.
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number of inner edges in the subgroup minus the expectation of
the same number of edges falling in the random network without
the clustering structure. The value ofQ indicates the quality of the
clustering. The obviousness of the clustering structure is
positively dependent on the value of Q.

RESULTS AND DISCUSSION

Analysis of Network Properties
Analysis of Centrality
Following the analysis of the degree of centrality of the complex
networks, three network centricities are calculated and six
indicators are presented in frequency diagrams; these are the
eccentricity, closeness centrality, harmonic closeness centrality,
betweenness centrality, strength, and clustering coefficient.

A comparison of the three eccentricities reveals that in the
complex network of new-energy vehicles, the eccentricity is low
and the distribution is relatively uniform. The eccentricity of the
network nodes of charging piles is mainly around 3 or 4, and the
distribution of all charging piles is especially concentrated. This
reflects the rapid manufacture of new-energy vehicles, whereas
the rate of manufacture of charging piles is relatively stable.

The three networks have similar distributions of closeness
centrality and betweenness centrality, and it appears that they all
have the right-hand bias. In the field of topology and related
mathematics, closeness is an elementary concept of the
topological space. Intuitively, when two sets are arbitrarily
close, they are said to be tight. This concept is easy to adopt
in a metric space that defines the distance between elements
within a space, but it is difficult to extend to a topological space
without a specific metric distance. In network analysis, closeness
represents the minimum path length, which means that in the
development of the three networks over the 3 years, there is a high
possibility of there being extreme quantitative values.
Additionally, the strengths and clustering coefficients of the
three networks are similar, with medium values having the
highest frequency, which indicates that the development of the

network of EV charging piles is steady and provinces in China are
well connected and coordinated in the advance of EV
infrastructure. The results match those of the analyses in the
first part above.

Figure 4 shows that the centrality distributions of new-
energy vehicles and charging piles are somewhat similar and
that they are in the process of coordinated development. An
increase in the penetration rate of new-energy vehicles
requires a foundation of a sufficient number of public
charging piles.

Small World
As explained earlier, we use a fast modular method to cluster
nodes in the networks. The results are shown in Figure 5. The
densities of the three networks and the number of subgroups are
similar.

Although the numbers are largely similar, we find that there
are more subgroups in the network of new-energy vehicles than
in the network of charging piles. This is because when we conduct
the clustering, if data are relatively flat with a lower peak value, the
network distance increases over time, such that the clustering
results have more subgroups.

Figure 5 shows that, in the three clustering networks, N8 is
distinct, which is consistent with the peak in December 2016 for
the underlying trend. At this time, the government issued a notice
on accelerating the construction of charging piles and supporting
facilities for EVs in residential areas.

Overall, however, the results of clustering in these three
networks reveal that the development of the network of EVs
and that of the network of the piles are in fact inconsistent. The
nodes in each subgroup are largely different, and there is
therefore still much to do for the pace of manufacture of piles
to catch that of EVs.

Distribution of the Degree of Centrality
The power law distribution is a common statistical phenomenon.
Fitting parameters for power law distributions are given in
Table 4.

Figure 6 and Table 4 show that the distributions of the degree
of centrality of new-energy vehicles, total charging piles, and
public charging piles follow power laws, with more time
nodes and fewer connected edges, and the number of
nodes decreases with an increase in the degree of
centrality. This clearly indicates that the networks of new-
energy vehicles and charging piles are small-world networks
and that the manufacture of new-energy vehicles and
charging piles will be greatly affected by external factors at
critical moments.

The sales of fuel-powered cars were in the middle of a slump in
2018, but China’s new-energy automobile market grew in
2018 relative to sales in 2016 and 2017. This contrast is
closely related to a number of new-energy vehicle subsidies
(e.g., a tax exemption for the purchase of new-energy
automobile vehicles, tariff cuts of reversed transmission
enterprise technology upgrades, and double integral
policy). This correspondence shows the importance of
promoting government policy.

FIGURE 8 | Clustering results of public charging piles shown by
province.

Frontiers in Physics | www.frontiersin.org October 2021 | Volume 9 | Article 75593211

Wang et al. New Energy Vehicles Charging Piles

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Complex Network Clustering of Provinces
Figure 7 shows that in the development of charging pile
networks, Hunan Province had the highest
betweenness centrality, Jiangxi Province had the lowest
closeness centrality, clustering, and degree, and Shanxi
Province and Qinghai Province had the highest degree of
centrality.

The developmental trends for 2016 to 2019 can be divided into
four stages, which are basically the four natural years. The figure
shows that the manufacturing of new-energy vehicles and
charging piles in China is accelerating year by year.

The visualization of the monthly increase in the number of
public charging piles for China’s new-energy vehicles in Figure 8
shows that the clustering results for China’s provinces can be
divided into three categories.

The first category includes Anhui Province, Beijing, Fujian
Province, Gansu Province, Guangdong Province, Hainan
Province, Hebei Province, Henan Province, Hubei Province,
Jiangsu Province, Qinghai Province, Shandong Province,
Shanxi Province, Shanghai, Tianjin, Yunnan Province,
Zhejiang Province, and Chongqing. The results show that the
closeness centrality and degree of centrality of these provinces,
which are accelerating development areas in Guidance on the
Development of Electric Vehicle Charging Infrastructure
2015–2020 issued by the National Development and Reform
Commission of China in 2015, are relatively high. These
provinces have a good foundation for the development of EVs
in that they have a large population base and a high population
density and require intensive haze control. The local governments
of these provinces have formulated and implemented relevant
policies earlier and more frequently to guide the development of
new-energy vehicles and charging piles. In addition, Beijing,
Tianjin and Hebei, and the Yangtze River Delta and the Pearl
River Delta are three key areas for haze prevention and control. In
particular, Beijing, Shanghai, Jiangsu, and Guangdong have
formulated many policies of promoting new-energy vehicles
and charging piles for different application scenarios.

FIGURE 9 | Monthly increases in the number of public charging piles in all provinces.

FIGURE 10 | Heat map of the similarity of provinces.
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In Figure 9, Beijing is at the top of the number of public
charging piles. In April 2019, the number of public charging piles
in Beijing reached 930,000, in particular because of the serious air
pollution and the urgent need for governance. Local government
in Beijing has issued a series of policies related to car purchase
subsidies and welfare for new-energy vehicles. As an example,
there is a lottery for the purchase of new-energy vehicles, which
drives the use of new-energy vehicles. Additionally, Beijing
considered the construction and use of charging piles earlier
and more thoroughly than other provinces. In Shunyi District of
Beijing, construction units of public charging facilities that meet
the requirements of the state and municipality may apply for
government subsidies, and new-energy vehicles using public
charging piles are given a charging service fee subsidy. Overall,
Beijing’s new-energy development is policy driven.

Meanwhile, the use of new-energy vehicles and charging piles
in Guangdong Province, which ranks the second, is technology
driven. Guangdong Province is home to many high-tech new-
energy car manufacturers, such as China’s leading new-energy car
company, BYD, which is headquartered in Shenzhen. The local
technological atmosphere supports the development of new-
energy cars and charging piles in the province.

Qinghai Province, Gansu Province, and Yunnan Province
have weak industrial foundations, insufficient research and
development capacities, insufficient promotion policies, lagging
infrastructure, and unimproved market environments. However,
they all have a place in the industrial chain of energy resources
and new-energy vehicles and charging piles. These provinces are
energy-driven. Although the development of charging piles in
Qinghai Province started relatively late, the province’s clean-
energy resources have broad application prospects in the
province’s new-energy vehicle charging service business, and
there are thus similarities between Qinghai Province and areas
of accelerating development in terms of the overall development
trend. Additionally, Yunnan Province has unique advantages
because of its energy resources. The local government of
Yunnan Province attaches importance to the active
development of smart services, closely follows the pace of
development in the region, formulates and implements
development plans, and is committed to combining the
tourism resources of the province with the development of
new-energy vehicles. For instance, at tourist distribution
centers and key scenic spots, tourist buses, shared cars, and
self-driving camps (bases) will be built, and regional charging
networks will be created to realize intelligent travel, “a mobile
phone to travel in Yunnan”. Therefore, although there is a gap
between the number of charging piles and the provinces in the
eastern region, the trend of development is fast.

The second category includes the Xinjiang Uygur
Autonomous Region, Tibet Autonomous Region, Inner
Mongolia Autonomous Region, Shaanxi Province, Liaoning
Province, Jilin Province, and Heilongjiang Province. These
areas are mainly northwestern and northeastern provinces in
which the development of the charging pile network started
relatively late, mostly from 2017 to 2019. We take the
northeastern provinces as an example. Many automobile
industry bases were set up in northeastern China when new

China was first founded. However, the technologies of fuel energy
are now somewhat backward, and the existing industrial base in
northeastern China has resulted in a slow conversion from old to
new ways of generating kinetic energy. In addition, as established
industries are important to local employment, the local
government pays little attention to new industries, and the
development of new-energy vehicles and charging piles has
been slow. The northwestern provinces and regions, such as
the Xinjiang Uygur Autonomous Region, Tibet Autonomous
Region, and Inner Mongolia Autonomous Region, are
characterized by a vast areas of land and sparse populations.
Moreover, there are many ethnic minorities and strong ethnic
traditions. The new-energy vehicle market space is small and the
costs of constructing charging piles are high in these regions. The
cities have weak development potential except for the provincial
capitals and some larger cities.

In contrast with accelerating the construction of charging piles
in developing regions, the main purpose of constructing public
charging piles in the regions of the second category is to further
improve the convenience of transportation, thus strengthening
connectivity, accelerating regional development, and gradually
building a national inter-city fast-charging network based on
expressways.

The third category includes Sichuan Province, Guizhou
Province, and the Guangxi Zhuang Autonomous Region. The
development of the new-energy vehicle charging pile network
began reasonably early, around 2016, in each of these three
provinces. However, none of the provinces has advantages in
the industrial chain, and the automobile industry is weak in these
provinces. At the same time, owing to the renewal of new-energy
vehicles in the eastern regions, old fuel-based vehicles have been
eliminated, which have emission specifications superior to the
existing ones in the western region. These old vehicles are
therefore flowing into the western market because their
second-hand transaction prices are lower, squeezing the
already insufficient space for EVs in the car market. In
addition, the geographical conditions of these provinces are a
major disadvantage to the adoption of new-energy vehicles and
charging piles. Rugged terrain accelerates the power consumption
of new-energy vehicles, and the planning and construction
efficiency of charging piles is limited. There is thus little
motivation to purchase new-energy vehicles, and the overall
development of the EV network is slow relative to the
development of the economic base.

CONCLUSION

This paper used time series data for May 2016 to April 2019 to
build a complex network and used characteristic data for the
network to obtain supplementary information, so as to establish a
new effective connection between the time series and the complex
network. The results show that the overall speeds of development
of networks of new-energy vehicles and charging piles in China
are similar, but the speed of development of the charging pile
network is relatively slow. Moreover, both the networks of new-
energy vehicles and charging piles are greatly affected by special
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events, such as policy implementations, and it is thus crucial to
formulate policies that can be effectively implemented.

China is in the background of “New Infrastructure”. We
carried out cluster analysis on provincial data of public
charging piles after time-series visualization, considering that
relevant industrial development policies are mostly formulated by
provincial governments. The results of the research are
summarized as follows. 1) Regional factors play a dominant
role in the development of networks of new-energy vehicles
and charging piles. A basic regional characteristic of China is
that the eastern provinces are more developed than the western
provinces, which is obviously reflected in the clustering results.
The eastern developed provinces, with a high degree of
urbanization, high population densities, and superior
economic foundations, have good application conditions for
the development of networks of new-energy vehicles and
charging piles in that they have a broad market space and
rapid socioeconomic development. 2) Whether a province
occupies a place in the industrial chain of new-energy vehicles
and charging piles and how important it is in the industrial chain
strongly affect the situation of local construction. In the case of
the upstream provinces, the reserves of energy resources and the
difficulty of collection are important. In the case of the
downstream provinces, the ability to conduct research and
development and the technical level of relevant enterprises are
important. 3) National and local industrial policies play an
important role in the development of networks of new-energy
vehicles and charging piles. In 2018, various ministries and
commissions in China issued a series of policies that
promoted the rapid development of networks of new-energy
vehicles and charging piles. As an example, the Ministry of
Industry and Information Technology issued the Notice on
Strengthening the Administration of The Catalogue of New-
energy Vehicles Exempted from Vehicle purchase Tax (Draft
for Comments). Additionally, the Ministry of Finance, Ministry
of Science and Technology, and Development and Reform
Commission issued “On the adjustment to perfect the new
energy automobile application finance subsidy policy notice”, a
national department would raise technical threshold
requirements, perfect the subsidy standard requirements, and
adjust the operating range to the new-energy vehicles subsidies.

Overall, the outlook of the domestic new-energy vehicle
market in China remains good, and the development potential
is extremely large. With the replacement of social energy and on
the basis of the good development prospects of China’s new-
energy vehicles, charging piles will inevitably be adopted broadly

as the supplemental energy infrastructure of new-energy vehicles.
Provinces that are developing rapidly need to further improve the
efficiency of charging pile construction. The construction of
charging piles of new-energy vehicles and the development of
new-energy vehicles promote and restrict each other. To further
develop the network of new-energy vehicles, the premise must be
to reduce the ratio of the vehicle pile. Provinces that are
developing slowly need to upgrade their industrial structures
in light of local conditions and enhance the conditions for new-
energy applications. Figure 10 shows the similarity of EV
development between provinces in China.

We suggest that government have an in-depth understanding of
the local application basis, geographical factors, cultural factors, and
other application conditions before making future policies. The
government should set reasonable development goals, actively
implement a subsidy policy for the construction of new-energy
vehicle charging piles, and scientifically guide the construction of EV
charging infrastructure.We suggest that in the future construction of
charging piles, enterprises consider reasonable construction that
balances supply and demand and combines with new intelligent
infrastructure and the Internet of things. As an example, the sharing
mode can be combined with the operation of charging piles.
Through win–win cooperation among the government,
enterprises, and users, it will be possible to promote the rapid
development of the EV industry and create a better air environment.

The present study adopted a single index to analyze China’s
use of new-energy vehicles and charging piles owing to the
limitations of the data breadth, scale, and accuracy. In future
studies, we will further collect data of relevant indicators and use
complex networks in coupled analysis to explore in detail the
reasons for variations in development across provinces and cities.
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