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The dynamics and deformation of red blood cells (RBCs) in microcirculation affect the

flow resistance and transport properties of whole blood. One of the key properties that

can alter RBC dynamics in flow is the contrast λ (or ratio) of viscosities between RBC

cytosol and blood plasma. Here, we study the dependence of RBC shape and dynamics

on the viscosity contrast in tube flow, using mesoscopic hydrodynamics simulations.

State diagrams of different RBC dynamical states, including tumbling cells, parachutes,

and tank-treading slippers, are constructed for various viscosity contrasts and wide

ranges of flow rates and tube diameters (or RBC confinements). Despite similarities

in the classification of RBC behavior for different viscosity contrasts, there are notable

differences in the corresponding state diagrams. In particular, the region of parachutes

is significantly larger for λ = 1 in comparison to λ = 5. Furthermore, the viscosity

contrast strongly affects the tumbling-to-slipper transition, thus modifying the regions

of occurrence of these states as a function of flow rate and RBC confinement. Also,

an increase in cytosol viscosity leads to a reduction in membrane tension induced by

flow stresses. Physical mechanisms that determine these differences in RBC dynamical

states as a function of λ are discussed.

Keywords: red blood cell, channel flow, cell shape, cell dynamics, cell deformation, mesoscopic simulation

1. INTRODUCTION

Microvascular blood flow is essential for the homeostasis of organism tissues, as it transports
nutrients and waste products and mediates various physiological processes. This research field
has received enormous attention directed at understanding complex microvascular transport and
regulation [1–5]. Blood is a liquid tissue whose major cellular component is erythrocytes or red
blood cells (RBCs) which constitute about 45% of blood volume. A healthy RBC has a biconcave
shape with a diameter of 6–8 µm and thickness of 2 µm [6]. The RBC membrane consists of a
lipid bilayer and spectrin network (cytoskeleton) attached to the inside of the bilayer [7]. These
structures supply cell deformability and durability, as RBCs have to frequently pass capillaries with
a diameter comparable to the RBC size. The ability of RBCs to deform is vital for microvascular
perfusion, as an increased membrane rigidity is generally associated with pathological conditions
[8, 9] such as sickle-cell anemia [10] and malaria [11, 12].

One of the important steps toward understanding microvascular blood flow is a detailed
description of RBC behavior in microcapillaries. Early experiments [13–15] have shown that
RBCs passing through small vessels either deform into cup-like parachute shapes at the vessel
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center or assume elongated slipper shapes at an off-center
position. A number of more recent microfluidic experiments
[16–20] have systematically studied and confirmed these
observations and suggested a connection between RBC elasticity
and its shape in flow. From the physics point of view, it is
interesting to understand how such shapes develop and which
cell and flow properties determine their stability. First simple
axisymmetric models of RBCs flowing in microvessels [21] have
demonstrated the ability of RBCs to attain parachute and bullet-
like (in very narrow vessels) shapes due to the stresses exerted
by fluid flow. Two dimensional (2D) simulations of fluid vesicles
mimicking RBCs have shown that cell behavior in microcapillary
flow is quite complex [22–27]. In addition to the parachute
and slipper shapes, snaking dynamics (a periodic cell swinging
around the tube center) at low flow rates and a region of co-
existing parachutes and slippers at high flow rates were reported
[24, 25]. These 2D simulations have also demonstrated that
the transition between parachute and slipper shapes can be
triggered by changes in flow rate or RBC membrane elasticity.
This transition can be characterized by the distance between
the cell’s center-of-mass and the channel center, which has been
shown to have a similar behavior as a pitchfork bifurcation [23].
Nevertheless, it is still not fully clear why the parachute-to-slipper
transition takes place.

Three dimensional (3D) simulations of RBCs flowing in
microchannels [28–34] have confirmed the existence of stable
slippers in 3D. Despite some similarities between the results
obtained from 2D and 3D simulations, RBC dynamics in
microchannels is inherently three dimensional, so that the results
from 2D simulations are at most qualitative. For instance, 3D
simulations have shown the existence of a dynamic state of
RBC tumbling at a radial position away from the tube center
[29, 34]. In fact, the transition from tumbling to slipper state with
increasing flow rate is reminiscent of the well-known tumbling-
to-tank-treading transition of RBCs in simple shear flow [35–38].
Furthermore, recent experiments on RBCs in flow within square
microchannels have found a tumbling trilobe state at large flow
rates and low confinements [34]. Such trilobe dynamics has so
far only been reproduced in simulations of RBCs in simple shear
flow, and occurs at large shear rates and for large enough viscosity
contrasts λ defined as the ratio between viscosities of RBC cytosol
and suspending medium [39, 40], with λ & 3.5.

Most of the current simulation studies assume for simplicity
the viscosity contrast of unity, even though the average
physiological value of λ is about five [41, 42]. The viscosity
contrast is an important parameter that significantly affects RBC
behavior in simple shear flow [39, 40, 43–45]. However, it remains
unclear whether the viscosity contrast is equally important for
RBC dynamics in microcapillary flow. Therefore, we focus on
the effect of λ on RBC dynamical states in tube flow. Several
state diagrams of RBC dynamics, including snaking, tumbling,
tank-treading slipper, and parachute, are presented for different
viscosity contrasts, tube diameters, and flow rates. Even though
the dynamical states are similar for λ = 1 and λ = 5, there are
differences in flow conditions at which they appear. In particular,
the region of tumbling dynamics for λ = 5 expands toward
larger flow rates in comparison to λ = 1, since an increased

dissipation inside the cell suppresses membrane tank-treading in
favor of tumbling motion. Furthermore, the region of parachute
shapes is larger for λ = 1 than that for λ = 5. A larger viscosity
inside the RBC also leads to a decrease in membrane tension for
the same flow conditions. Physical mechanisms that determine
these differences in dynamical state diagrams for various viscosity
contrasts are discussed.

2. MODELS AND METHODS

2.1. Red Blood Cell Model
A RBC is modeled as a triangulated surface with Nv = 3, 000
vertices, Ne edges, and Nf triangular faces [28, 46–48]. The total
potential energy of the system is given by

V = Vin−plane + Vbend + Varea + Vvol. (1)

The term Vin−plane represents an in-plane elastic
energy as [47, 48]

Vin−plane =
Ne
∑

i=1

kBTℓm
(

3x2i − 2x3i
)

4p (1− xi)
+

Ne
∑

i=1

kp

ℓi
, (2)

where the first term is an attractive worm-like chain potential and
the second term is a repulsive potential with a strength coefficient
kp. In the attractive potential, p is the persistence length, ℓi is
the extension of edge i, ℓm is the maximum edge extension,
and xi = ℓi/ℓm.

The second term in Equation (1) corresponds to bending
resistance of the membrane,

Vbend =
Ne
∑

i=1

κb
(

1− cos(θi − θ0)
)

, (3)

where κb is the bending coefficient, θ is the angle between
two neighboring faces, and θ0 is the spontaneous angle.
Equation (3) is a basic discretization of the Helfrich bending
energy [49], which is acceptable for RBCs as their dynamics and
deformation are primarily governed by shear-elastic properties.
Other discretizations of the Helfrich energy are also available
[50, 51].

The last two terms in Equations (1), Varea, and Vvol, represent
surface area and volume constraints given by

Varea =
ka (A− A0)

2

2A0
+

Nf
∑

i=1

kd
(

Ai − A0
i

)2

2A0
i

, (4)

Vvol =
kv (V − V0)

2

2V0
,

where ka, kd, and kv are local area, total surface area and volume
constraint coefficients, respectively. A0

i , A0, and V0 are local area
of individual faces, total surface area and total volume of the RBC,
respectively. Note that the membrane viscosity is omitted in the
employed RBC model for simplicity.
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2.2. Modeling Hydrodynamic Flow
Fluid flow is modeled by the smoothed dissipative particle
dynamics (SDPD) method which is a Lagrangian discretization
of the Navier-Stokes equations [52, 53]. The SDPD fluid consists
of N fluid particles which interact through conservative (C),
translational dissipative (D), rotational dissipative (R), and
random forces (∼). The forces between particles i and j are
given by,

FCij =
(

pi

ρ2
i

+
pj

ρ2
j

)

Fijrij, (5)

FDij = −γij
(

vij +
(

vij · eij
)

eij
)

, (6)

FRij = −γij
rij

2
× (ωi + ωj), (7)

F̃ij = σij

(

dW
S
ij +

1

3
tr[dWij]1

)

·
eij

dt
, (8)

where ri, vi, and ωi are the particle position, velocity, and angular
velocity, and rij = ri − rj, vij = vi − vj, and eij = rij/|rij|.
ρi =

∑

j[i]mjWij is the particle density, where the sum runs
over the particle i and its neighbors within a smoothing length
(or cutoff radius) h, mi is the particle mass, and Wij = W(rij) is
the smoothing kernel represented by the Lucy function [54]

W(r) =
105

16πh3

(

1+ 3
r

h

) (

1−
r

h

)3
. (9)

The function Fij is calculated from Wij as ∇iWij = −rijFij.
The particle pressure pi is defined as pi = p0(ρi/ρ0)α − b,
where ρ0 is the reference density and the parameters p0, α, and
b control fluid compressibility, and can be freely selected [55].
tr[dWij] is the trace of matrix of independent Wiener increments

dWij and dW
S
ij is the traceless symmetric part. The dissipative

γij = 20ηFij/(7ρiρj) and random σij force coefficients are related

as σij = 2
√

kBTγij where η is the dynamic viscosity, kB is the
Boltzmann constant, and T is temperature. dt is the time step.

The solvent inside the RBC (cytosol) is separated from outside
fluid (plasma) by the membrane. The number density of fluid
particles is set to n = 12 (per unit volume in model units)
for both cytosol and plasma, providing a good resolution for
fluid flow inside and outside the RBC. The reference density
is set to ρ0 = mn with m = 1. Solid walls are modeled by
frozen SDPD particles. Fluid-membrane interactions have two
contributions: (i) fluid particles bounce back from the membrane
surface and (ii) the dissipative force coefficient between fluid
particles andmembrane vertices is set such that no-slip boundary
conditions are attained. Note that the conservative force for fluid-
membrane interactions is turned off. Fluid particles are also
reflected back at the solid wall. In addition, an adaptive shear
force is added to fluid particles near the wall to ensure no-slip
boundary conditions [56].

2.3. Simulation Setup and Parameters
Poiseuille flow with a single RBC suspended in a viscous fluid
inside a cylindrical tube of length L = 50 µm is simulated.
The tube axis is aligned with the flow direction along the x axis.

Diameter of the tube D = 2R determines RBC confinement as
χ = Dr/D, where Dr =

√
A0/π is the effective RBC diameter.

To generate flow, a force f is applied on every solvent particle,
representing a pressure gradient 1P/L = f · n with the pressure
drop 1P along the tube length.

In simulations, cell properties correspond to average
characteristics of a healthy RBC with a membrane area
A0 = 133 µm2, cell volume V0 = 93 µm3, shear modulus
µ = 4.8 µN/m, and bending rigidity κ = 70 kBT = 3 × 10−19 J
[6, 57–59]. This leads to Dr = 6.5 µm (Dr = 6.5 in model units)
and a RBC reduced volume of V∗ = 6V0/

(

πD3
r

)

≈ 0.64. Note
that the stress-free shape of a RBC elastic network (Equation
2) is assumed to be an oblate spheroid with a reduced volume
of 0.96. The biconcave shape of a RBC with V∗ = 0.64 is
obtained by deflating the stress-free spheroid with a reduced
volume of 0.96. Furthermore, the energy unit kBT is selected to
be kBT = 0.2 in simulations, corresponding to a physiological
temperature of 37◦ C.

To characterize different flow conditions, several non-
dimensional parameters are employed

(i) Reynolds number Re = ρ ¯̇γD2
r/η is the ratio of inertial and

viscous forces, where ρ is the mass density, ¯̇γ = v̄/D =
Dfn/(32η) is the average (or pseudo) shear rate, and η is the
external fluid viscosity. In all simulations, Re ≤ 0.3.

(ii) λ = ηi/ηo is the viscosity contrast between internal (cytosol)
and external (plasma) fluids. The average value of λ under
physiological conditions is λ = 5 [41, 42].

(iii) γ̇ ∗ = ¯̇γ · τ is the dimensionless shear rate that characterizes
flow strength. τ is the RBC relaxation time given
by τ = ηDr/µ.

To keep Reynolds number low enough (i.e., Re ≤ 0.3), in most
simulations γ̇ ∗ is controlled by varying η instead of changing the
flow rate for a fixed viscosity.

2.4. Dynamical Characteristics and
Membrane Tension
To analyze dynamical properties of a flowing RBC, the
gyration tensor

Tij =
1

N

N
∑

n=1

(

rn,i − rc,i
)

·
(

rn,j − rc,j
)

(10)

is employed, where i and j denote x, y, or z, rn is the position of
membrane vertex n, and rc is the center of mass of the RBC. Then,
the eigenvalues ξi of the gyration tensor Tij characterize RBC
deformation. The eigenvector that corresponds to the smallest
eigenvalue is used to define the orientational axis of the cell.
Orientation angle θ1 of the RBC is defined as the angle between
its orientational axis and the flow direction. The eigenvalues are
also used to compute cell asphericity O, which characterizes its
deviation from a spherical shape

O =
[

(ξ1 − ξ2)
2 + (ξ2 − ξ3)

2 + (ξ3 − ξ1)
2] /

(

2R4g

)

, (11)

where R2g = ξ1 + ξ2 + ξ3.
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To calculate local membrane tensionGi at vertex i, virial stress
is used as

Gi = −
1

2ai

∑

j(i)

ri,j · Fi,j, (12)

where ai is the vertex area computed as one third of a sum of
all face areas adjacent to vertex i, j(i) represents all neighboring
vertices connected to i by an edge, and ri,j and Fi,j are position
and force vectors at the edge (i, j), respectively. Note that the in-
plane elastic energy, bending potential, surface area, and volume
constraints can contribute to the membrane tension. The kinetic
energy contribution to tension is omitted, as it is very small under
a significant membrane stretching in flow.

3. RESULTS

In microcapillary flow, RBCs are known to exhibit different
dynamical states, including snaking, tumbling, tank-treading,
and parachute [15, 17, 20, 24, 25, 29, 34]. Snaking is characterized
by a periodic swinging in RBC orientation around the tube axis
[24, 25, 29]. Tumbling is an off-axis rigid-body-like rotation,
similar to RBC tumbling in simple shear flow [37, 40, 60]. Tank-
treading is represented by membrane rotation with a nearly
fixed cell orientation, which also occurs in simple shear flow
at low enough λ [37, 40, 61]. The tank-reading state of a
RBC in microcapillary flow is also often referred to as slipper.
Finally, parachute is a stable stomatocyte-like RBC deformation
in the tube center. These dynamical states depend on RBC
mechanical properties (e.g., shear modulus, bending rigidity,
viscosity contrast), cell confinement, and the flow rate. Here,
we primarily focus on how the viscosity contrast affects these
dynamical states for a wide range of RBC confinements and
flow rates.

3.1. Dynamic State Diagram
Figure 1 presents dynamic state diagram for the viscosity
contrast λ = 5 and different χ and γ̇ ∗ values. The representative
snapshots of tumbling, tank-treading, and parachute states are
also displayed (see Supplementary Movies 1–3). The snaking
state exhibits minimal deformation and appears at very low shear
rates γ̇ ∗ . 0.01 for all confinements χ . The tumbling state
occurs for small confinements and moderate shear rates. As
the shear rate increases, a tumbling RBC transits into a tank-
treading state. The critical shear rate, at which the tumbling-to-
tank-treading transition takes place, depends on χ and increases
with increasing confinement. For large enough confinements
and shear rates, the RBC adopts a parachute shape which
exhibits least dynamics out of all observed states. Note that the
classification of different states becomes difficult close to the
transition boundaries, because the RBC may exhibit complex
deformations. Therefore, these boundaries are approximate and
intended to provide a visual guidance.

To understand the effect of viscosity contrast on dynamical
states of the RBC in microcapillary flow, the state diagrams for
λ = 1 and λ = 3 are shown for comparison in Figure 2.
As the viscosity contrast is decreased from λ = 5 to λ = 1,

the parachute region widens toward smaller confinement values.
This is a surprising result considering the fact that an increase
in viscosity contrast suppresses tank-treading in simple shear
flow [39, 40], which will be discussed later. The tumbling-to-
tank-treading transition shifts toward larger shear rates as the
viscosity contrast is increased from λ = 1 to λ = 5. This
result is consistent with our expectations that an increase in
internal viscosity leads to increased fluid stresses inside the RBC,
suppressing membrane tank-treading. A similar observation has
also been made in the context of adhered malaria-infected RBCs
(iRBCs) under flow, such that an increase in viscosity contrast
suppresses iRBC crawling at the surface and results in iRBC
flipping or its complete detachment [62]. Note that the snaking
state remains nearly unchanged by the viscosity contrast.

3.2. Dynamical Characteristics
To examine differences in dynamical characteristics of RBCs
with a change in viscosity contrast, multiple dynamical measures
which uniquely characterize each state are computed. Figure 3
presents time evolution of the orientation angle θ1 and
asphericity O for two different flow conditions (χ = 0.35 &
γ̇ ∗ = 0.076; χ = 0.44 & γ̇ ∗ = 0.1) and viscosity contrasts
λ = 1 and λ = 5. For the case with χ = 0.35 and γ̇ ∗ = 0.076
in Figures 3A,B, the RBC tank-treads for λ = 1, whereas it
tumbles for λ = 5. In an idealized tank-treading state with
only membrane rotation and without cell deformation, both θ1
and O should remain constant. However, a moderate periodic
deformation and oscillatory orientation swinging is observed in
Figure 3A for λ = 1. For the tumbling state in Figure 3B with
λ = 5, membrane deformation is significantly reduced, and the
orientation angle spans a much wider range, indicating whole-
cell flipping. For the case with χ = 0.44 and γ̇ ∗ = 0.1 in
Figures 3C,D, λ = 1 results in a parachute state with nearly
constant θ1 and O, while λ = 5 leads to a tank-treading state
with variations in θ1 and O resembling those in Figure 3A.
Interestingly, the frequency of the variations in θ1 and O for
λ = 5 in Figure 3D is significantly smaller than that for λ = 1
in Figure 3A, even though the shear rate is larger for λ = 5. This
means that an increased internal viscosity slows downmembrane
dynamics in microcapillary flow due to an increased dissipation,
which is consistent with the results of a study on discocyte
(fluid) vesicles for various viscosity contrasts and membrane
viscosities [63].

Another difference in Figures 3A,D for the tank-treading
state is that the amplitude of oscillations in cell orientation angle
is larger for λ = 5 than for λ = 1. Note that, a RBC at large
enough viscosity contrasts (λ & 3.5) in an unbounded shear flow
does not exhibit tank-treading, but shows a rotational dynamics
[40]. In the microchannel, the tank-treading motion of a RBC
for λ = 5 is facilitated by cell confinement [64]. Therefore, the
aforementioned tendency of the RBC at λ = 5 for rotation likely
results in the larger amplitude of oscillations in the orientation
angle in comparison to that for λ = 1.

3.3. Membrane Tension
It is interesting to take a look at the effect of viscosity contrast
on local membrane tension, as it might be important for the
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FIGURE 1 | State diagram for λ = 5 showing different dynamical states of the RBC for various confinement ratios χ and non-dimensional shear rates γ̇ ∗. The states

include snaking (blue stars), tumbling (red diamonds), tank-treading (brown squares), and parachute (green circles). Dashed lines separating regions with different

states are drawn for visual guidance. Representative snapshots for tumbling, tank-treading, and parachute states are also displayed.

FIGURE 2 | State diagrams for viscosity contrasts (A) λ = 1 and (B) λ = 3 with snaking (blue stars), tumbling (red diamonds), tank-treading (brown squares), and

parachute (green circles) states. Dashed lines separating regions with different states are drawn for visual guidance.

activation of mechano-sensitive channels within the membrane
[65, 66]. Figure 4A shows the distribution of local tension G
for a parachute shape normalized by the shear modulus µ.
The local tension G is calculated using Equation (12), where
all contributions from model potentials in Equation (1) are
considered, even though the in-plane elastic-energy term supplies
the maximum contribution to G. The concave part of the
parachute shape has a significantly lower tension than the
convex front of the RBC exposed to strong fluid stresses. The
tension distribution for tumbling and tank-treading RBCs has a
qualitatively similar trend, in which the frontal part of the cell has
larger tension than the back portion. However, for tumbling and
tank-treading states, local tension fluctuates in accord with the

discussed RBC dynamics, while for the parachute state, temporal
tension changes are generally small.

Figure 4B presents tension Ḡ averaged over the RBC surface
as a function of γ̇ ∗ for two different viscosity contrasts λ = 1 and
λ = 5. The average tension increases with the shear rate γ̇ ∗ in an
almost linear fashion for both viscosity contrasts. Interestingly,
λ = 5 generally leads to a lower tension in comparison with λ =
1, which is consistent with a previous numerical investigation
[67] showing that the maximum tension increases with the flow
rate and decreases with increasing viscosity contrast. For λ =
5, there is a jump in tension at approximately γ̇ ∗ ≃ 0.065
that corresponds to the tank-treading-to-parachute transition as
shown in Figure 1. Note that such jump is not present for λ = 1.
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FIGURE 3 | Comparison of time-dependent cell orientation θ1 and asphericity O for (A,C) λ = 1 and (B,D) λ = 5. Two flow conditions are selected, including (A,B)

χ = 0.35 and γ̇ ∗ = 0.076, and (C,D) χ = 0.44 and γ̇ ∗ = 0.1. Both (A,D) represent tank-treading states, whereas (B) corresponds to a tumbling state and (C) to a

parachute state.

FIGURE 4 | Membrane tension. (A) Side and front views of the parachute shape with a local tension G indicated by the color code and normalized by the shear

modulus µ. Here, λ = 5, χ = 0.71, and γ̇ ∗ = 0.076. (B) Average tension Ḡ/µ of the whole RBC as a function of non-dimensional shear rate γ̇ ∗. Here, the

confinement is fixed at χ = 0.53. The data are shown for two different viscosity contrasts λ = 1 and λ = 5. A jump in tension for λ = 5 at γ̇ ∗ ≃ 0.065 corresponds to

the tank-treading-to-parachute transition.

An average tension of about Ḡ = 10−6 N/m (or Ḡ/µ ≈ 0.2) is
comparatively large. For example, in a recent study on sculpting
of lipid vesicles by enclosed active particles [68], complex vesicle
shapes have been observed for floppy vesicles with a tension
of about 10−8 N/m, while a high membrane tension of about
10−5 N/m completely suppresses any vesicle shape changes.
Apart from the average tension, it is also instructive to look at the

maximum tension Gmax = max{Gi} for different χ and γ̇ ∗. As
expected, Gmax increases with increasing shear rate. For λ = 5,
the maximum tension at χ = 0.62 is Gmax/µ = 0.7 for γ̇ ∗ =
0.053 and Gmax/µ = 0.77 for γ̇ ∗ = 0.076 (both are parachute
states). For a given shear rate, an increase in confinement results
in elevation of Gmax, e.g., for γ̇ ∗ = 0.053, Gmax/µ = 0.64 for
χ = 0.35 (tumbling state) and Gmax/µ = 0.7 for χ = 0.62
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(parachute state). These trends are similar for λ = 1. However,
differences in Gmax with respect to the viscosity contrast are
rather small, indicating that external fluid stresses mainly govern
the membrane tension. The magnitudes of maximal tension from
our simulations are consistent with the values reported in [67].

4. DISCUSSION AND CONCLUSIONS

In our study, we have focused on the effect of viscosity contrast
λ on RBC dynamic states in microcapillary flow. State diagrams
with different dynamic states, such as snaking, tumbling, tank-
treading, and parachute, have been constructed for several λ

values and wide ranges of non-dimensional shear rates γ̇ ∗ and
confinements χ . Our central result is that there are significant
changes in the state diagram when the viscosity contrast is
decreased from λ = 5 to λ = 1. In particular, the region
of stable parachutes becomes larger and expands toward lower
confinements with decreasing λ. This result seems to be in
contradiction to the fact that a large viscosity inside the RBC
dampens membrane dynamics and hence, should suppress the
dynamic tank-treading state [39, 40]. To verify the robustness
of our simulation predictions, we have performed simulations
with a consecutive change in the viscosity contrast for several
conditions where parachutes are stable for λ = 1 and tank-
treading is stable for λ = 5. Thus, after reaching a stable
parachute state for λ = 1, the viscosity contrast is instantaneously
switched to λ = 5, leading to the tank-treading state. Then,
switching back to λ = 1 brings the initially tank-treading RBC
to the parachute state. Furthermore, a larger parachute region
for λ = 1 than that for λ = 5 has also been observed in 2D
simulations of vesicles [24, 25].

To reconcile this seeming contradiction, physical mechanisms
that govern the parachute-to-tank-treading transition in tube
flow have to be uncovered. A study based on 2D simulations
of vesicles in an unbounded parabolic flow [23] suggests that
the parachute-to-slipper transition can be described well by a
pitchfork bifurcation and that a slipper shape provides a higher
flow efficiency for 2D RBC-like vesicles. In particular, there is
a lag between the vesicle velocity and the imposed parabolic
flow in the parachute state, which is proposed to trigger this
instability. This lag increases as the parachute conforms less
with the parabolic flow profile for decreasing flow rate or
increasing bending rigidity of the vesicle. Unfortunately, this
argument has not been connected in any way to the viscosity
contrast or internal cell dissipation. From existing experimental
and simulation studies [15, 17, 20, 24, 25, 29, 34], it is clear
that the parachute state requires large enough flow rates, such
that flow stresses in the tube center are sufficient to deform
the RBC into a parachute shape. Therefore, only when a RBC
conforms well enough to the flow profile, the parachute state
is stable. Nevertheless, the change in the parachute-to-slipper
transition for different λ cannot be attributed to differences in
the parachute shape (or conformity with the flow), as we have
not found substantial differences in parachute shapes for different
viscosity contrasts. The insensitivity of the parachute shape to λ

is likely due to the fact that a non-dynamic parachute state of

the RBC depends primarily on its elastic properties, and is nearly
independent of internal dissipation.

Our hypothesis is that membrane dynamics is also important
for parachute stability at the tube center. As the parachute-to-
tank-treading transition is approached, a perturbation (e.g., due
to cell diffusion) in RBC position from the tube center leads to
the asymmetry in fluid-flow stresses which pull the RBC away
from the center and set the membrane into a tank-treading-like
motion. A slight motion of the membrane in the parachute state
is observed in our simulations, as the RBC is never perfectly
symmetric and is often located slightly away from the tube center.
For λ = 1, the membrane can rotate faster than in case of
λ = 5, and therefore, the mismatch between local membrane
motion and fluid flow is smaller, resulting in reduced local fluid
stresses that pull the RBC away from the center. For λ = 5, the
local fluid stresses on the RBC are larger due to slow membrane
tank-treading, leading to the destabilization of parachute shape
at larger confinements in comparison to λ = 1.

Another important difference in the state diagrams for λ =
1 and λ = 5 is that the tumbling-to-tank-treading transition
occurs at larger shear rates for λ = 5 than for λ = 1.
This can be explained by the fact that an increased dissipation
inside the RBC for λ = 5 suppresses tank-treading motion
and delays the transition in terms of γ̇ ∗. In fact, in simple
shear flow, the tank-treading state does not exist for λ = 5
[39, 40]. For microcapillary flow, RBC tank-treading becomes
possible at λ = 5 due to the confinement which can trigger the
tumbling-to-tank-treading transition even when cell dimensions
are smaller than the distance between two walls [64]. For a
large enough vessel diameter, it is plausible to expect that the
tank-treading state should disappear for λ = 5, as local flow
conditions should closely resemble simple shear flow at the scale
of RBC size. For instance, recent microfluidic experiments in
a square channel [34] have reported the existence of rotating
trilobe shapes at low confinements and high flow rates, which
are consistent with RBC shapes in simple shear flow at λ = 5
[39, 40].

Membrane tension must be directly related to mechano-
transduction as the RBC membrane contains many mechano-
sensitive channels [65, 66]. We have shown that an increase
in the viscosity contrast lowers the membrane tension. A
high viscosity of the cytosol provides a large dissipation,
reducing membrane tension. Furthermore, the maximum
tension increases with increasing shear rate γ̇ ∗ and confinement
χ . Several experimental studies show that flow stresses can
change RBC biochemical properties. For instance, when RBCs
pass through small constrictions, they release ATP which can
participate in vasodilation signaling [69, 70]. Furthermore,
a recent investigation [71] reports that when RBCs pass
through small constrictions, the mechano-sensitive channels
(e.g., Piezo1 and Gardos channels) that participate in RBC
volume control become activated. The relevance of membrane
tension has also been demonstrated for malaria disease, such
that an increased RBC membrane tension in the Dantu blood
group significantly reduces the invasion of RBCs by malaria
parasites, which is a protective mechanism from malaria
infection [72].
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