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With the goal of using chiral interactions at various orders to explore the properties of

the few-body nuclear systems, we write the recently developed local chiral interactions

as spherical irreducible tensors and implement them in the hyperspherical harmonics

expansionmethod.We devote particular attention to three-body forces at next-to-next-to

leading order, which play an important role in reproducing experimental data. We check

our implementation by benchmarking the ground-state properties of 3H, 3He, and 4He

against the available Monte Carlo calculations. We then confirm their order-by-order

truncation error estimates and further investigate uncertainties in the charge radii

obtained by using the precise muonic atom data for single-nucleon radii. Having local

chiral Hamiltonians at various orders implemented in our hyperspherical harmonics suites

of codes opens up the possibility to test such interactions on other light-nuclei properties,

such as electromagnetic reactions.

Keywords: nuclear interactions, hyperspherical harmonics, light nuclei, ab-initio theory, chiral effective field theory

1. INTRODUCTION

In 1935 the seminal idea of Yukawa [1] laid the foundation to the theory of the nuclear forces.
His one-pion exchange term is nowadays known as an important contribution to the interaction
among nuclei in the long-distance range and is implemented in many nuclear interaction models.
In the mid 1990s the first high-precision nucleon-nucleon (NN) potentials able to reproduce at
the same time the deuteron properties, the proton-proton, and the proton-neutron scattering
data were released. Some notable examples of these interactions are the Argonne v18 (AV18)
[2], the Nijmegen (Nijm93) [3], and the charge-dependent Bonn (CD-Bonn) [4]. The subsequent
development of three-nucleon (3N) interactions, see for instance references [5, 6], improved the
description of the A > 2 nuclear dynamics, initiating a successful theoretical campaign of nuclear
structure and reaction predictions, see e.g., references [7–9] and references therein. Despite the
great success of the phenomenological interactions, there are still open questions to address,
including the difficulty of providing solid uncertainty quantifications in the modeling of the forces,
the lack of connection between the NN and 3N interactions and the missing direct link to quantum
chromodynamic (QCD), the fundamental theory of the strong force.

An important step forward to address these issues was made when the concept of effective
field theory (EFT) was introduced and applied to low-energy QCD. As suggested by Weinberg
[10–13], the low-energy nuclear dynamic can be described by a Lagrangian written in terms of
pions and nucleons fields and consistent with all the commonly accepted symmetries of QCD,
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including the (explicitly and spontaneously broken) chiral
symmetry which strongly constrains the pion dynamics. The
proposed Lagrangian contains an infinite number of terms
and a systematic expansion must be introduced to make the
theory applicable. Following Weinberg’s proposal, in the early
2000s, modern versions of chiral-inspired nuclear interactions
were released by many groups—for a compilation of results,
see for instance references [14–16] and references therein—
each interaction being different by the truncation order of the
chiral expansion, by the inclusion or exclusion of the 1-isobar,
by the fitting procedure or by the regularization scheme used.
Given that these interactions are derived in field theories written
in momentum space, they are highly non-local. One of the
consequences is that they are difficult to implement in some
of the few- and many-body techniques which are developed in
coordinate-space representation.

In recent years a new chiral-inspired set of nuclear interactions
at the next-to-next-to-leading order (N2LO) has become
available [17–20]. These interactions have a series of interesting
properties which make them a promising framework for future
nuclear computations. These interactions are completely written
in coordinate space and contain only one non-local operator.
Furthermore, the NN and 3N terms are regularized consistently,
namely the same regulator form and cut-off is used. Here,
these interactions are written for the first time as a product
of irreducible tensors under space rotations, a required step
for the implementation into the hyperspherical harmonics
formalism. Using the method of hyperspherical harmonics,
we perform benchmark tests in light-nuclear systems, where
we compare to available results from the Green’s function
Monte Carlo (GFMC) and the auxiliary field diffusion Monte
Carlo (AFDMC) methods. We note that analogous benchmarks
between the hyperspherical harmonic and quantum monte-carlo
methods have been successfully performed in recent years for an
alternative set of local-chiral interactions that explicitly includes
the excitation of the 1-resonance [21–23].

This paper is summarized as follows. In section 2, we
briefly overview the formulation of the hyperspherical harmonics
method in coordinate-space representation. In section 3, we
present the maximally-local chiral interactions developed in
reference [20] and rewrite the 3N force as a product of
irreducible tensors under space rotations. In section 4, we show
our benchmark results for 3H, 3He, and 4He and we discuss
uncertainties. Finally, section 5 is reserved for the conclusive
remarks and the overview of future prospects.

2. HYPERSPHERICAL HARMONICS

The hyperspherical harmonic method was firstly introduced in
1935 by Zernike and Brinkman [24], reintroduced later in the
60’s by Delves [25], Simonov [26], Zickendraht [27], and Smith
[28] and it is extensively applied nowadays to the study of few-
body systems. For recent reviews with applications to nuclear
physics we refer the reader to the following references [29, 30]. In
this work, the hyperspherical harmonic functions are constructed
to form irreducible representations of the SO(3) group of space

rotations, the O(N) group of dynamical rotations in the space
spanned by the N Jacobi vectors, and the SA permutation
group of the A-particle system. The method is briefly reviewed
in this section, the formalism introduced follows closely
references [31, 32].

We consider a system of A identical nucleons, the Jacobi
coordinates {ηi} are commonly introduced in order to separate
the internal degrees of freedom from the center of mass. There
are several ways to construct the set of N = A − 1 Jacobi
coordinates out of the A coordinate vectors {ri} of the nucleons.
One commonly used definition for the relative Jacobi vectors is

ηj−1 =
√

j− 1

j

(

rj −
1

j− 1

j−1
∑

i=1

ri

)

; j = 2, ...,A. (1)

From a given choice of Jacobi coordinates, the hyperspherical
coordinates {ρN ,ϕ(N),�(N)} can be introduced. In this
notation, ρN is the hyper-radius, �(N) ≡ {�1, ...,�N} where
�j = (θj,φj) gathers the angular coordinates of the Jacobi vectors,
and ϕ(N) ≡ {ϕ2, ...,ϕN} is a set of hyper-angles.

The hyper-radial coordinates ρ1, ..., ρN and the hyper-
angular coordinates ϕ2, ...,ϕN are constructed recursively. The
transformation law for the first two Jacobi coordinates is

η1 = ρ1 = ρ2 cosϕ2,

η2 = ρ2 sinϕ2.
(2)

Assuming that we already know the hyper-radial coordinates
ρ1, ..., ρj−1 and the hyper-angular coordinates ϕ2, ...,ϕj−1 the
transformation law for ρj and ϕj reads in analogy to
Equation (2) as

ρj−1 = ρj cosϕj,

ηj = ρj sinϕj.
(3)

The internal kinetic energy operator for the A-body system is
given by the 3N-dimensional Laplace operator 1(N). In terms
of the hyperspherical coordinates it is written as

1(N) = 1ρ − 1

ρ2
K̂2
N(ϕ(N),�(N)) (4)

where the hyper-radial part is

1ρ = ∂2

∂ρ2
+ 3N − 1

ρ

∂

∂ρ
, (5)

with ρ ≡ ρN . K̂2
N is the grand-angular momentum

operator whose eigenfunctions are known as the
hyperspherical harmonics.

Denoting l̂j as the angular momentum operator related to ηj,

and L̂2j and M̂j as the total orbital angular momentum operator

and z-projection of the system identified by the first j Jacobi
coordinates, it is possible to define the grand-angular momentum
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operator K̂2
N of the system recursively in terms of K̂2

N−1 and

l̂N as [33]

K̂2
N = − ∂2

∂ϕ2
N

+ 3N − 6− (3N − 2) cos(2ϕN)

sin(2ϕN)

∂

∂ϕN

+ 1

cos2 ϕN
K̂2
N−1 +

1

sin2 ϕN
l̂2N (6)

where K̂2
1 = l̂21.

The operators K̂2
N , ..., K̂

2
2 , L̂

2
N , ..., L̂

2
2, l̂

2
N , ..., l̂

2
1, and M̂N commute

with each other. As a consequence, it is possible to label
hyperspherical states using the set of 3N − 1 quantum numbers
{K} ≡ {KN , ...,K2, LN , ..., L2, lN , ..., l1,MN}. The hyperspherical
harmonics functions Y{KN } are the eigenfunctions of the grand-
angular momentum operator with eigenvalues KN(KN + 3N −
2). The explicit expression for the resulting hyperspherical
harmonics functions is given by [34]

Y{KN } =
[

∑

m1 ,...,mN

CL2M2

l1m1 ,l2m2
C
L3M3

L2M2 ,l3m3
× ...

× C
LNMN

LN−1MN−1 ,lNmN

N
∏

j=1

Yljmj
(�j)

]

×

×
[

N
∏

j=2

Nj(sinϕj)
lj (cosϕj)

Kj−1P

[

lj+ 1
2 ,Kj−1+ (3j−5)

2

]

nj (cos 2ϕj)

]

,

(7)

where CLM
limi ,ljmj

are the Clebsch-Gordan coefficients, Yljmj
(�j)

are the spherical harmonics associated with ηj, P

[

α,β
]

n are Jacobi
polynomials and

Nj =
[

(3Kj + 3j− 2)nj!Ŵ(nj + Kj−1 + lj + 3j−2
2 )

Ŵ(nj + lj + 3
2 )Ŵ(nj + Kj−1 + 3j−3

2 )

]
1
2

(8)

is a normalization constant with 2nj = Kj − Kj−1 − lj.
In our formulation of the hyperspherical harmonics method

we construct hyper-angular functions that form irreducible
tensors under the SO(3) group of spatial rotations, the O(N)
group of kinematic rotations and the SA group of permutations
of the A nucleons. These symmetry-adapted hyperspherical
harmonics, Y[KN ], are uniquely identified by the set of quantum
numbers [KN] ≡ {KN , LN ,MN ,λN ,αN YA,βA}. For the
current purposes, it is enough to specify that λN identifies
the irreducible representation of O(N), YA is the Yamanouchi
symbol which specifies the irreducible representations of
the group-subgroup chain S1 ⊂ . . . ⊂ SA presented by
the appropriate Young diagrams Ŵ1, . . . ,ŴA, while αN and
βA are additional quantum numbers needed to remove
further degeneracies. The O(N) and SA symmetry-adapted
hyperspherical harmonics Y[KN ] are constructed recursively.
Assuming that Y[KN−1] have been already constructed, the
Nth Jacobi coordinate is then coupled to this system, so that
a state with total angular momentum LN and grand-angular

momentum KN is formed, let us call this state Y[KN−1],KNLNMN .
Note that Y[KN−1],KNLNMN is a irreducible tensor under O(N − 1)
and SA−1 but not under O(N) and SA. The states Y[KN ] are
obtained as linear combinations of the states Y[KN−1],KNLNMN ,
where the coefficients of the linear combinations are labeled
as

[

(

KN−1, LN−1,λN−1,αN−1; lN
)

KNLN |}KNLNλNαN

]

,
[

(

λN−1ŴNβN

)

λN |}λNŴAβA

]

and are known as hyperspherical

orthogonal group parentage coefficients (HSOPCs) and
orthogonal group coefficients of fractional parentage
(OCFPs), respectively.

The full expression of the symmetry-adapted hyperspherical
harmonics reads

Y[KN ] =
∑

λN−1βN

[

(

λN−1ŴNβN

)

λN |}λNŴAβA

]

×

×
∑

KN−1 ,LN−1 ,αN−1 ,lN

[

(

KN−1, LN−1,λN−1,αN−1; lN
)

KNLN |}

KNLNλNαN

]

×

× Y[KN−1],KNLNMN .

(9)

Nucleons also possess spin and isospin degrees of freedom.
Because the nuclear Hamiltonian is rotationally invariant,
nuclear states have the total angular momentum J as good
quantum number. Furthermore, isospin is an approximate
symmetry for the nuclear interaction with the consequence that
the total isospin T of a nuclear state is a conserved quantum
number. For these reasons we couple the symmetry-adapted
hyperspherical harmonics to the SA symmetry-adapted spin-
isospin wavefunction χ of the A-nucleon system

H(KN ) =
∑

YN

3ŴA ,YN√
|ŴA|

∑

MNSz

C
JJz
LNMN ,SSz

Y[KN ] χ[SA] . (10)

Here (KN) ≡ {KN , LN , SN , JN , (JN)z ,λN ,α
ST
N ,YA,βA}, [SA] ≡

{S, Sz ,T,Tz ,YA,α
ST
A }, 3ŴA ,YN is a phase factor, and |ŴA| is the

dimension of the irreducible representation ŴA.
Analogously to what has been done with the hyperspherical

harmonics, the spin-isospin wavefunctions are constructed
recursively. Assuming that the symmetry-adapted wavefunction
χ[Sj−1] have been obtained, the construction of the χ[Sj] is done
by first coupling χ[Sj−1] to the spin-isospin wavefunction of the
jth nucleon, let us call this state χ[Sj−1],SjTj , and then taking linear
combinations of χ[Sj−1],SjTj using the coefficients of fractional

parentage labeled as
[

Sj−1SjTj−1TjŴj−1α
ST
j−1|}SjTjŴjα

ST
j

]

. Namely

the full expression for χ[Sj] reads

χ[Sj] =
∑

Sj−1Tj−1α
ST
j−1

[

Sj−1SjTj−1TjŴj−1α
ST
j−1|}SjTjŴjα

ST
j

]

χ[Sj−1],SjTj .

(11)
We are finally able to expand the nuclear wavefunction in
terms of hyperspherical harmonics. In practice, the expansion is
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performed up to a maximal value of the grand-angular quantum
number Kmax as

9 =
Kmax
∑

(KN )

R(KN )(ρN)H(KN )(�N) . (12)

When we insert this wavefunction into the Schrödinger equation,
an eigenvalues equation is obtained for the hyper-radial
wavefunction R(KN ), the eigenvalue equation is then solved
by expanding the hyper-radial wavefunction in terms of an
orthogonal set of functions. In this work the set is taken as
the generalized Laguerre polynomials Lvn(ρN). Again, the model
space is truncated to a given maximum number of Laguerre
polynomials nmax

R(KN ) =
nmax
∑

n=0

Cn
(KN )

Lvn(ρN). (13)

With the introduction of this further model space, the resulting
eigenvalue equation is solved with direct diagonalization
routines, or with the Lanczos method when the model space is
too big for a direct diagonalization. In essence, the hyperspherical
harmonics method is a powerful technique that allows for an
exact solution of the Schrödinger equation for few-body systems.
In the limit where nmax → ∞ and Kmax → ∞ the solution
correspond to the exact solution to the Schrödinger equation.
While we observe that good convergence can be reached with
nmax ≤ 50, the convergence in terms of Kmax will be carefully
investigated. The uncertainty coming from the truncation of the
model space, in particular of Kmax, can be estimated by looking
at the convergence pattern of the observables of interest, for
instance the binding energy and the radius. As a consequence, the
method is an excellent candidate for uncertainty quantifications
in nuclear physics, with the possibility of performing tests over
commonly accepted nuclear Hamiltonians or making precise
predictions for few-nucleon systems. Because the formulation
we present here is developed in coordinate space, the method
benefits from having local forces, such as the AV18 potential.
While one can formulate hyperspherical harmonics also in
momentum space [35], the goal of this paper is to work in
coordinate space and implement local-chiral interactions. To
further improve the convergence with respect to the model
space, we make use of the effective interaction hyperspherical
harmonics (EIHH) method. The interested reader can find more
details on this approach in reference [36], and also in the more
recent review [37].

3. NUCLEAR HAMILTONIANS

Nuclear physics is mainly formulated in the framework of non-
relativistic quantum mechanics. The relevant degrees of freedom
are represented by the nucleons, whose interactions are remnants
of the color forces among the quarks. In this picture, the
nucleus is a compound object of A non-relativistic nucleons

and the dynamic of the system is specified by the nuclear
Hamiltonian operator

Ĥ = T̂+V̂+Ŵ+... =
A

∑

i=1

T̂i+
A

∑

i>j=1

V̂ij+
A

∑

i>j>k=1

Ŵijk+... , (14)

where T̂ is the sum of the non-relativistic kinetic energy operators
of the individual nucleons, V̂ is a sum of NN interactions, and Ŵ
is a sum of 3N interactions. The dots stand for higher order forces
not explicitly included in this work.

Our goal is to solve the Schödinger equation

Ĥ |9〉 = E |9〉 (15)

and when working with antisymmetrized wavefunctions, the
expectation values of the NN and 3N terms become

〈9|V̂|9〉 = A(A− 1)

2
〈9|V̂12|9〉 , (16)

〈9|Ŵ|9〉 = A(A− 1)(A− 2)

6
〈9|Ŵ123|9〉 ,

where only the first two (or three) particles are involved.1

In the modern theory of nuclear forces, interactions are
derived from the chiral effective field theory (ChEFT). In
this theory, proposed first by Weinberg [10–13], the chiral
Lagrangian is constructed in terms of pion and nucleon fields
and is consistent with the commonly accepted symmetries of
QCD, including the explicitly and spontaneously broken chiral
symmetry. This effective Lagrangian has infinitely many terms,
therefore one needs to introduce an ordering scheme to render
the theory predictive.

In ChEFT, the terms in the chiral Lagrangian are analyzed
counting powers of a small external momentum over the large
scale: (Q/3χ )

ν , where Q stands for an external momentum or a
pion mass and 3χ is the chiral symmetry breaking scale, whose
value is approximately given by the mass of the ρ-meson 3χ ∼
mρ = 770 MeV. Determining systematically the power of ν has
become known as power counting. The lowest possible value of ν
is conventionally referred to as the leading order (LO), the second
lowest is the next-to-leading order (NLO), the third lowest is the
next-to-next-to leading order (N2LO), and so on.While there are
many proposed power counting schemes [38–43], in this work we
adopt the Weinberg power counting, which makes use of naive
dimensional analysis [11, 12].

Given that ChEFT is naturally formulated in momentum
space, the derived nuclear interactions are strongly non-local,
which is a disadvantage for methods that are formulated in
coordinate space. However, it has been recently found that
it is possible to construct maximally local chiral interactions
by regularizing in coordinate space and exploiting Fierz
ambiguities to remove non-localities in the short-distance
interactions [17–20].

1This property will be used later when we will write explicitly the form of the

nuclear forces between (among) two (three) particles.
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The local chiral NN forces are composed of contact (ct) terms
and pion-exchange (π) terms so that the interaction between
particle 1 and 2 can be written as

V12 = Vct
12 + Vπ

12 . (17)

When working with totally anti-symmetric systems, it is possible
to exploit Fierz ambiguities for removing the non-local operators
contributing to the contact NN interactions. This means that
the interactions can be chosen to have the following operator
structure [17] at LO

Vct,LO
12 =

(

CS + CTσ 1 · σ 2

)

δ(r12), (18)

where r12 is the relative distance between nucleon 1 and nucleon
2, σ 1/2 are the vector-spin Pauli matrices operating in the space
of the first/second nucleon2 and δ is the delta function.

At NLO, the following new terms enter

Vct,NLO
12 =−

(

C1 + C2τ 1 · τ 2

)

1δ(r12)

−
(

C3 + C4τ 1 · τ 2

)

σ 1 · σ 21δ(r12)

+ C5

2

∂r12δ(r12)

r12
L · S+

(

C6 + C7τ 1 · τ 2

)

×
[

(

σ 1 · r̂12
)(

σ 2 · r̂12
)

[∂r12δ(r12)

r12
− ∂2r12δ(r12)

]

−σ 1 · σ 2
∂r12δ(r12)

r12

]

,

(19)

where τ 1/2 are the vector-isospin Pauli matrices, 1 is the Laplace
operator, L and S are the total orbital angular momentum and
spin operator in the two-body system represented by the two
interacting nucleons3, r̂12 is the unit vector related to the relative
distance r12, and the δ-function will have to be regularized.
The {Ci} are a set of low energy constants (LECs). The term
proportional to the LEC C5 is the only non-local operator
appearing in this maximally local chiral interaction.

Following references [17, 44], all the pion-exchange
interactions up to N2LO can be written in a complete local
form as

Vπ
12 = VC(r12)+WC(r12)τ 1 · τ 2

+
[

VS(r12)+WS(r12)τ 1 · τ 2

]

σ 1 · σ 2

+
[

VT(r12)+WT(r12)τ 1 · τ 2

]

S12 , (20)

where, S12 is the well-known tensor operator, defined as

S12 = 3(σ 1 · r̂12)(σ 2 · r̂12)− (σ 1 · σ 2) . (21)

The local functions VC(r12),WC(r12), VS(r12),WS(r12), VT(r12),
and WT(r12) have dependencies on the axial-vector coupling

2Even though they are operators in spin space, we do not use the hat in our

notation, as they are vectors, whose components are operators.
3We drop the hat from vectors whose components are operators.

FIGURE 1 | Feynman diagrams of the chiral 3N force at N2LO, from the left to

the right: 2π-term, 1π-term, and ct-term.

constant of the nucleon gA, on the pion decay constant Fπ and
on the pionmass mπ . These functions are evaluated at each order
in ChEFT (LO, NLO, and N2LO) and details can be found in
reference [44]. In reference [20] pion loops are regularized using
the spectral-function regularization (SFR) with an ultraviolet
cut-off 3̃ = 1 GeV and we follow this prescription.

The local chiral NN interactions up to N2LO are already
written or can be written with minimal modifications as
irreducible tensors under space rotations. Thus, they can be
easily implemented in the hyperspherical harmonics formalism
in coordinate space. In fact, they have pretty much the same
structure as the Argonne potential AV8’ [45] with the only
difference being that, compared to this interaction, there is no
isospin-dependent spin-orbit operator. The same does not apply
to 3N interactions.

Three-body interactions arise at NLO in Weinberg power
counting. However, at this order their contribution is canceled
out. The first non-zero contributions start at N2LO. The 3N
force at this order is composed of a two-pion (2π) exchange, a
one-pion (1π) exchange and a 3N contact (ct) interaction (see
Figure 1). On the one hand, the 2π-term comes with the LECs
c1, c3, and c4 that already appear at the subleading two-pion-
exchange interaction at the NN level at the same chiral order
which highlights the consistency of the NN and 3N interactions
in ChEFT. On the other hand, the one-pion exchange and the 3N
contact diagrams introduce two new LECs, cD and cE, whichmust
be fitted on A ≥ 3 observables.

With respect to reference [20], here the 3N interaction is
written for a given triplet of nucleons, since at the end we use
the fact that the wavefunction is anti-symmetric to compute the
expectations values as in Equation (16). The 3N interaction reads

W123 =
∑

cyc

W1,23

=
∑

cyc

[

W2π ,c1
1,23 +W

2π ,c3
1,23 +W2π ,c4

1,23 +W1π ,cD
1,23 +Wct,cE

1,23

]

,

(22)

where the sum runs over the cyclic permutations of the particle
triplet and the notation has the intention to highlight the
symmetry of the interaction over the exchange of particles 2
and 3. Each term is denoted with a label that includes the
associated LEC.
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The 2π exchange terms are given by

W2π ,c1
1,23 = AU12Y12U13Y13(τ 2 · τ 3)(σ 2 · r̂12)(σ 3 · r̂13),

W
2π ,c3
1,23 = B{τ 1 · τ 2, τ 1 · τ 3}{χ12,χ13},

W2π ,c4
1,23 = −C[τ 1 · τ 2, τ 1 · τ 3][χ12,χ13] , (23)

where the coupling constants are A = c1
g2Am

4
π (h̄c)

2

16π2F4π
, B =

c3
g2Am

4
π (h̄c)

2

1152π2F4π
, and C = c4

g2Am
4
π (h̄c)

2

2304π2F4π
. The 2π-terms include the

following functions

Y12 = Y(r12) = e−mπ r12

r12
, (24)

U12 = U(r12) = 1+ 1
mπ r12

,

with analogous expressions for Y13 and U13. The operator χ12

(and analogously χ13) is defined as

χ12 = X12 −
4π

m2
π

δ12σ 1 · σ 2 = T12S12 + Ỹ12σ 1 · σ 2 (25)

with

X12 = T12S12 + Y12σ 1 · σ 2, (26)

Ỹ12 = Y12 −
4π

m2
π

δ12 ,

T12 = T(r12) = (1+ 3

mπ r12
+ 3

(mπ r12)2
)Y12 ,

δ12 = δr0 (r12) =
1

4π
n Ŵ( 3n )r

3
0

e−(r12/r0)
n
.

In the last expression, r0 is the cut-off and following
references [18–20] n is taken to be equal to 4.

For the 1π-interaction terms there are two options

W1π ,cD1
1,23 = D(τ 2 · τ 3)[X23(r12)δ13 + X23(r13)δ12

− 8π

m2
π

δ12δ13σ 2 · σ 3] (27)

and

W1π ,cD2
1,23 = D(τ 2 · τ 3)χ23(δ12 + δ13) ,

with D = cD
gAm

2
π (h̄c)

4

96π3χF4π
. While the difference between the two is

due to regulator artifacts, in this work only the second choice is

implemented, namelyW1π ,cD2
1,23 .

For the contact term there are different options on the
operator structure, which come from different choices in the
Fierz rearrangement. In this work only the following one
is considered

Wct,cEτ
1,23 = E(τ 2 · τ 3)δ(r12)δ(r13) , (28)

with E = cE
(h̄c)6

3χF4π
.

The value of all LECs entering the 3N forces at N2LO are
shown inTable 1. In references [19, 20] cD and cE have been fitted
in order to reproduce the 4He binding energy and the n-α P-wave
phase shift.

TABLE 1 | Fit values for the couplings cD and cE for different choices of 3N

cut-offs as reported in references [19, 20].

3N force
r0 cE cD c1 c3 c4

(fm) (GeV−1) (GeV−1) (GeV−1)

N2LO (D2, Eτ )
1.0 −0.63 0.0 −0.81 −3.40 3.40

1.2 0.085 3.5 −0.81 −3.40 3.40

The constants c1,3,4 are tuned in the pion-nucleon sector, see reference [15].

3.1. Three-Nucleon Forces as Spherical
Tensors
The above expressions for the 3N force are not written in
terms of irreducible spherical tensors, so that they cannot be
implemented directly into the hyperspherical formalism. In this
section we address this point and write the interaction in terms of
irreducible spherical tensors, both in coordinate-spin space and
in isospin space.

For convenience, we denote the general spin space 6λ
ij ,

6
λ,3
ij,k

and configuration space Xλ
ij , X

(λ,λ′)3
ij,ij irreducible tensor

operators as

6λ
ij = [σ i × σ j]

λ,

6
λ,3
ij,k

=
[

[σ k × [σ i × σ j]
λ
]3

,

Xλ
ij = [r̂1i × r̂1j]

λ,

X
(λ,λ′)3
ij,ij =

[

[r̂1i × r̂1j]
λ × [r̂1i × r̂1j]

λ′
]3

, (29)

where i, j, k are generic particle indexes and r̂1i is the rank 1
normalized spherical tensor associated to the relative distance
between particle 1 and particle i. With the notation [r̂1i× r̂1j]

λ we
intend the two rank-one coordinate space tensors coupled into a
rank-λ tensor, and analogously for [σ i × σ j]

λ and [τ i × τ j]
λ in

spin and isospin space, respectively. Furthermore, we define

Xλ(r̂ij, r̂ij) = [r̂ij × r̂ij]
λ , (30)

where r̂ij is the rank-1 normalized spherical tensor associated to
the relative distance between particles i and j.

At this point, after rearranging the couplings with a few Racah
algebra steps and by using the previously introduced notation,
one can rewrite the 3N interactions of Equations (23), (27), (28)
in terms of irreducible tensors in isospin space and in the coupled
spin-configuration space.

The 2π-exchange term depending on c1 becomes

W2π ,c1
1,23 = AU12Y12U13Y13(τ 2 · τ 3)(σ 2 · r̂12)(σ 3 · r̂13)

= −
√
3A[τ 2 × τ 3]

0FUU
(

60
23 · X0

23 − 61
23 · X1

23

+62
23 · X2

23

)

, (31)
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the 2π-exchange term that depends on c3 becomes

W
2π ,c3
1,23 = B{τ 1 · τ 2, τ 1 · τ 3}{χ12,χ13}

= −2
√
3B[τ 2 × τ 3]

0
(

60
23 · (+FTTX

0
23 −

1√
3
(3FYY + FTY + FYT))

+ 61
23 · (−FTTX

1
23)

+ 62
23 · (+FTTX

2
23 + FTYX

2
22 + FYTX

2
33)

)

, (32)

while the term that depends on c4 can be expressed as

W2π ,c4
1,23 = −C[τ 1 · τ 2, τ 1 · τ 3][χ12,χ13]

= 4
√
3C[τ 1 × [τ 2 × τ 3]

1]0
[

6
1,0
23,1 ·

(

− FTTX
(1,1)0
23,23 − 1√

3
(3FYY + FTY + FYT)

)

+ 6
0,1
23,1 ·

(

+ FTTX
(1,0)1
23,23

)

+ 6
2,1
23,1 ·

(

+ FTTX
(1,2)1
23,23

)

+ 6
1,2
23,1 ·

(

− FTTX
(1,1)2
23,23 − 1

2
(FTYX

2
22 + FYTX

2
33)

)

+ 6
2,2
23,1 ·

(

− FTTX
(1,2)2
23,23 −

√
3

2
(FTYX

2
22 − FYTX

2
33)

)

+ 6
2,3
23,1 ·

(

+ FTTX
(1,2)3
23,23

)]

. (33)

To write the above expression in a compact form, we have
introduced the following definitions

FUU = U12Y12U13Y13,
FTT = 18T12T13,
FYY = 2(Ỹ12 − T12)(Ỹ13 − T13),
FTY = 6T12(Ỹ13 − T13),
FYT = 6(Ỹ12 − T12)T13 . (34)

The 1π-exchange contribution takes the following form

W1π ,cD2
1,23 = D(τ 2 · τ 3)χ23(δ12 + δ13)

= −
√
3D[τ 2 × τ 3]

0
[

60
23 ·

(

−
√
3(δ12 + δ13)Ỹ23

)

+ 62
23 ·

(

3(δ12 + δ13)T23X
2(r̂23, r̂23)

)]

, (35)

while the contact term becomes

Wct,cEτ
1,23 = E(τ 2 · τ 3)δ12δ13 = −

√
3E[τ 2 × τ 3]

0δ12δ13 . (36)

We have implemented these expressions in our hyperspherical
harmonics codes. Since the interaction is now written in terms
of irreducible tensors, the spin and isospin matrix elements
can be computed analytically. For the calculation of the spatial
matrix elements one can reduce the six-dimensional integration
in the two Jacobi coordinates to a two-dimensional numerical

quadrature, as explained in details in reference [46]. Below we
present the benchmark results we obtained with these local-chiral
forces on few-body systems, such as 3H, 3He, and 4He.

4. RESULTS

In this section we show the benchmark tests of the maximally-
local-chiral interactions using the EIHH method. We compute
ground-state energies and charge radii in three- and four-nucleon
systems and compare to two Monte Carlo methods, namely the
GFMC and AFDMCmethods.

In the computations of nuclear charge radii, we use

〈r2c 〉 = 〈r2pt〉 + r2p +
A− Z

Z
r2n +

3h̄2

4m2
pc

2
, (37)

where
√

〈r2pt〉 is the calculated point-proton radius, rp =
0.8751(61) fm [47] is the root-mean-square (rms) charge radius
of the proton, r2n = −0.1161(22) fm2 [47] is the squared
charge radius of the neutron, and Z is the number of protons
in the nucleus. The last term is the Darwin-Foldy correction
to the proton-charge radius [48] which depends on the proton
mass mp. We neglect the spin-orbit relativistic contribution,
since it is negligible in s-shell nuclei [49], as well as meson
exchange currents.

Keeping in mind that the goal of this work is to benchmark
our expressions for the 3N forces at N2LO by comparing to the
Monte Carlo results, we have used the same numerical values for
rp and rn as in reference [20], which follows the CODATA-2014
recommendations [47]. Hence, in a first stage we will not be using
the more modern results for rp/n from references [50, 51].

A few words addressing the estimation of the numerical
uncertainties are in line. As already said, the EIHH method
allows for an exact solution of the Schrödinger equation, the
computed wavefunction converges to the true eigenfunction of
the Hamiltonian operator in the limit of infinite model space.
The model space is mostly given by the maximal number, nmax,
of Laguerre polynomials and the choice of the maximal value
of the grand-angular momentum quantum number, Kmax, in
the construction of the hyperspherical harmonics functions. It
has been practically found that beyond a value nmax = 50, the
expectation values are negligibly modified. The convergence in
terms of Kmax is more delicate, so that in order to estimate the
uncertainty coming from the truncation of the model space, we
analyze the converging pattern at increasing values of Kmax.

To quantify our numerical uncertainty we proceed as follows:
denoting with O(Kmax) the expectation value of an observable Ô
computed by setting a given maximal value of the grand-angular
momentum quantum number, Kmax, in the wavefunction, our
uncertainty in this observable is estimated by

δ(O) = |O(Kmax)− O(Kmax − 2)|
+ |O(Kmax − 2)− O(Kmax − 4)| + δres, (38)

where δres is the residual uncertainty (not due to the Kmax

behavior) obtained by varying: the number of radial grid points
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TABLE 2 | Ground-state energies and point-proton radii for the 4He nuclear

system at LO and NLO computed with the EIHH method.

LO NLO

Cut-off E0

√

〈r2pt〉 Cut-off E0

√

〈r2pt〉

(fm) (MeV) (fm) (fm) (MeV) (fm)

EIHH
1.0 −42.830(6) 1.0370(3) 1.0 −21.55(4) 1.575(1)

1.2 −46.6054(7) 1.01765(4) 1.2 −22.974(6) 1.5278(6)

GFMC
1.0 −42.83(1) 1.02(1) 1.0 −21.56(1) 1.57(1)

1.2 −46.62(1) 1.00(1) 1.2 −22.94(6) 1.53(1)

Nature −28.29566 1.46(1) −28.29566 1.46(1)

For comparison we report the GFMC results and the experimental values taken from

reference [52, 53].

(from 70 to 90), the maximal values of the angular momentum in
the construction of the two-body effective interaction (from 60 to
120) and the maximal number of three-body angular momentum
(from 5/2 to 7/2) in the partial wave expansion of the 3N force.

First, we address and discuss the benchmark of the
interactions at LO and NLO, so as to have a clean test on the NN
interactions. Then we move to the N2LO, where the three-body
forces are included.

4.1. Benchmarks at LO and NLO
We study themaximally-local chiral interactions for two different
regulator cut-offs, indicated by r0, namely exploring the two
possibilities of r0 = 1.0 fm and r0 = 1.2 fm. The latter gives rise to
a softer interaction compared to the first one. For the benchmarks
at LO and NLO, the 4He nucleus is used as a testing ground.

We compute point-proton charge radii,
√

〈r2pt〉, and ground-state
energies, E0, for the two different cut-off choices at increasing
values of the grand-angular momentum quantum number and
compare to the GFMC calculations.

The final results are shown in Table 2, where the uncertainty
is computed as explained above using Equation (38) with
Kmax = 22. An extended table with all the various Kmax can be
found in the Supplementary Material. We observe that as we
enlarge the model space a nice converging pattern is obtained
and our final EIHH results basically agree with the GFMC
calculations when the uncertainties are taken into account. By
looking at the converging pattern of the studied observables
as the model space is increased (see Supplementary Material),
we clearly observe that the interaction with r0 = 1.2 fm
is much softer than the other, since the relative observables
converge with a smaller model space. Finally, it is notable that,
as shown in Table 2, the LO and NLO results do not reproduce
the measured values, but the discrepancy decreases in going
from LO to NLO.

4.2. Benchmarks at N2LO
We now turn to the benchmark at the next order. At N2LO
we have the first appearance of 3N forces, so this will serve
as a check of our irreducible tensor representation. The 3N

interaction involves two new LECs, cD and cE, coming from the
1π-term and from the ct-term of the 3N forces, respectively,
that cannot be fitted in the NN sector. In reference [19] these
couplings have been fitted to reproduce the 4He binding energy
and the n-α scattering P-wave phase shift, for which the values
reported in Table 1 were obtained. We use the same values in
this work, as our goal is to perform a benchmark. In particular,
here we implement only the (D2, Eτ ) 3N interactions, which we
chose since the Eτ term has a more general isospin structure.
Different choices of the 3N contact term have been shown to lead
to different properties in neutron matter [18, 19].

As a testing ground for our N2LO Hamiltonian expressed
in terms of spherical tensors outlined in the previous section,
we study the three-body 3He and 3H and the four-body 4He
nuclear systems. We compute ground-state energies, E0, and
charge radii,

√

〈r2c〉, for the two different cut-off choices r0 = 1
and 1.2 fm and carefully study the convergence at increasing
Kmax values. A complete table of our data is shown in the
Supplementary Material. TheKmax convergence is also explicitly
shown in a graphical manner in Figures 2–4, where a comparison
to the GFMC method is made.

As it can be seen from Figures 2, 3, the EIHH method is
in excellent agreement with the GFMC computations for the
three-body nuclei, for both the ground-state energies and the
charge radii. The typical non-monotonic convergence patter of
the EIHH method is observed, and a very good convergence is
reached already at Kmax = 12. This shows that these forces
are softer than the AV18 potential, but harder than the low-k
interactions [54].

For the 4He nucleus shown in Figure 4, we obtain a very
nice agreement with the GFMC method for the cut-off value
r0 = 1.2 fm, while for the cut-off r0 = 1.0 fm, we perfectly
reproduce the charge radius, but we observe a small deviation for
the ground-state energy with respect to the GFMC.

Our final EIHH results with uncertainties quantified as
explained above using Equation (38) with Kmax = 22 are shown
in Table 3 in comparison with the GFMC, AFDMC, and the
experimental data. The theoretical computations agree with each
other at a similar level as observed in other benchmarks [59]. In
particular, for the cut-off r0 = 1.0 fm, which leads to a harder
force, EIHH and GFMC are in agreement within error bars, while
some discrepancy is seen with respect to the AFDMC results.
Given that the latter method is known to be less accurate, we
do not think that this difference is significant and we consider
all these results to constitute a successful benchmark of our
implementation of 3N forces.

As can be seen in Table 3, at N2LO a much improved
agreement with experiment is obtained. In fact, if one compares
the experimental binding energies to the LO and NLO
calculations in Table 2 one observes that these low orders
overbind (LO) or underbind (NLO) the few-body nuclei, while
at N2LO nice agreement is observed. This is expected for 4He,
given that 3N forces are fit to reproduce the 4He binding energy,
however a better agreement is also found for 3He and 3H due to
the strong correlation between the three- and four-body binding
energy. Interestingly, a nice converging pattern is also found for
the nuclear charge radii.
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FIGURE 2 | The ground-state energy and the charge radius of the nuclear 3He system as a function of the grand-angular momentum quantum number Kmax. The

green and blue error-bands are the GFMC results with the relative statistical uncertainty.

FIGURE 3 | The ground-state energy and the charge radius of the nuclear 3H system as a function of the grand-angular momentum quantum number Kmax. The

green and blue error-bands are the GFMC results with the relative statistical uncertainty.

From a careful look at Table 3, one can appreciate that our
EIHH calculations aremore precise than the GFMC and AFDMC
results in the three-nucleon sector and that our numerical
uncertainty is comparable to the experimental uncertainties for
the radii. While this may be an advantage of our method, it is
important to note that the error bars quoted in this table do not
include the uncertainties coming from the ChEFT expansion, so
they do not constitute the full uncertainty of the theory.

We conclude this section with a further investigation on
the charge radii of light-nuclear systems. In reference [55] the
proton-charge radius rp = 0.8751(61) fm and the neutron-charge

radius r2n = −0.1161(22) fm2 recommended by CODATA-
2014 were used in the evaluation of nuclear charge radii using
Equation (37). Such single-nucleon data come from experiments
that study the electron-nucleon system. Recently, these quantities
were measured more precisely by investigating muonic atoms,
and one could ask what is the effect of this increased precision
in the nuclear charge radius when applying Equation (37). To
address this point in Table 4 we compare our results for the
charge radii of 3He, 3H, and 4He at N2LO using the CODATA-
2014 single-nucleon input with the results obtained using the
rms proton-charge radius coming from the muonic-hydrogen
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FIGURE 4 | The ground state energy and the charge radius of the nuclear 4He system as a function of the grand-angular momentum quantum number Kmax. The

green and blue error-bands are the GFMC results with the relative statistical uncertainty.

TABLE 3 | Ground-state energies and charge radii for the nuclear 3He, 3H, and 4He systems at N2LO in the chiral expansion computed with the EIHH, GFMC, and

AFDMC methods.

3He 3H 4He

Cut-off E0

√

〈r2c〉 E0

√

〈r2c〉 E0

√

〈r2c〉

(fm) (MeV) (fm) (MeV) (fm) (MeV) (fm)

EIHH
1.0 −7.630(6) 1.976(7) −8.338(5) 1.759(6) −28.34(5) 1.656(6)

1.2 −7.619(4) 1.974(5) −8.332(3) 1.758(5) −28.31(2) 1.651(4)

GFMC
1.0 −7.65(2) 1.97(2) −8.34(1) 1.72(3) −28.30(1) 1.65(2)

1.2 −7.63(4) 1.97(1) −8.35(4) 1.72(4) −28.30(1) 1.64(1)

AFDMC
1.0 −7.55(8) 1.96(2) −8.33(7) 1.72(2) −27.64(13) 1.68(2)

1.2 −7.64(4) 1.95(5) −8.27(5) 1.73(2) −28.37(8) 1.65(1)

Nature −7.718043(2) 1.973(14) −8.481798(2) 1.759(36) −28.29566 1.681(4)

For the EIHH results, we report the estimation of the uncertainty coming from the truncation of the model space, the errors of the GFMC and AFDMC are statistical. The GFMC and

AFDMC results are from references [19, 20, 52, 55]. Experimental values are from references [53, 56–58].

rp = 0.84087(39) [50] and the new value of the rms charge
radius of the neutron r2n = −0.106(7) fm2 [51]. We denote the
first choice with e − rc and the second with µ − rc. The general
effect of using this choice of the proton and neutron charge radii
amounts to a systematic reduction of roughly 1% of the charge
radii of these light nuclei. This has to be contrasted with the
full uncertainty of the theory that includes not only the EIHH
numerical error, but also considers the uncertainty coming from
the order-by-order chiral expansion. The latter is estimated using
the algorithm proposed first in reference [60] and is included in
Table 4.

For a graphical representation of our findings, in Figure 5 we
show the 4He nuclear charge radius at increasing chiral orders
computed for different choices for the proton and neutron charge
radii. We observe that the chiral order uncertainty is of the order
of 2%, hence larger than the effect of the more precise single-
nucleon input. Overall, we confirm the chiral order-by-order

convergence patter, already discussed in references [19, 20], but
there shown only for the binding energy and the point-proton
radius, which does not include the single nucleon input.

Interestingly, when comparing the 4He theoretical charge
radius with the newest muonic atom measurement from
reference [61], we see that the µ − rc results are still consistent
with the experiment, leaving, however, space for meson exchange
currents to help improve the theoretical precision, which is by far
lower than the experimental one.

5. CONCLUSION AND OUTLOOK

In this work, the maximally local chiral interactions are
implemented for the first time in the hyperspherical harmonic
formalism. The benchmark tests performed in light nuclei show
general agreement between hyperspherical harmonic results and
the previously available Monte Carlo calculations. As expected, at
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TABLE 4 | Nuclear rms charge radii for 3He, 3H, and 4He systems at N2LO

computed using either the single-nucleon CODATA-2014 values (columns e-rc) or

the more precise muonic atoms data (columns µ-rc).

3He 3H 4He

Cut-off µ-rc e-rc µ-rc e-rc µ-rc e-rc

(fm) (fm) (fm) (fm) (fm) (fm) (fm)

EIHH
1.0 1.96(4) 1.98(4) 1.75(3) 1.76(3) 1.64(4) 1.66(4)

1.2 1.96(3) 1.97(3) 1.75(3) 1.76(3) 1.64(3) 1.65(3)

Exp, electron 1.973(14) 1.759(36) 1.681(4)

Exp, muon − − 1.67824(12)(82)

The theoretical results are compared to data from the electron-nucleus system [56, 58]

and, when available, to data obtained from the muon-nucleus system [61].

FIGURE 5 | The 4He charge radius computed at increasing orders of the chiral

expansion. The uncertainty bars include the numerical uncertainty of the EIHH

method as well as the uncertainties coming from the truncation of the chiral

expansion. The horizontal lines are the experimental values from electron

scattering (solid line) [56] and from muonic atoms (dashed line) [61].

N2LOwith the inclusion of the 3N forces the experimental results
are much better reproduced with respect to the LO and NLO
calculations. With this study we thus confirm the nice order-by-
order convergence in the ground-state energies and in the radii
that was already observed in the Monte Carlo studies.

While our numerical precision of the EIHH calculations lies
in the sub-percent range, we find that the uncertainty due to
the chiral order expansion is larger. In case of the charge radius,
we observed that using the most updated values of the proton
and nucleon radii instead of the CODATA-2014 values leads to a
variation of 1%, which is smaller than the 2% uncertainty found
in the chiral order-by-order truncation at N2LO. Addressing first

the latter by going to N3LO should be the priority if the goal is to
reduce theoretical uncertainties.

Having these new interactions implemented in our formalisms
opens up the possibility of investigating other few-body
observables in the future. Our most immediate goals include
the investigation of muonic atoms [37], of the 4He monopole
transition form factor [62], and the longitudinal response
function [63] in order-by-order chiral expansions. We reserve
these applications for future studies.
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