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X-ray phase contrast imaging is a promising technique in X-ray biological microscopy, as it
improves the contrast of images for materials with low electron density compared to
traditional X-ray imaging. The spatial resolution is an important parameter to evaluate the
image quality. In this paper, simulation of factors which may affect the spatial resolution in a
typical 2D grating–based phase contrast imaging system is conducted. This simulation is
based on scalar diffraction theory and the operator theory of imaging. Absorption,
differential phase contrast, and dark-field images are retrieved via the Fourier transform
method. Furthermore, the limitation of the grating-to-detector distance in the spatial
harmonic method is discussed in detail.

Keywords: X-ray imaging, spatial resolution, phase contrast, angular spectrum algorithm, the spatial harmonic
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INTRODUCTION

In 1895, the X-ray was discovered when Roentgen was engaged in the experiment of cathode rays.
Since then, many physicists have been actively studying and exploring the X-ray. The discovery of
X-rays has provided an effective means of research in many fields of science. X-ray imaging plays an
important role in medical and materials sciences and all other fields that need non-destructive and
non-contact detection. The penetration of X-rays makes X-ray imaging a research hotspot. In
traditional X-ray imaging, only an absorption image was used. However, as for materials with low
electron density, such as soft biological tissues, the contrast remains poor in the absorption image. To
solve this problem, X-ray phase contrast imaging was proposed [1]. At the same time, three kinds of
images (absorption, differential phase contrast, and dark-field) can be retrieved simultaneously [2].
And the contrast of weak-absorbing materials in the differential phase contrast image is better than
that in the absorption image [3]. Among all X-ray phase imaging, the grating-based method is one of
the promising solutions to build an imaging system at low cost as it does not need a synchrotron
radiation source [4–6]. The microfocal X-ray source [7] or even a traditional X-ray tube can be used
as the source [8, 9]. This extends the application of X-ray phase contrast imaging technology [10–13].
In this technique, the spatial harmonic method is a variant grating–based method where absorption,
differential phase contrast, and dark-field can be obtained from a single raw image [14–16]. This
method could accelerate the imaging speed due to one exposure compared to multiple exposures of
the phase-stepping method [15]. And 2D grating is preferred as it could increase the robustness and
accuracy of phase retrieval compared with 1D grating [17].

In the X-ray phase contrast imaging system, resolution, sensitivity, and signal-to-noise ratio
(SNR) are three important factors related to the image quality. Up to now, many research studies
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have been conducted toward improving the sensitivity [18].
Birnbacher et al. developed a laboratory X-ray grating-based
phase contrast imaging system with 5 nrad sensitivity [19]. Xu
et al. discovered that high sensitivity is not always related to high
image quality, while the best image quality is achieved at proper
sensitivity [20]. As for the signal-to-noise ratio, Fraiz et al.
compared SNRs of the retrieved images between two
information retrieval methods and found that the angular
signal radiography method had a better SNR in refraction and
scattering images than the phase-stepping method [21]. Due to
the diffraction limit formula, the diffraction limit of X-rays can
reach few nanometers. Takano et al. developed a Talbot-Lau
interferometer with a Fresnel zone plate (FZP) and built an
imaging system which can resolve 50 nm structures in 2017
[22]. Therefore, X-ray phase contrast imaging has much
potential in microscopy. According to our investigation, only
few research studies were carried out on factors which may
influence the spatial resolution of X-ray images.

In this work, we demonstrate a simulation of a 2D
grating–based phase contrast imaging system. The simulation
is based on scalar diffraction theory and the operator theory of
imaging. The factors which may relate to the spatial resolution of
three kinds of X-ray images are studied. The spatial resolution in
this simulation is evaluated without dose limit in order to ignore
the influence brought by the SNR of the system. We also find that
when the grating-to-detector distance is chosen with certain
values, differential phase contrast could not be retrieved via

the spatial harmonic method. The mechanism of this
phenomenon is the Talbot effect. The simulation work could
be beneficial for setting up an X-ray phase contrast imaging
system in demand of high spatial resolution.

IMAGING PRINCIPLE

A typical 2D grating–based phase contrast imaging system is
shown in Figure 1A. It consists of an X-ray source, an amplitude
2D grating, and an X-ray detector. Two standard types of 2D
grating could be chosen: the checkerboard type, usually with its
area duty cycle of 0.5 as shown in Figure 1B, and the mesh type,
usually with an area duty cycle of 0.25 as shown in Figure 1C [23].

In order to elucidate the physical mechanism in X-ray phase
contrast imaging, it is assumed that the sample in this system is
isotropic. The complex refractive index of the sample could be
given as follows:

n(λ) � 1 − δ(λ) + iβ(λ). (1)

Here, λ is the wavelength of the illuminating X-ray. δ and β are
the phase and absorption factor of the sample, respectively, and
both vary at different wavelengths. In the imaging system, the
distance between the X-ray source and the detector is finite.
Therefore, the diffraction occurring in the system can be
regarded as near-field diffraction. And the Fresnel diffraction
integral under paraxial approximation can be expressed as
follows [24]:

ψout(uout��→) � exp(ikz)
iλz

∫∫ψin(uin
�→)exp{ ik

2z
[(xout − xin)2

+ (yout − yin)2]}dxindyin. (2)

Here, ψin( u→) represents the electromagnetic wave fields entering
the free space. ψout( u→) represents the electromagnetic wave fields
exiting the free space. The vector uin

�→ � (xin, yin) is the Euclidean
coordinates of the point in the input plane. The vector uout

���→ �
(xout , yout) is the Euclidean coordinates of the point in the
output plane.

According to the formula of Fourier transform, Eq. 2 could be
expressed as follows [24]:

ψout(uout��→) � ψin(uin�→)⊗hspace(uout
��→), (3)

hspace(uout
��→) � exp(ikz)

iλz
exp

ik
2z

(x2out + y2out). (4)

The symbol ⊗ in Eq. 3 is a convolution operator. The discussion
above is based on the time domain of the Fresnel transform.
However, the Fresnel diffraction integral would result in a large
computation load in the simulation. In order to solve this
problem, calculations are preferred to be carried out in the
frequency domain of the Fourier transform. As the raw image
from the detector is needed for further calculation, the calculation
from the frequency domain back to the time domain is
indispensable. And Eqs. 3, 4 could be transformed to the
following equations [24]:

FIGURE 1 | A typical 2D grating–based phase contrast imaging system
and two types of 2D grating. (A) A typical sketch map of the 2D grating–based
phase contrast imaging system. (B) Checkerboard-type 2D grating with the
area duty cycle of 0.5. (C)Mesh-type 2D grating with the area duty cycle
of 0.25.
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ψout(uout��→) � F−1{F{ψin(uin�→)} ·Hspace(fx, fy)}, (5)

Hspace(fx, fy) � exp(ikz)exp[ − iπλz(f 2x + f 2y )]. (6)

Here, fx and fy are frequency coordinates, F{} represents the
Fourier transform, and F−1{} represents the inverse Fourier
transform.

When the X-ray is applied to the object, such as a sample or 2D
grating, the electromagnetic wave field is given by the following
equation:

ψout(uout
��→) � ψin(uin

�→) · hobj(uout
��→). (7)

Here, hobj(uout���→) represents the transfer function of the object.
Considering the modulation transfer function (MTF) of the
optical imaging device, the raw image obtained from a non-
ideal detector could be expressed as Eq. 8, and the MTF for the
non-ideal detector is shown in Eq. 9:

I �
∣∣∣∣∣∣∣ψout(uout��→)∣∣∣∣∣∣∣2 �

∣∣∣∣∣∣∣F−1{F{ψin(uin
�→)} ·MTF(f )}∣∣∣∣∣∣∣2, (8)

MTF(f ) � e−( f
fc
)n

. (9)

Here, MTF() represents the modulation transfer function of the
detector, f is the frequency, fc denotes the frequency when the
MTF decreases to 1

e, which is called the spatial frequency constant,
and n is called the device constant, which is related to the type of
optical imaging system.

According to the theory above, the propagation process of the
X-ray in the 2D grating–based phase contrast imaging system as
shown in Figure 1A could be separated into six parts:

A) Free space propagation from the source plane to the 2D
grating plane.

B) Transmission of the 2D grating.
C) Free space propagation from the 2D grating plane to the

sample plane.
D) Transmission of the sample.
E) Free space propagation from the sample plane to the

detector plane.
F) Raw images received by the detector.

In combination with the principles mentioned above, the
calculation method is described below. Equation 5 could be
used to calculate the propagation of steps (A), (C), and (E).
And Eq. 7 could be adopted to calculate the transmission of steps
(B) and (D). Step (F) can be calculated via Eqs. 8, 9. In order to
guarantee sufficient sampling in the intermediate plane, the
sampling interval in the simulation should be smaller than the
pixel size of the detector. Therefore, calculation of the intensity
and fusion between adjacent pixels should be taken into
consideration after calculation of these six steps.

The spatial harmonic method is a single-shot X-ray phase
contrast imaging method, where absorption, differential
phase contrast, and dark-field can be obtained from two
raw images (one with sample and one without sample).
The image retrieval algorithm used in the spatial harmonic

method is the Fourier transform method. A single raw image
with sample and another without sample are needed for
retrieval. The 2D Fourier transform should be
implemented on both images. Figure 2A shows a single
raw image obtained in an experiment with a defective
PMMA sphere shell. Figure 2B is the 2D Fourier
transform of Figure 2A, which is shown in the logarithmic
scale as the intensity of the zeroth harmonic is much higher
than that of the first harmonic.

The absorption is retrieved from the zeroth harmonic. A
suitable harmonic width should be chosen, and the region of
the zeroth harmonic is separated from the original Fourier
transform plane to create a new Fourier transform plane. The
harmonic width should be chosen properly to make sure no
overlapping region exists between the region of the zeroth
harmonic and higher harmonics. Then, the inverse Fourier
transform is adopted. The same procedure is used for images
with sample and without sample for normalization. And the
computational formula of the absorption could be expressed as
follows:

Iabs � −ln⎛⎝F−1{Hs
(0,0)}

F−1{Hr
(0,0)}⎞⎠. (10)

Here, Hs
(0,0) represents the separated zeroth harmonic with

sample and Hr
(0,0) represents the separated zeroth harmonic

without sample.
The differential phase contrast is retrieved from the first

harmonic. As shown in Figure 2B, four first harmonics
including H(0,1), H(1,0), H(0,−1), and H(−1,0) could be seen in
the Fourier transform plane. According to the symmetry of
the Fourier transform, information contained in H(0,1) is the
same as inH(0,−1) and information contained inH(1,0) is the same
as in H(−1,0). Therefore, both H(1,0) and H(0,1) could be used to
retrieve differential phase contrast. The area of the first harmonic
is separated to create a new Fourier transform plane. Then, the
inverse Fourier transform is adopted for the separated first
harmonic with sample and without sample. The difference
between the angle information of the inverse Fourier
transform with sample and without sample is defined as the
differential phase contrast (zΦ(x,y)zx ) and (zΦ(x,y)

zy ), which could be
expressed as follows:

Idpc � arg(F−1{Hs
(1,0)}) − arg(F−1{Hr

(1,0)}) or
Idpc � arg(F−1{Hs

(0,1)}) − arg(F−1{Hr
(0,1)}). (11)

Here,Hs
(1,0) andH

s
(0,1) represent the separated first harmonic with

sample, Hr
(1,0) and Hr

(0,1) represent the separated first harmonic
without sample, arg() is the angle of the complex, and Φ(x, y)
denotes the phase of the sample. Usually, the differential phase
contrast could be obtained by choosing any one of these two first
harmonics. And the phase image could be retrieved via
integration along the axis. However, phase images obtained via
single integration suffer from serious artifacts. Kottler et al. put
forward an algorithm which uses both first harmonics to obtain
good quality and artifact-free phase images [25]. And this
algorithm is particularly appropriate for 2D grating–based
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imaging systems as the differential phase contrast of the two
vertical directions can be obtained simultaneously.

The dark-field contains both the information of the zeroth
harmonic and the first harmonic. According to the definition of the
dark-field, it is the ratio between the visibility of the sample and of
the background. The visibility is calculated via the ratio between
the first harmonic and the zeroth harmonic. The first harmonic
could also be chosen as H(1,0) or H(0,1). And the computational
formula of the dark-field is given by the following equation:

Idf � −ln⎛⎝F−1{Hs
(1,0)} · F−1{Hr

(0,0)}
F−1{Hr

(1,0)} · F−1{Hs
(0,0)}⎞⎠ or

Idf � −ln⎛⎝F−1{Hs
(0,1)} · F−1{Hr

(0,0)}
F−1{Hr

(0,1)} · F−1{Hs
(0,0)}⎞⎠. (12)

SIMULATION RESULTS

The simulation is conducted according to the theory above. In
order to simplify the situation, the X-ray source is simulated as a
coherent unit-amplitude plane wave. Also, it is considered as a
parallel light beam. In that case, the magnification of the sample is
ignored. The wavelength of the X-ray is chosen as 0.155 nm. The
sample in the 2D grating–based phase contrast imaging system is
chosen as a resolution test chart which would be beneficial for
further research on factors affecting the spatial resolution. As
phase contrast studies are normally performed on weak-
absorbing samples, PMMA is chosen as the material of the
sample. The thickness of the resolution test chart is chosen as
200 μm. Figure 3 shows the transmittance image of this chart,
which contains several lines at four different directions. The
width of the lines ranges from 51.6 to 6.4 μm and is labeled in
the figure. Considering the difficulty in the grating manufacture
in reality, the mesh-type 2D ideal π2 phase grating with an area
duty cycle of 0.25 is chosen as the 2D grating in the simulation.
The period of the mesh is set as 12.8 μm. The source-to-grating
distance is 0.5 m. In order to obtain optimal fringe visibility, the
grating-to-detector distance is set as 1.5855 m, which is the
second Talbot distance of this grating. The grating-to-sample
distance is 0.4756 m. And the sample-to-detector distance is
1.1099 m. The field of view of the simulated detector is
1638.4μm × 1638.4μm with the pixel size of 1.6μm × 1.6μm.
Considering the pixel size of the simulated detector, it is

FIGURE 2 | Raw image obtained in the experiment and 2D Fourier transform. (A) Raw image from an X-ray 2D grating–based phase contrast imaging system (the
X-ray source is operated at 25 kVp, the mesh-type grating period is 78 μm with area duty cycle 0.63, the source-to-grating distance is 0.75 m, and the grating-to-
detector distance is 0.25 m). (B) 2D Fourier transform of (A). The zeroth harmonic is labeled in green, and the first harmonic is labeled in red in Figure 2B.

FIGURE 3 |Resolution test chart (the width of the lines is①51.2,②38.4,
③25.6, ④19.2, ⑤16, ⑥14.4, ⑦13.6, ⑧12.8, ⑨12, ⑩11.2, ⑪9.6,
and ⑫6.4 μm).
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assumed that theMTF decreases to 0.1 when the spatial frequency
comes to 312.5 lp/mm. Then, the spatial frequency constant is set
as 213.9 lp/mm, and the device constant is set as 2.2. Normally,
distributed random noise is added directly into the intensity
images received by the detector with standard deviation σ � 3 and
mean value μ � 0. According to our calculation, the sampling
window in the frequency domain in this simulation (u and v) is in
the frequency range for which the transfer function causes no
aliasing error [26]. Therefore, the angular spectrum algorithm is
appropriate for this simulation.

In this simulation, the resolution is evaluated without dose
limit in order to ignore the influence of SNR, which is caused by
limited amount of photons. And the resolution at different
simulation conditions is compared via the minimum
detectable line width of the resolution test chart. The
minimum detectable line width at one single direction is
evaluated via the intensity line profiles vertical to the three
parallel lines at different line widths. If three obvious peaks
could be seen in the profile of absorption and phase, then it

indicates that these lines could be resolved. As for the dark-field
images, there should be six obvious peaks in the profile of three
parallel lines. The width of smallest resolved parallel lines is
defined as the minimum detectable line width. In the following,
the minimum detectable line width in absorption is determined
from the calculated absorption results and the width in phase is
evaluated from the integrated phase map via the method
mentioned in [22]. The resolution of dark-field images is
evaluated from the retrieved results in both x- and y-directions.

The simulation is conducted based on parameters given in the
first paragraph of this section. Figure 4A presents the raw image
obtained from the detector. The mesh and the resolution test
chart could be clearly observed. And Figure 4B shows the 2D
Fourier transform of Figure 4A, which is also shown in the
logarithmic scale. One zeroth harmonic and four first harmonics
could be seen on the Fourier transform plane. Three images
including absorption, differential phase contrast, and dark-field
are displayed in Figures 4C–G, respectively. And the retrieved
phase image via the method mentioned in [22] is shown in

FIGURE 4 | Images obtained from the simulation. (A) Raw image obtained on the detector plane. (B) 2D Fourier transform of raw image (A). (C) Retrieved
absorption. (D)Retrieved differential phase contrast in the y-direction. (E)Retrieved differential phase contrast in the x-direction. (F)Retrieved dark-field in the y-direction.
(G) Retrieved dark-field in the x-direction. (H) Retrieved phase.

Frontiers in Physics | www.frontiersin.org June 2021 | Volume 9 | Article 6722075

Tao et al. Factors Affecting the Spatial Resolution

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Figure 4H. It can be inferred from Figures 4C, H that the
minimum detectable line width is 12 μm in 0°/90° directions
while 13.6 μm in 45°/135° directions. As for the phase, the
minimum detectable line width is 11.2 μm in all four
directions. The width is 13.6 μm in 0°/90° directions and
12.8 μm in 45°/135° directions for dark-field images.

There are quantities of variables in the 2D grating–based phase
contrast imaging system. According to our selection, factors
including the location of the sample, the period of 2D grating,
the area duty cycle of the mesh, the shape of the mesh, and the
width of harmonics in the spatial harmonic method are
considered in this simulation.

The Location of the Sample
As shown in Figure 1A, the sample in our system is placed
between the 2D grating and the detector. In order to explore the
influence brought by the sample’s location, the grating-to-
sample distance is set as 0.1586, 0.4757, 0.7928, and
1.1099 m, respectively. However, other parameters remain
unchanged. The simulation results show that the minimum
detectable line width of this resolution test chart in absorption,
phase, and dark-field differs as the sample’s location changes,
which is presented in Figures 5A–C. It could be concluded that
the resolution improves as the distance between the grating and
the sample increases. In order to verify our conclusion, the 1D
differential phase contrast result of the 19.2 μm 45° lines in this
resolution test chart is shown in Figure 5D. It could be seen

that the resolution improves monotonously as the distance
increases. At the same time, the contrast decreases as the
distance increases. In short, high resolution and low contrast
could be obtained when the sample is close to the detector, and
vice versa.

The Period of the Mesh
In order to research how the period of 2D grating would affect the
resolution of absorption, phase, and dark-field, meshes with a
period of 9.6, 12.8, 19.2, 25.6, and 38.4 μm are chosen in this
simulation. And all the other parameters remain the same.
Figure 6A shows the simulation result in absorption,
Figure 6B is the result in phase, and Figure 6C is the result
in dark-field. The reason why the curve is not linear is the finite
number of line widths chosen in our resolution testing chart.
Also, the resolution differs at different directions in phase. The
minimum detectable line widths in absorption, phase, and dark-
field increase monotonously, with the increase in the period of the
mesh. In order to achieve high resolution, a smaller grating period
is preferred in the system.

The Area Duty Cycle of the Mesh
The area duty cycle determines the area of the transparent
region when the period of mesh is fixed. In this simulation, the
area duty cycle is chosen as 0.0625, 0.140625, 0.25, 0.390625,
and 0.5625. And other parameters are the same as the previous
ones. The minimum detectable line width of our resolution test

FIGURE 5 | Simulation results on the location of the sample. The minimum detectable width at different distances in (A) absorption, (B) phase, and (C) dark-field.
(D) 1D differential phase contrast result of the 19.2 μm 45° lines in this resolution test chart at different grating-to-sample distances.
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chart is presented in Figures 7A–C. It could be concluded that
the resolution in absorption gets worse when the area duty
cycle increases. As for the phase and dark-field, when the area
duty cycle is higher than 0.3925, the resolution gets worse as
the area duty cycle increases. Meanwhile, as the duty cycle is
lower than 0.3925, the resolution changes a little with the area
duty ratio. Combining with the results obtained from the
period of the mesh, it could be concluded that a small area
of the transparent region does not always lead to the
improvement of the spatial resolution. Also, a 1D
differential phase contrast result of the 19.2 μm 45° lines in
this resolution test chart is shown in Figure 7D. It is clear that

the lower duty cycle would result in a higher contrast when the
area duty cycle is below 0.3925. Meanwhile, considering the
full width at half maximum (FWHM), the area duty cycle of
0.25 is more appropriate for higher resolution in our simulation.

The Shape of the Mesh
Normally, the shape of the mesh is chosen as square, whichmeans
the period of grating on both x and y axes is the same. In this
section, three different shapes of mesh (rectangle, parallelogram,
and circle) are chosen for the imaging system, and these meshes
are shown in Figure 8. The area duty cycle of rectangle and
parallelogram meshes is set as 0.25, and that of the circle mesh is

FIGURE 6 | The minimum detectable width for different 2D grating periods in (A) absorption, (B) phase, and (C) dark-field.

FIGURE 7 | Simulation results on the area duty cycle of the mesh. The minimum detectable width for different 2D grating area duty cycles in (A) absorption, (B)
phase, and (C) dark-field. (D) 1D differential phase result of the 19.2 μm 45° lines in this resolution test chart at different area duty cycles.
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0.2. All the other parameters remain the same. The simulation
results are listed in Table 1 (for absorption), Table 2 (for phase),
and Table 3 (for dark-field). From Figure 8, it could be seen that
the period of gratings in two different directions differs. And the
minimum detectable line width is affected by the larger one. In
other words, even though the period of the grating in one
direction is fabricated as extremely small, the spatial resolution
could not be improved due to the limitation of the larger period
one. As for circle-type gratings, it seems that their performance in
absorption and dark-field is little worse than that of the square
ones, and there is no difference in phase. Therefore, considering
manufacturing costs, it is better to choose square as the shape of
the mesh as the periods of gratings in two different directions are
the same.

The Width of Harmonics in the Spatial
Harmonic Method
Not only do optical elements in the 2D grating system would
influence the spatial resolution of retrieved images, but also
parameters in the retrieval method do affect the resolution.
Here, we define the maximum width where there is no
overlapping area between the zeroth harmonic and the first
harmonic as w0. Then, the width in this simulation is set as
0.4w0, 0.6w0, 0.8w0, and w0, separately. The system parameters
are the same as the conditions mentioned in the first paragraph of
Simulation Results. The results of the minimum detectable width
in absorption, phase, and dark-field are presented in Figures
9A–C. It could be concluded that a larger width of harmonics
would result in a higher resolution in absorption, phase, and
dark-field. This is because a larger width would contain more
detailed information. Therefore, images would become more
distinct due to the larger area of the frequency region.
However, the width of harmonics could not increase
unrestrictedly, which means there should be no overlapping
area between each harmonic region. Otherwise, the signal
aliasing problem would occur and images (absorption, phase,
and dark-field) cannot be separated completely. In order to avoid
signal aliasing problems, research toward removing unwanted
harmonics would be useful for increasing the spatial resolution in
the spatial harmonic method.

DISCUSSION

In conclusion to our simulation, the location of the sample,
the period of 2D grating, the area duty cycle of the mesh, the
shape of the mesh, and the width of harmonics in the spatial
harmonic method all contribute to the spatial resolution. In
order to achieve a higher resolution in three kinds of images, a
larger distance between the sample and the grating is
preferred. As for the grating period, it is well known that a
smaller period of 2D grating results in a better resolution.
However, the fabrication of a small period grating is now
limited by micro- and nano-processing technology. In our
simulation, 0.25 is the best area duty cycle in our experiment
condition. When the other system parameters are set at

FIGURE 8 | Three different shapes of mesh. (A) Rectangle type. (B) Parallelogram type. (C) Circle type.

TABLE 1 |Simulation results of theminimum detectable line width of our resolution
test chart at different directions for absorption (μm).

Shape direction 0° 45° 90° 135°

Rectangle 25.6 25.6 25.6 25.6
Parallelogram 12 13.6 12 13.6
Circle 12.8 13.6 12.8 13.6

TABLE 2 |Simulation results of theminimum detectable line width of our resolution
test chart at different directions for phase (μm).

Shape direction 0° 45° 90° 135°

Rectangle 25.6 25.6 25.6 25.6
Parallelogram 11.2 11.2 11.2 11.2
Circle 11.2 11.2 11.2 11.2

TABLE 3 |Simulation results of theminimum detectable line width of our resolution
test chart at different directions for dark-field (μm).

Shape direction 0° 45° 90° 135°

Rectangle 25.6 38.4 25.6 38.4
Parallelogram 12.8 13.6 12.8 13.6
Circle 13.6 13.6 13.6 13.6
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different values, the best area duty cycle may change. The
shape of the mesh is recommended as the square type, as the
spatial resolution is restricted by the larger period of two
different directions. In order to obtain a higher resolution, a
larger width of harmonics is preferred. However, in order to
avoid the signal aliasing problem caused by the overlapping
area of harmonics, removal of unwanted harmonics would be
beneficial to obtain a larger area of the harmonic region. As
the real 2D grating–based X-ray phase contrast imaging
system is much complicated, there exist other factors
affecting the spatial resolution which we may ignore.

Besides the research on factors affecting spatial resolution,
we also find limitation on the grating-to-detector distance in the
spatial harmonic method for a totally or partially coherent X-ray
source. Simulations are carried out by changing the grating-to-
detector distance. The X-ray wavelength is also set as 0.155 nm.
The period of the 2D absorb mesh is 12.8 μm with the area duty
cycle of 0.25. The source-to-grating distance is set as 0.8 m. The
grating-to-detector distance is set as 0.529, 0.634, 0.951, and
1.057 m. No samples are placed in the system. Figure 10 shows
raw images obtained from the detector. Different periodic
patterns could be observed at different distances in
Figure 10B–D, which is caused by Fresnel diffraction. By
applying 2D Fourier transform on these images, both the
zeroth harmonic and the first harmonic could be acquired.

And then absorption, differential phase contrast, and dark-
field could be retrieved via the Fourier transform method at
these distances. However, it is clear that no periodic structure
could be found in Figure 10A. Meanwhile, only the zeroth
harmonic could be seen in the Fourier space, which results in the
failure to retrieve differential phase contrast and dark-field
images. This phenomenon is caused due to the Talbot effect.
Not only the 2D absorb mesh-type grating but also all 2D
gratings do have the distance limitation according to our
further simulation. And the limited distance is not the same.
Moreover, this limited distance changes when the area duty
cycle of the 2D grating varies. It seems difficult to give an
accurate expression of this limited distance as it changes with
both the area duty cycle and type of the 2D grating. It is
recommended to avoid setting the distance between the 2D
grating and the detector as the limited distance or around it
when building the system.

This simulation is suitable for 2D grating–based X-ray phase
contrast imaging in which the X-ray source is completely or
partially coherent as a synchrotron radiation source, microfocus
source, or traditional X-ray tube with a source grating. It is not
appropriate to simulate incoherent X-ray source–based imaging
systems with scalar diffraction theory and the operator theory of
imaging due to their difficulty in establishing the diffraction
model and higher calculation. And simulations based on the

FIGURE 9 | Simulation results on the width of harmonics in the spatial harmonic method. The minimum detectable width for different widths of harmonics in (A)
absorption, (B) phase, and (C) dark-field.

FIGURE 10 | Raw images obtained from the detector. The grating-to-detector distance is (A) 0.529 m, (B) 0.634 m, (C) 0.951 m, and (D) 1.057 m.
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Monte Carlo algorithm are preferred for these systems. The
conclusions we drew are based on the simulation merely. The
experimental conditions are relatively complex, and there are
many unknown factors left unaccounted for. Therefore, further
study could be carried out in the experiment to determine factors
which may influence the spatial resolution of absorption and
phase contrast.

CONCLUSION

In this paper, we successfully simulated raw images obtained from a
2D grating–based phase contrast imaging system. Absorption,
differential phase contrast, and dark-field are retrieved from a
single raw image via the Fourier transform method. The factors
affecting the spatial resolution of absorption and phase contrast
were studied. The location of the sample, the period of 2D grating,
the area duty cycle of the 2D grating, and the width of harmonics in
the spatial harmonic method play vital roles in determining the
spatial resolution. Meanwhile, the shape of the 2D grating should
also be chosen properly. It is also worth noting that the spatial
resolution differs at different directions in both absorption and
phase contrast under certain conditions. Besides the simulation
toward the spatial resolution, distance limitation in the spatial
harmonic method is also investigated. The grating-to-detector
distance should not be set with certain values, or the first
harmonic would disappear in the spatial harmonic method,
which causes the failure to obtain differential phase contrast and
dark-field images via the Fourier transform method. The research
on the spatial resolution and the distance limitation would be

instructive for building a 2D grating–based phase contrast imaging
system. So, our workwould be beneficial for further development in
high-resolution X-ray biological microscopy.
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