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In NMR or MRI, the measured signal is a function of the accumulated magnetization

phase inside the measurement voxel, which itself depends on microstructural tissue

parameters. Usually the phase distribution is assumed to be Gaussian and higher-order

moments are neglected. Under this assumption, only the x-component of the total

magnetization can be described correctly, and information about the local magnetization

and the y-component of the total magnetization is lost. The Gaussian Local Phase (GLP)

approximation overcomes these limitations by considering the distribution of the local

phase in terms of a cumulant expansion. We derive the cumulants for a cylindrical

muscle tissue model and show that an efficient numerical implementation of these terms

is possible by writing their definitions as matrix differential equations. We demonstrate

that the GLP approximation with two cumulants included has a better fit to the true

magnetization than all the other options considered. It is able to capture both oscillatory

and dampening behavior for different diffusion strengths. In addition, the introduced

method can possibly be extended for models for which no explicit analytical solution

for the magnetization behavior exists, such as spherical magnetic perturbers.

Keywords: diffusion magnetic resonance imaging, nuclear magnetic resonance, cumulant expansion, finite

difference method, spectral expansion

1. INTRODUCTION

The extraction of parameters describing the tissue architecture from MRI measurements is
dependent on the correct description of susceptibility and diffusion effects during spin dephasing.
While analytical solutions of the underlying Bloch-Torrey equation [1, 2] are possible only
for simple geometries, approximate methods are often sufficient in practice [3]. The important
Gaussian phase approximation, introduced by Hahn [4] to describe the signal behavior inside a
linear and uniform magnetic field gradient, assumes a Gaussian distribution of the accumulated
spin phases. Recently, the Gaussian Local Phase (GLP) approximation was introduced [5]. Instead
of the cumulative phase distribution inside a measurement voxel, the local phase distribution
is expanded in a cumulant expansion and the integration over the voxel carried out afterward.
Herein, we consider the case of a muscle tissue model which consists of a blood vessel surrounded
by a cylindrical dephasing domain [6]. Due to the shape of this domain, the resulting diffusion
propagator takes a rather complex form. The calculation of the magnetization time evolution
is then dependent on zeros of cross products of Bessel functions, making it impractical to use
[3, 7]. To overcome this limitation, we present a convenient calculation method for the GLP
moments based on a finite-difference approximation of the cylindrical Laplace operator. This
permits formulating the first and second moments of the phase distribution as closed-form matrix

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2021.662088
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2021.662088&domain=pdf&date_stamp=2021-05-20
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:c.ziener@dkfz-heidelberg.de
https://doi.org/10.3389/fphy.2021.662088
https://www.frontiersin.org/articles/10.3389/fphy.2021.662088/full


Rotkopf et al. GLP Approximation in Cylinders

exponentials, which are easy to implement numerically. We
compare the new method to results obtained from integrating
over the analytical diffusion propagator and to the numerically
exact results from a finite-element simulation [8–11].

The manuscript is structured as follows. In section 2.1,
we define the muscle tissue model and show the diffusion
propagator. Integrating over products of the diffusion propagator
and the local Larmor frequency allows the analytical calculation
of the phase moments, as shown in sections 2.2 and 2.3. In
section 3.1, the finite-difference scheme is introduced and used
to write the governing differential equations as vector differential
equations. The solutions are rather straightforward and result
in the vector forms of the phase moments. These are then used
to calculate the local magnetization in section 3.2 and the total
magnetization in section 3.3. Finally, the introduced methods are
compared to previously known solutions described in section
3.4. In Appendix A, the cumulant expansion and its statistical
properties are reviewed. Alternative expressions for the cumulant
functions are given in Appendix B, and a spectral expansion of
the Laplace operator is shown in Appendix C. As the discretized
Laplace operator is singular, its group inverse has to be used. This
group inverse can be expressed in terms of simple functions, as
detailed in Appendix D.

2. METHODS

2.1. Model and Diffusion Process
We considered amuscle tissuemodel which consists of a radially-
symmetric dephasing domain parallel to the z-axis and bounded
at RC and RD, as shown in Figure 1. As the model is invariant
along the z-axis, it is sufficient to parametrize the dephasing
domain in terms of polar coordinates (r,φ): Er = (r,φ) ∈
[RC,RD] × [0, 2π). The inner cylinder with radius RC > 0
represents a blood-filled vessel and therefore creates a spatially
varying Larmor frequency [12]

ω(r,φ) = δωR2C
cos(2φ)

r2
, (1)

with δω being the characteristic frequency shift at the vessel
surface, which is proportional to the susceptibility difference
between vessel and dephasing domain. The Larmor frequency
is visualized in the upper part of Figure 1. In the following
derivations, we assume without loss of generality that the external
magnetic field is orthogonal to the cylinder axis. In the case of a
different angle θ 6= π between the cylinder axis and the magnetic
field, δω is modified by a factor of sin2(θ) (see Equation (7) in
[12]). The geometry can be described by the volume ratio

η = R2C
R2D

. (2)

Inside the dephasing domain, spin-1/2 particles can diffuse freely
with an isotropic and spatially homogeneous diffusion constant
D > 0. The characteristic diffusion time τ for this model is then
given by

FIGURE 1 | Larmor frequency and phase distribution moments. (A) Larmor

frequency in the dephasing domain. The red and blue regions correspond to

positive and negative values of ω(r,φ). The external magnetic field B0 is

indicated by a black arrow. (B) First moment of the phase distribution,

corresponding to taking into account one previous location. (C) Second

moment of the phase distribution, corresponding to taking into account two

previous locations.

τ = R2C
D

. (3)

As the muscle model is assumed to be surrounded by identical
tissue cylinders, the crossing-over of particles into the domain
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of neighboring capillaries can be considered by introducing
reflecting Neumann boundary conditions at RD. The boundary
condition at the interior border RC is dependent on the
assumed permeability of the vessel wall: negligible permeability
corresponds to reflecting boundary conditions, while non-zero
vessel permeability can be taken into account by choosing Robin-
type boundary conditions, as shown, for example, in Equation
(7) in Ziener et al. [13]. The Gaussian diffusion process is
described by the propagator p(Er, Er0, t), which is the solution of
the diffusion equation

∂p(Er, Er0, t)
∂t

= D1p(Er, Er0, t) , (4)

with the initial condition

p(Er, Er0, t = 0) = δ(Er − Er0) . (5)

Using the definition of the Laplace operator in
cylinder coordinates

1 = 1r +
1

r2
1φ = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2
∂2

∂φ2
(6)

the solution to the diffusion equation can be written as

p(Er, Er0, ξ ) = e
Dξ [1r+ 1

r2
1φ ]δ(Er − Er0) . (7)

Due to the unboundedness of the radial Laplace operator 1r on
the real line [0,∞] under the L2-norm, the radial part of the
operator exponential cannot be readily written as a Taylor series.
It can, however, be expanded in terms of eigenfunctions of the
Laplace operator [14–18]. The propagator can then be written in
the classical form [19, 20]:

p(r,φ, r0,φ0, ξ ) =
1

2πR2C
× (8)

∞
∑

n=1

∞
∑

ν=0

e
−λ2n,ν

Dξ

R2
C

Nn,ν
8n,ν(r)8n,ν(r0)[2− δν,0] cos(ν[φ − φ0]) ,

where the radial eigenfunctions 8n,ν(r) and the eigenvalues λn,ν
obey the cylindrical Bessel differential equation

[

1r −
ν2

r2

]

8n,ν(r) = −λ2n,ν

R2C
8n,ν(r) (9)

with the radial part of two-dimensional Laplace operator 1r

given in Equation (6) inside an annular ring RC ≤ r ≤ RD.
Reflecting boundary conditions at r = RC and r = RD
are assumed:

∂

∂r
8n,ν(r)

∣

∣

∣

∣

r=RC

= 0 (10)

∂

∂r
8n,ν(r)

∣

∣

∣

∣

r=RD

= 0 . (11)

The appropriate eigenfunctions that obey the reflecting boundary
conditions (10) at r = RC are linear combinations of cylindrical
Bessel functions Jν and Yν of order ν and of the first and second
kind, respectively:

8n,ν(r) = (12)














1 for n = 1, ν = 0,

J1(λn,0)Y0

(

λn,0
r
RC

)

− Y1(λn,0)J0

(

λn,0
r
RC

)

for n ≥ 2, ν = 0,

Y ′
ν(λn,ν)Jν

(

λn,ν
r
RC

)

−J′ν(λn,ν)Yν

(

λn,ν
r
RC

)

for n ≥ 1, ν ≥ 1,

for all other combinations of indices. These eigenfunctions obey
the orthogonality relation

1

R2C

RD
∫

RC

dr r8n,ν(r)8n′ ,ν(r) = Nn,νδnn′ (13)

with the normalization constants

Nn,ν = (14)






































1−η
2η for n = 1, ν = 0

2
π2λ2n,0





[

J1(λn,0)

J1(
λn,0√

η
)

]2

−1



 for n ≥ 2, ν = 0

2
π2λ2n,ν





[

1− ην2

λ2n,ν

]

[

J′ν (λn,ν )
J′ν (

λn,ν√
η
)

]2

−1+ ν2

λ2n,ν



 for n ≥ 1, ν ≥ 1

The lowest eigenvalue takes the value zero, while all
other eigenvalues λn,ν can be obtained by introducing
the eigenfunctions from Equation (12) into the reflecting
boundary conditions (11) at r = RD as solutions of a
transcendental equation

λ1,0 = 0 for n = 1, ν = 0 ,

(15)

Y1(λn,0)J1

(

λn,0√
η

)

= J1(λn,0)Y1

(

λn,0√
η

)

for n ≥ 2, ν = 0 ,

(16)

Y ′
ν(λn,ν)J

′
ν

(

λn,ν√
η

)

= J′ν(λn,ν)Y
′
ν

(

λn,ν√
η

)

for n ≥ 1, ν ≥ 1.

(17)

The eigenvalues can be calculated in Mathematica (Wolfram
Research, Inc., Champaign, IL, United States) using the package
BesselZeros. For ν = 0 and n ≥ 2 the correct command is

λn,0 = BesselJYJYZeros[1, 1/
√

η, n− 1][[n - 1]],

and for ν ≥ 1 and n ≥ 1, the command is

λn,ν = BesselJPrimeYPrimeJPrimeYPrimeZeros[
ν, 1/

√
η, n][[n]].

Alternatively, the eigenvalues can be obtained as the eigenvalues
of a discretized Laplace operator as demonstrated in Ziener
et al. [21].
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2.2. Moment Calculation
The signal generated during a NMR experiment can be calculated
by approximating the local accumulated phase distribution by a
cumulant expansion as detailed in Appendix A. Taking only the
first cumulant into account, as seen in Equation (A7), the local
magnetization can be written as

mI(Er, t) = m0(Er)eiα(Er,t) , (18)

which is further denoted as the first-order GLP approximation,
with the first moment function denoted by α(Er). For simplicity,
the initial magnetization m0(r) is from now on set to the
constant m0, corresponding to the voxel state immediately after
application of the initial pulse. If both first and second cumulants
are included, as seen in Equation (A8), this becomes

mII(Er, t) = m0e
iα(Er,t)−β(Er,t)+ 1

2 [α(Er,t)]2 , (19)

further denoted as second-order GLP approximation, with the
second moment function denoted by β(Er, t). The real part of
the local magnetization corresponds to the x-component of
the transverse magnetization and the imaginary part to the y-
component. Inserting mI(Er, t) and mII(Er, t) into the transverse
Bloch-Torrey equation

∂m(Er, t)
∂t

= [D1 − iω(Er)]m(Er, t) (20)

and collecting real and imaginary terms leads to two
inhomogeneous partial differential equations for the moment
functions:

∂

∂t
α(Er, t) = D1α(Er, t)− ω(Er) , (21)

∂

∂t
β(Er, t) = D1β(Er, t)− ω(Er)α(Er, t) . (22)

The initial conditions can be seen from the definitions in
Equations (26) and (27):

α(Er, 0) = β(Er, 0) = 0 . (23)

The boundary conditions on the moments similarly arise from
the reflecting boundary conditions on m(Er, t) for both real and
complex parts:

∂

∂r
α(Er, t)

∣

∣

∣

∣

r=RC

= ∂

∂r
α(Er, t)

∣

∣

∣

∣

r=RD

= 0 , (24)

∂

∂r
β(Er, t)

∣

∣

∣

∣

r=RC

= ∂

∂r
β(Er, t)

∣

∣

∣

∣

r=RD

= 0 . (25)

The solutions to the differential equations (21) and (22) are
also given by integrals over products of the propagator and the
Larmor frequency:

α(Er, t) = −
t
∫

0

dξ

∫

V

d3Er0 p(Er, Er0, ξ )ω(Er0) , (26)

β(Er, t) =
t
∫

0

dη

t−η
∫

0

dξ

∫

V

d3Er′
∫

V

d3Er0 p(Er, Er′, ξ )ω(Er′)p(Er′, Er0, η)ω(Er0) ,

(27)

where the spatial integrals go over the dephasing domain V .
This relationship is visualized in the middle and lower subfigure
of Figure 1. Here, the diffusion propagators take the form
of ordinary functions, but later on they are used in a non-
commutative operator form, in which case the specific ordering
matters. The form presented here is valid in both cases.

Inserting the propagator from Equation (B3) into the
definitions of the moment functions in Equations (26) and
(27) and performing the angular integration yields an explicit
expression for the angular dependence of the moments:

α(Er, t) = α2(r, t) cos(2φ) , (28)

β(Er, t) = β0(r, t)+ β4(r, t) cos(4φ) , (29)

with

α2(r, t) = −δω

t
∫

0

dξ e
Dξ [1r− 4

r2
]R

2
C

r2
(30)

β0(r, t) =
3

2
δω2

t
∫

0

dη

t−η
∫

0

dξeDξ1r
R2C
r2

e
Dη[1r− 4

r2
]R

2
C

r2
, (31)

β4(r, t) =
1

2
δω2

t
∫

0

dη

t−η
∫

0

dξe
Dξ [1r− 16

r2
]R

2
C

r2
e
Dη[1r− 4

r2
]R

2
C

r2
. (32)

The angular decomposition directly leads to a system of three
inhomogeneous partial differential equations for α2(r, t), β0(r, t),
and β4(r, t):

∂

∂t
α2(r, t) = D

[

1r −
4

r2

]

α2(r, t)− δω
R2C
r2

, (33)

∂

∂t
β0(r, t) = D1rβ0(r, t)−

δω

2

R2C
r2

α2(r, t) , (34)

∂

∂t
β4(r, t) = D

[

1r −
16

r2

]

β4(r, t)−
δω

2

R2C
r2

α2(r, t) . (35)

2.3. Analytical Moments
The moments (30)–(32) can be calculated analytically either by
using an ansatz in terms of eigenfunctions of the Laplace operator
or by integrating over the diffusion propagator as defined in
Equation (8). The first moment is then
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α2(r, t)

τδω
=− 1

4
+ 2π

∞
∑

n=1

8n,2(r)
e−λ2n,2

t
τ

λn,2
× (36)

[

J′2
(

λn,2√
η

)]2
−η

3
2 J′2
(

λn,2√
η

)

J′2(λn,2)
[

λ2n,2−4η
]

[J′2(λn,2)]2−
[

λ2n,2−4
]

[

J′2
(

λn,2√
η

)]2
,

and the coefficients of the second moment are

β0(r, t)

[τδω]2
=1

8

α2(r, t)

τδω
+ 1

8

η ln(η)

η − 1

[

t

τ
+ 1

4

r2

R2C

]

+ 1

32
(37)

+ ln(η)

64

[

3
1− η2

[1− η]2
+ ln(η)

1− η3

[1− η]3

]

− 1

64

[

η ln(η)

η − 1
+ 2ln

(

r

RC

)]2

+ π

8

∞
∑

n=2

8n,0(r)e
−λ2n,0

t
τ ×

S′−1,0(λn,0)
[

J1

(

λn,0√
η

)]2
− S′−1,0

(

λn,0√
η

)

J1

(

λn,0√
η

)

J1(λn,0)

[J1(λn,0)]2 −
[

J1

(

λn,0√
η

)]2
,

and

β4(r, t)

[τδω]2
=− 1

24

α2(r, t)

τδω
− 1

384
(38)

+ π

12

∞
∑

n=1

8n,4(r)
e−λ2n,4

t
τ

λ3n,4
×

[λ2n,4 + 24]
[

J′4
(

λn,4√
η

)]2
− η

3
2 [λ2n,4 + 24η]J′4

(

λn,4√
η

)

J′4(λn,4)

[λ2n,4 − 16η][J′4(λn,4)]2 − [λ2n,4 − 16]
[

J′4
(

λn,4√
η

)]2

where the function

S′−1,0(z) = −
∞
∫

0

dx xsinh(x)e−zsinh(x) (39)

appearing in the expression for β0(r, t) in Equation (37) denotes
the first derivative of the exceptional univariate Lommel function,
which is given in Equations (2) or (7) in Glasser [22]. The
derivation can be found in Equations (B4) and (B5) in the
Appendix. The limiting behavior of the moments for long times
is easily derived:

α2(r, t ≫ τ )

τδω
= −1

4
, (40)

β0(r, t ≫ τ )

[τδω]2
= 1

8

η ln(η)

η − 1

[

t

τ
+ 1

4

r2

R2C

]

(41)

+ ln(η)

64

[

3
1− η2

[1− η]2
+ ln(η)

1− η3

[1− η]3

]

− 1

64

[

η ln(η)

η − 1
+ 2ln

(

r

RC

)]2

,

β4(r, t ≫ τ )

[τδω]2
= 1

128
. (42)

It is obvious that only the moment β0(r, t) has a non-constant
limit and instead linearly increases with time. This leads to
exponential dampening of the local and total magnetization. The
prefactor of the linear time-dependent term ηln(η)/[8[η − 1]]
coincides with the inhomogeneous relaxation rate R′2/[τδω2] as
shown, for example, in Equation (36) in Bauer et al. [23]. The
total magnetization can be calculated as the volume integral of
the local magnetization inside the measurement voxel

M(t) =
2π
∫

0

dφ

RD
∫

RC

dr r m(r,φ, t) , (43)

with the initial total magnetization

M0 =
2π
∫

0

dφ

RD
∫

RC

dr r = m0πR
2
C

1− η

η
. (44)

In the limit of η → 1, i.e., dephasing on the surface of
the cylinder, the spatial derivative in the governing differential
equations is zero. Subsequently, a spatial discretization scheme is
unnecessary and the coefficients can be found by use of a simple
integrating factor. The resulting functions are

lim
r→RC

α2(r, t)

τδω
= α2(t)

τδω
= 1

4

[

e−
4t
τ − 1

]

, (45)

lim
r→RC

β0(r, t)

[τδω]2
= β0(t)

[τδω]2
= 1

8

[

t

τ
+ 1

4

[

e−
4t
τ − 1

]

]

, (46)

lim
r→RC

β4(r, t)

[τδω]2
= β4(t)

[τδω]2
= 1

384

[

3+ e−
16t
τ − 4e−

4t
τ

]

. (47)

Using the fact that all but the first eigenvalue λn,ν for each ν

diverge (see Figure 3 in [24] for ν = 2)

lim
η→1

1

λn,ν
= 1

ν
δn,1 , (48)

and the special value of the eigenfunctions at the inner boundary
(see Equation (63) in [25])

8n,ν(RC) =
2

πλn,ν
, (49)

these limiting cases can also be obtained from
Equations (36)–(38).
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3. RESULTS

3.1. Matrix Differential Equations and
Vector Moments
After the introduction of the GLP approximation and its
analytical solution for cylindrical domains in the previous
section, we now present the finite-difference approach which
can solve the moment functions and the local magnetization
efficiently without having to manually calculate eigenvalues. The
radial dimension can be discretized into N − 1 equidistant
intervals according to

rn = RC + [n− 1]h , (50)

h = RD − RC

N − 1
, (51)

n = 1, 2, . . . ,N , (52)

with the radial coordinate being replaced by the diagonal N ×
N matrix

r = 1

RC
diag(r1, r2, . . . , rN) . (53)

The spatially-dependent local magnetization function can be
represented by the vector of length N

m(Er, t) → Em(φ, t) =











m(r1,φ, t)
m(r2,φ, t)

...
m(rN ,φ, t)











, (54)

and the radial moments can be written as the diagonal matrices

α2(r, t) → α2(t) = diag
(

α2(r1, t),α2(r2, t), . . . ,α2(rN , t)
)

,
(55)

β0(r, t) → β0(t) = diag
(

β0(r1, t),β0(r2, t), . . . ,β0(rN , t)
)

,
(56)

β4(r, t) → β4(t) = diag
(

β4(r1, t),β4(r2, t), . . . ,β4(rN , t)
)

.
(57)

In order to extend the discretization to the differential equations,
the effect of the radial Laplace operator 1r has to be considered.
Applying a finite-differences scheme to the discretization grid
from Equation (52) leads to the dimensionless matrix Laplacian

R2C1r → 1r =
R2C
h2

× (58)
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The matrix elements rn+1/2/rn and rn+1/2/rn+1 can be directly
calculated by evaluating the formula for the discretized radial grid
points (52) at the respective locations n. In order to formulate the
problem as a vector differential equation, it is prudent to consider
the vectors

Eα2(t) = α2(t)E1 , (59)

Eβ0(t) = β0(t)E1 , (60)

Eβ4(t) = β4(t)E1 , (61)

with

E1 =











1
1
...
1











(62)

being the constant vector of lengthN. The action of the Laplacian
can then be described as product of the finite difference-
discretized matrix 1r and the moments

R2C1rα2(r, t) → 1r Eα2(t) , (63)

R2C1rβ0(r, t) → 1r Eβ0(t) , (64)

R2C1rβ4(r, t) → 1r Eβ4(t) . (65)

The discretized versions of Equations (33)–(35) are therefore

∂

∂t
Eα2(t) =

1

τ

[

1r − 4r−2
]

Eα2(t)− δωr−2E1 , (66)

∂

∂t
Eβ0(t) =

1

τ
1r Eβ0(t)−

1

2
δωr−2Eα2(t) , (67)

∂

∂t
Eβ4(t) =

1

τ

[

1r − 16r−2
] Eβ4(t)−

δω

2
r−2Eα2(t) . (68)

This matrix differential equation system can be solved by first
calculating Eα2(t) and subsequently Eβ0(t) and Eβ4(t) by the use of
integrating factors.

Multiplying Equation (66) from the left with
exp(− t

τ

[

1r − 4r−2
]

) and collecting terms yield

∂

∂t

(

e−
t
τ [1r−4r−2]Eα2(t)

)

= −δωe−
t
τ [1r−4r−2]r−2E1 . (69)

Integrating gives

Eα2(t)

τδω
= − 1

τ
e

t
τ [1r−4r−2]

t
∫

0

dξe−
ξ
τ [1r−4r−2]r−2E1 (70)

=
[

1− e
t
τ [1r−4r−2]

]

[

1r − 4r−2
]−1

r−2E1 (71)

with the identity matrix 1 of size N × N. This can be simplified
using the relation

[

1r − 4r−2
]−1

r−2E1 = −1

4
E1 , (72)
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resulting in

Eα2(t)

τδω
= 1

4

[

e
t
τ [1r−4r−2] − 1

]

E1 . (73)

Similarly, the attenuation coefficients Eβ0(t) and Eβ2(t) can
be derived by the use of integrating factors of exp(− t

τ
1r)

and exp(− t
τ

[

1r − 16r−2
]

), respectively. For the non-angular-

dependent part Eβ0(t), this leads to

Eβ0(t)

[τδω]2
= e

t
τ
1r

8τ

t
∫

0

dξe−
ξ
τ
1rr−2

[

1− e
ξ
τ
[1r−4r−2]

]

E1 (74)

= e
t
τ
1r

8τ





t
∫

0

dξe−
ξ
τ
1rr−2 −

t
∫

0

dξe−
ξ
τ
1rr−2e

ξ
τ
[1r−4r−2]



 E1 .

(75)

The second integral can be solved by using the identity

t
∫

0

dxe−xA[B− A]e+xB = e−tAe+tB − 1 , (76)

which holds for general matrices A,B ∈ R
N×N for t > 0. With

A = 1r and B = 1r − 4r−2 one gets with x = ξ/τ and using the

property 1rE1 = E0 and consequently e
t
τ
1rE1 = E1 the result

Eβ0(t)

[τδω]2
= 1

32



e
t
τ
[1r−4r−2] − 1+ 4

τ
e

t
τ
1r

t
∫

0

dξe−
ξ
τ
1rr−2



 E1 .

(77)

Due to the singularity of 1r , the last integral cannot be solved
by direct matrix inversion. As expanded upon in Appendix D,
the necessary pseudoinverse can be expressed in terms of a
simple function:

Eβ0(t)

[τδω]2
= 1

32

[

e
t
τ [1r−4r−2] − 1+ 4

η ln(η)

η − 1

t

τ
1

]

E1 (78)

+ 1

16

[

e
t
τ
1r − 1

]

[

η ln(η)

η − 1

[

ln(r)− r2

2

]

+
[

ln(r)
]2
]

E1 .

Using the same identity from Equation (76), Eβ4(t) becomes

Eβ4(t)

[τδω]2
= 1

32

[

1

4
1+ 1

12
e

t
τ
[1r−16r−2] − 1

3
e

t
τ
[1r−4r−2]

]

E1 . (79)

The time evolution of the vector moments at the inner and outer
borders as well as one middle point of the dephasing domain
is visualized in Figure 2. The numerical accuracy of the finite
difference scheme and the spectral expansion method can be
measured by the root mean squared error between the true values
and the numerical results, as shown in Figure 3.

FIGURE 2 | Time evolution of the GLP moment functions α2 (r, t) (A), β0(r, t)

(B), and β4(r, t) (C) at the discretized radial points RC, RM = [RC + RD]/2, and

RD for τδω = 10 and η = 0.1.

3.2. Local Magnetization
The discretized local magnetization is in the GLP first order

EmI(φ, t)

m0
= exp

(

iα2(t) cos(2φ)
) E1 (80)

and in the GLP second order

EmII(φ, t)

m0
= exp

(

iα2(t) cos(2φ)− β0(t)
)

× (81)

exp

(

−β4(t) cos(4φ)+
1

2

[

α2(t) cos(2φ)
]2
)

E1 . (82)

These vector equations correspond to the scalar equations (18)
and (19). As in the continuous case, the initial magnetization is
set to the constant vector E1 of length N. The time course of the
local magnetization reveals a complex relationship between the
real and imaginary parts, as shown in Figures 4, 5.
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FIGURE 3 | Root mean squared error between the true time evolution of the

moment functions α2 (RC, t) (A), β0 (RC, t) (B), and β4 (RC, t) (C) as determined

by a finite element simulation of Equations (33)–(35) and either the analytical

solution according to Equations (36)–(38) or the finite difference solution

according to Equations (73), (78), and (79). The time evolution was calculated

from t/τ = 0 to t/τ = 10 in steps of 0.1 either for η = 0.05 (left side) or

η = 0.1 (right side). The abscissa represents either the number of considered

eigenvalues for the analytic solution or the matrix dimension for the matrix

solution.

3.3. Total Magnetization
For the total magnetization in the discretized case, the Jacobi
determinant r in Equation (43) is replaced by the discretized
differential area element (see Equation (64) in [26])

k = 2

N − 1

√
η

1+√
η
× (83)

diag

(

1

2
, 1+ 1

N − 1

1−√
η

√
η

, . . . , 1+N − 2

N − 1

1−√
η

√
η

,
1

2
√

η

)

FIGURE 4 | Real and imaginary parts of the local magnetization calculated

from the GLP first order according to Equation (80) (black solid line), GLP

second order according to Equation (81) (red solid line) or with a finite element

simulation of the Bloch-Torrey equation (blue solid line) at the discretized radial

points RC (A), RM = [RC + RD]/2 (B), and RD (C) for φ = 0, τδω = 10

and η = 0.1.

resulting in

M(t)

M0
= 1

2π

2π
∫

0

dφE1⊺k Em(φ, t)

m0
. (84)

In the first-order GLP, the angular interval can be solved and the
total magnetization can be found by inserting Equation (80) into
Equation (84) as

MI(t)

M0
= E1⊺k J0(α2(t))E1 , (85)

with J0 being the Bessel function of first kind and zeroth order.
In the second-order GLP, the angular integral is not analytically
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FIGURE 5 | Visualization of the real part and the imaginary part of the local

magnetization at RC and φ = 0 for τδω = 10 (A), τδω = 50 (B), and

τδω = 100 (C) with η = 0.1. The starting point lies at Re(m(RC, 0)) = 1,

Im(m(RC, 0)) = 0 for each graph. The oscillatory nature of the local

magnetization in the GLP first order can be clearly seen.

solvable and, therefore, the total magnetization obtained by
inserting Equation (81) into Equation (84), remains

MII(t)

M0
= 1

2π
E1⊺ke−β0(t)× (86)

2π
∫

0

dφ eiα2(t) cos(2φ)−β4(t) cos(4φ)+ 1
2 [α2(t) cos(2φ)]

2E1 .

3.4. Comparison With Other Solutions
In the Gaussian Phase approximation, the total magnetization is
equal to

MGP(t)

M0
= exp

(

−[τδω]2
∞
∑

n=1

F2n
λ2n,2

[

t

τ
+ e−λ2n,2

t
τ − 1

λ2n,2

])

(87)

where the definition of the eigenvalues λn,2 is as usual, and the
coefficients Fn are defined by

F2n = η

1− η

[M−
n,2]

2

Nn,2
, (88)

with the definitions of Nn,2 given in Equation (14) and the
definition ofM−

n,2 given in Equation (B8) in the Appendix. Using
Equations (127)–(130) from Ziener et al. [25], this can be further
simplified to

MGP(t)

M0
= (89)

exp

(

[τδω]2

[

ηln(η)

8[1− η]

t

τ
+ 1

32
−

∞
∑

n=1

F2n
λ4n,2

e−λ2n,2
t
τ

])

.

The term linearly dependent on the time again has the same
form as in Equation (42). Using the discretized version of the
correlation function in Equation (A14), the total magnetization
in the Gaussian phase approximation can also be written in terms
of the Laplace operator:

MGP(t)
M0

= exp
(

[τδω]2

8

[

ηln(η)
1−η

t
τ
+ 1

4

])

× (90)

exp
(

[τδω]2

64
E1⊺kr−2e

t
τ
[1r−4r−2] ×

[

r2
[

2 ln(r)− 1
]

+
[

r2 + r−2
] ln(η)
1−η2

]

E1
)

.

If the magnetization decay is modeled as monoexponential
(ME), different approximations for different diffusion strengths
exist. If the diffusion term dominates the susceptibility term,
called the motional narrowing regime (ME MN), the formula
is [27]

MMEMN(t)

M0
= exp

(

−η[τδω]2

2

t

τ

)

, (91)
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FIGURE 6 | Comparison of the total magnetization for τδω = 10 (A),

τδω = 50 (B), and τδω = 100 (C) for η = 0.1. Black solid line: GLP first order

according to Equation (85), red solid line: GLP second order according to

Equation (86), blue solid line: finite element simulation of the Bloch-Torrey

equation (20), green dashed line: Gaussian Phase approximation according to

Equation (87), purple dashed line: monoexponential motional narrowing

approximation according to Equation (91), and orange dashed line:

monoexponential static dephasing approximation according to Equation (92).

and in the case of vanishing diffusion, called static dephasing
regime (ME SD), it is [27]

MME SD(t)

M0
= exp

(

− 2ηδω

1+ η
t

)

. (92)

Both introduced solutions, i.e., the GLP first order and the GLP
second order, are compared with the true total magnetization
as obtained by a finite element simulation of the Bloch-Torrey
equation and other approximations in Figure 6. In order to
compare the numerical efficiency of the different approaches,
10 calculation runs of the total magnetization were timed for
eachmethod implemented inMathematica using 24 computation
threads in parallel. The results can be seen in Table 1. The matrix
calculation methods is several times faster than the analytical
calculation method. The finite element simulation is by far
the slowest method, in part because of the high spatial and

TABLE 1 | Computation time for 10 calculation runs for the total magnetization of

the different calculation methods.

Method Time/10 runs (s)

GLP I.

discretized

Equation (85)

0.24

GLP I.

analytical

Equations (18) and (43)

1.37

GLP II.

discretized

Equation (86)

1.48

GLP II.

analytical

Equations (19) and (43)

8.76

Gaussian

Phase

Equation (87)

2.46

Finite element

simulation

Equation (20)

34.60

For both GLP first and second orders, the matrix calculation method is considerably faster.

The finite element simulation is almost a magnitude slower.

temporal resolution needed to avoid instability in cases of lower
diffusion strength.

4. DISCUSSION AND CONCLUSION

Herein, we derive the GLP approximation for a cylindrical
dephasing domain under the influence of the susceptibility effects
of a blood-filled inner vessel [6]. We, further, present a solution
method based on solving a matrix differential equation which
arises from a finite-differences discretization scheme for the
Laplace operator. As the phase distribution during magnetic
resonance imaging is a complicated time-dependent function of
the shape of the dephasing domain, of the diffusion strength and
of susceptibility effects, it is often assumed to take a Gaussian
form [4, 28, 29]. In the GLP, the ensemble distribution of the local
phase is considered instead and the distribution approximated
by its first two cumulants. This method of approximating
a probability distribution in terms of cumulants rather than
moments has been introduced by Kubo [30–32]. Derivations
can be found in standard stochastic physics textbooks, e.g., in
Chapter XVI section 4 in van Kampen [33] or in Cowan [28].
It has been shown that the GLP approximation leads to a better
approximation of the total magnetization in the case of a constant
gradient for cylindrical or spherical voxel shapes [5].

As can be seen in Figure 6, out of all options, the GLP
approximation of second order has the least deviation from
the true total magnetization time evolution. Interestingly, the
GLP of first order shows greater deviations from the true
total magnetization than the Gaussian Phase approximation.
A possible explanation for this may be that in the GLP first
order, the local magnetization does not converge to zero as
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expected, as Figures 4, 5 demonstrate. This leads to undampened
oscillatory behavior that ultimately results in a large deviation
both for the local and total magnetization. The Gaussian Phase
approximation suffers from the opposite behavior: the total
magnetization is overdampened and decays monotonically to
zero over time. The GLP of second order does not suffer from
either of these problems: it is able to follow oscillations to negative
total magnetization while having proper dampening. This can
also be seen from the definition of the local magnetization in
Equation (19). If only the first cumulant is taken into account,
the purely real coefficient α(r, t) is multiplied with the imaginary
unit i in the exponent and its magnitude can only influence the
angular frequency of the oscillations of m(Er, t). The amplitude
of the local magnetization cannot be modulated. This is only
possible with the addition of a second cumulant: in this case,
both α(r, t) and β(r, t) have non-zero real value in the exponent,
which is then able to modulate its amplitude and phase. The
local magnetization having constant absolute magnitude does
not, however, mean that the total magnetization, corresponding
to its domain integral, also has this property: due to destructive
(or theoretically constructive) interference, its amplitude can, of
course, vary.

From an algorithmic viewpoint, the calculation of the
GLP cumulants either requires knowledge of the spectral
expansion of the diffusion propagator or, alternatively, a proper
finite difference scheme for the Laplacian on the dephasing
domain. Both approaches are feasible for bounded domains
with rotational symmetry. As Figure 3 demonstrates, the finite-
difference approach has the advantage of a monotonically
decreasing error in respect to the true solution. The increase
in the error for the analytical solution for larger numbers
of coefficients is most likely due to the idiosyncrasies of the
numerical implementation and may very well not be present if
one uses a different implementation of Bessel functions. Both
methods, however, are not natively suited for extension to
unbounded domains. For the spectral expansion, an increasing
number of eigenvalues has to be considered as the dephasing
domain becomes larger and larger, until ultimatively the
eigenvalue spectrum becomes continuous for a truly unbounded
domain. The finite difference scheme can be adapted by either
increasing the number of grid points or by adapting the
discretization scheme to allow a non-uniform grid with the last
point in infinity [34–38]. These problems can most likely be
overcome, and may allow extending the GLP approximation
method for the cases of dephasing outside of cylinders or spheres
[39–42]. Furthermore, the introduced method of comparing
expressions for the cumulants for long time ranges allows writing
the coefficient equations in a far simpler form. This may also
be applicable for cumulant expansions in other models, such as
Equations (70) and (82) in Ziener et al. [5].

In our model, we considered dephasing in the domain around
a single cylindrical vessel. The influence of neighboring cylinders
and possible crossing-over effects was included by imposing
reflecting boundary conditions at the outer border. This
assumption, however, is true only for an uniform arrangement
of capillaries. The signal evolution from randomly arranged
capillaries differs significantly. Yablonskiy and Haacke derived

the relaxation rates of randomly arranged capillaries or spheres
in the absence of diffusion and were able to find an expression
for the relaxation rate that is based on a single capillary or
sphere, similar to the uniform case [43]. It is unknown, however,
if this holds for the non-negligible diffusion effects—numerical
simulations of randomly arranged capillaries suggest that this is
indeed the case [44], but no proof has been found.

Our model neglects the signal originating from inside the
vessel. This is sensible if the volume ratio η is sufficiently
low, as the total signal is, of course, the weighted sum of the
intra- and extravascular signals. For very short experimental
times, the flow inside the vessel can be neglected, and the
protons can be assumed to be stationary. The intravascular
magnetic field is then homogeneous [12], leading to a complete
refocusing of the signal in spin echo experiments. For longer
experimental times, the intravascular flow can no longer be
neglected. Due to the low laminar flow speeds in the human
capillaries, electrodynamic effects are most likely irrelevant, and
the intravascular compartment can be modeled separately. To
our knowledge, no systematic investigation of such effects has
taken place.

The main advantage of GLP approximation and
simultaneously its weak point arises from its handling of
the interplay of diffusion and susceptibility effects: the diffusion
propagator can be calculated separately, usually as the solution
of the diffusion equation (or more generally the Fokker-Planck
equation in case of a spatially variant diffusion constant [45])
and applied to the susceptibility term at each jump point, once
for the first cumulant and twice for the second cumulant [46].
This places very few restrictions on the diffusion propagator,
and its calculation does not have to be adapted to the form
of the dipole field. Therefore, flow effects and anisotropic
diffusion coefficients can be easily considered. Adapting the
full Bloch-Torrey equation to such circumstances is rather
cumbersome [47].
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