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In this brief report we study numerically the spontaneous emergence of rogue waves in 1)
modulationally unstable plane wave at its long-time statistically stationary state and 2)
bound-state multi-soliton solutions representing the solitonic model of this state. Focusing
our analysis on the cohort of the largest rogue waves, we find their practically identical
dynamical and statistical properties for both systems, that strongly suggests that the main
mechanism of rogue wave formation for the modulational instability case is multi-soliton
interaction. Additionally, we demonstrate that most of the largest rogue waves are very well
approximated–simultaneously in space and in time–by the amplitude-scaled rational
breather solution of the second order.
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1 INTRODUCTION

The phenomenon of rogue waves (RWs)—unusually large waves that appear suddenly from
moderate wave background–was intensively studied in the recent years. A number of
mechanisms were suggested to explain their emergence, see e.g., the reviews [1–3]; with the
most general idea stating that RWs could be related to breather-type solutions of the underlying
nonlinear evolution equations [4–6]. Currently, ones of the most popular models for RWs are the
Peregrine rational breather [7] and the higher-order rational breather [8] solutions of the one-
dimensional nonlinear Schrödinger equation (1D-NLSE) of the focusing type,

iψt + ψxx +
∣∣∣∣ψ∣∣∣∣2ψ � 0 (1)

These solutions belong to a family of localized in space and time algebraic breathers, which
evolve on a finite background and lead to three-fold, five-fold, seven-fold, and so on, increase in
amplitude at the time of their maximum elevation. Taking specific and carefully designed initial
conditions, they were reproduced in well-controlled experiments performed in different physical
systems [9–13].

The 1D-NLSE is integrable in terms of the inverse scattering transform (IST), as it allows
transformation to the so-called scattering data, which is in one-to-one correspondence with the
wavefield and, similarly to the Fourier harmonics in the linear wave theory, changes trivially during
the motion. Thanks to its properties, the scattering data can be used to characterize the wavefield.
For spatially localized case, the scattering data consists of the discrete (solitons) and the continuous
(nonlinear dispersive waves) parts of eigenvalue spectrum, calculated for specific auxiliary linear
system. For strongly nonlinear wavefields, such as the ones where emergence of rational breathers
can be expected, the solitons provide the main contribution to the energy [14] and should therefore

Edited by:
Heremba Bailung,

Ministry of Science and Technology,
India

Reviewed by:
Haci Mehmet Baskonus,
Harran University, Turkey

Matteo Conforti,
UMR8523 Physique des lasers,

atomes et molécules (PhLAM), France

*Correspondence:
D. S. Agafontsev
dmitrij@itp.ac.ru

Specialty section:
This article was submitted to

Mathematical and Statistical Physics,
a section of the journal

Frontiers in Physics

Received: 27 September 2020
Accepted: 20 January 2021

Published: 09 April 2021

Citation:
Agafontsev DS and Gelash AA (2021)
Rogue Waves With Rational Profiles in

Unstable Condensate and Its
Solitonic Model.

Front. Phys. 9:610896.
doi: 10.3389/fphy.2021.610896

Frontiers in Physics | www.frontiersin.org April 2021 | Volume 9 | Article 6108961

BRIEF RESEARCH REPORT
published: 09 April 2021

doi: 10.3389/fphy.2021.610896

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2021.610896&domain=pdf&date_stamp=2021-04-09
https://www.frontiersin.org/articles/10.3389/fphy.2021.610896/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.610896/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.610896/full
http://creativecommons.org/licenses/by/4.0/
mailto:dmitrij@itp.ac.ru
https://doi.org/10.3389/fphy.2021.610896
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2021.610896


play the dominant role in the dynamics. In particular, as has
been recently demonstrated in [15]; the modulationally unstable
plane wave (the condensate) at its long-time statistically
stationary state can be accurately modeled (in the statistical
sense) with a certain soliton gas, designed to follow the solitonic
structure of the condensate. The latter naturally raises a question
of whether there is a difference between the RWs emerging in
the two systems. Indeed, in a soliton gas all RWs are multi-
soliton interactions by construction. Hence, if there is no
significant difference, then we can draw a hypothesis that for
the asymptotic stationary state of the MI (and, possibly, for
other strongly nonlinear wavefields) the main mechanism of
RW formation is interaction of solitons.

With the present paper, we contribute to the answer on this
question by summarizing our observations of RWs for both
systems. Specifically, we compute time evolution for 1,000
random realizations of the noise-induced MI of the
condensate and also for 1,000 random realizations of 128-
soliton solutions modeling the asymptotic state of the MI. For
each realization, we analyze one largest RW emerging in the
course of the evolution, thus focusing our analysis on the largest
RWs. For both systems, we observe practically identical
dynamical and statistical properties of the collected RWs. In
particular, most of the RWs turn out to be very well
approximated–simultaneously in space and in time–by the
amplitude-scaled rational breather solution (RBS) of the
second order. By measuring deviation between RWs and their
fits with RBS as an integral of the difference in the (x, t)-space, we
find that, in general, the larger the maximum amplitude of the
RW, the better its convergence to the RBS of the second order
(RBS2). The collected RWs for the two systems turn out to be
identically distributed by their maximum amplitude and
deviation from the RBS2. Additionally, we demonstrate that
the observed quasi-rational profiles appear already for
synchronized three-soliton interactions and discuss the next
steps in the ongoing research of the RW origin.

Note that in the present paper we consider solutions of the
1D-NLSE for three different types of boundary conditions: the
MI of the condensate for which we use the periodic boundary,
the multi-soliton solutions with vanishing border conditions
and the RBS having constant border conditions at infinity.
Globally, these solutions are fundamentally different, and the
different border conditions require application of separate IST
techniques, see e.g., [5, 14, 16, 17]. For instance, formally our MI
case corresponds to finite-band scattering data. However, the
characteristic widths of the structures (RWs, solitons, RBS) are
small compared to the sizes of the studied wavefields, so that
the eigenvalue bands are very narrow and we neglect their
difference from solitons. The similar idea was suggested in
[18]; where, vice versa, the soliton gas was considered as a
limit of finite-band solutions. Effectively, we assume that
formation of a RW, as a local phenomenon, represents a
similar process for all three cases of border conditions. As we
demonstrate in the paper, this assumption is supported by the
presented results, that raises an important problem that we leave
for future studies–explanation of how the three models may
exhibit locally similar nonlinear patterns.

2 NUMERICAL METHODS

For both the MI of the condensate and the soliton gas initial
conditions, we solve Eq. 1 numerically in a large box
x ∈ [−L/2, L/2], L≫ 1, with periodic boundary. We use the
pseudo-spectral Runge-Kutta fourth-order method in adaptive
grid with the grid size Δx set from the analysis of the Fourier
spectrum of the solution; see [19] for detail. As an integrable
equation, the 1D-NLSE conserves an infinite set of integrals of
motion, see e.g., [14]. We have checked that the first ten integrals
are conserved by our numerical scheme up to the relative errors
from 10− 10 (the first three invariants) to 10− 6 (the 10th invariant)
orders.

Without loss of generality, the initial conditions for the noise-
induced MI of the condensate can be written as

ψ
∣∣∣∣t�0 � 1 + ε(x) (2)

where ε(x) represents a small initial noise. We use statistically
homogeneous in space noise with Gaussian Fourier spectrum,

ε(x) � a0( ���
8π

√
θL

)1/2∑
k

e−k
2/θ2+iϕk+ikx (3)

where a0 is the average noise amplitude in the x-space, k � 2πm/L
is the wavenumber, m ∈ Z is integer, θ is the characteristic noise
width in the k-space and ϕk are random phases for each k and
each realization of the initial conditions; the average intensity
of such noise equals to a20, 〈|ε|2〉 � a20. For the numerical
experiment, we take the box of length L � 256π and small
initial noise, a0 � 10− 5, with wide spectrum, θ � 5. Note that
these parameters match those used in [19].

To generate soliton gas, modeling the asymptotic stationary
state of the noise-induced MI, we use exact 128-soliton solutions
of the 1D-NLSE. More precisely, we compute the corresponding
wavefields using numerical implementation of the 1D-NLSE
integration technique–the so-called dressing method [20]—
with 100-digits precision arithmetics, as described in [21].
Each soliton has four parameters: amplitude aj, velocity vj,
space position x0j and phase Θj; here j � 1, . . . ,M, M � 128,
and the one-soliton solution reads as

ψs(x, t) � a
exp[iυ2 (x − x0) + i

2 (a2 − υ2

2 )t + iΘ]
cosh a(x−x0)−aυt�

2
√

Following [15]; we distribute soliton amplitudes according to
the Bohr-Sommerfeld quantization rule,

aj � 2

������������
1 − (j − 1/2

M
)2

√
(4)

and set soliton velocities to zero, υj � 0, using uniformly-
distributed soliton phases Θj in the interval (0, 2π) and
uniformly-distributed space position parameters x0j in a
narrow interval at the center of the computational box. Zero
velocities mean that thesemulti-soliton solutions are bound-state.
For the 1D-NLSE in normalization Eq. 1, the Bohr-Sommerfeld
rule describes amplitudes for the bound-state solitonic content of
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a rectangular box wavefield of unit amplitude ψ � 1 and width
Lo �

�
2

√
πM, calculated with the semi-classical Zakharov-Shabat

direct scattering problem, see e.g., [14, 22, 23]. The generated 128-
soliton solutions take values of unity order approximately within
the interval x ∈ [−Lo/2, Lo/2] and remain small outside of it. For
more detail on the soliton gas, we refer the reader to [15]; where it
has been demonstrated that its spectral (Fourier) and statistical
properties match those of the long-time statistically stationary
state of the MI.

For the soliton gas, we gather the RWs by simulating time
evolution of the 128-soliton solutions in the interval t ∈ [0, 50]
and then collecting one largest RW for each of the 1,000
realizations of initial conditions. For time evolution, we use
the same pseudo-spectral Runge-Kutta numerical scheme as
for the MI of the condensate, since application of the dressing
method with evolving scattering data takes too much
computational time and provides the same result. The pseudo-
spectral scheme uses periodic boundary conditions, so that
solution ψ(x, t) needs to be small near the edges of the
computational box. We achieve this by taking the box of
length L � 384

�
2

√
π, so that our 128-soliton solutions are of

10− 16 order near its edges and take values of unity order,∣∣∣∣ψ∣∣∣∣ ∼ 1, only within its central 1/3 part (≡ Lo/L).
For the MI of the condensate, we collect the RWs similarly,

but in the time interval t ∈ [174, 200]. From the one hand, the
end of this interval is far enough, so that the system is
sufficiently close to its asymptotic stationary state, see [19]
where the same initial conditions were used. From the other
hand, a chance to detect a large RW is higher in larger
simulation boxes and if we wait longer. To make RW events
for the two systems comparable, we impose a restriction L(MI) ·
ΔT(MI) � L(SG) · ΔT(SG) on the lengths L(MI,SG) of the regions
where RWs may appear and on the time intervals ΔT(MI,SG)
during which we wait for the largest RW. For the soliton gas, the
collected RWs appear approximately in the space interval
x ∈ [−210, 210] with practically uniform distribution of their
position, so that L(SG) � 420. We believe that this property is
connected with behavior of the ensemble- and time-averaged
intensity I(x) � 〈

∣∣∣∣ψ(x, t)∣∣∣∣2〉, which remains flat I � 1 inside this
interval and starts to deviate from unity at its edges. For the MI,
the RWs may appear anywhere within the computational box
L(MI) � 256π; together with the observation time for the soliton
gas case ΔT(SG) � 50, this yields ΔT(MI) � 26 and the time
interval t ∈ [174, 200] for the MI.

The rational breather solution of the first order (RBS1)—the
Peregrine breather [7]—reads as

ψ(1)
p (x, t) � eit[1 − 4(1 + 2it)

1 + 2x2 + 4t2
] (5)

The RBS of the second order (RBS2) ψ(2)
p is too complex and

we refer the reader to [8] where it was first found. Both solutions
describe localized in space and in time perturbations that evolve
on a finite background–the condensate–and lead to three-fold
and five-fold increase in the overall amplitude at the time of their
maximum elevation. For approximation of a RW with a RBS, we
use the scaling, translation and gauge symmetries of the 1D-

NLSE: indeed, if u(x, t) is a solution of Eq. 1, then A0eiΘ · u(χ, τ),
where χ � A0(x − x0), τ � A2

0(t − t0), and A0,Θ ∈ R, is also a
solution. Technically, we detect the maximum amplitude A of a
RW together with its position x0 and time t0 of occurrence, and
also the phase at the maximum amplitude Θ � argψ(x0, t0), and
then use the scaling coefficient A0 � −A/3 for the RBS1 and A0 �
A/5 for the RBS2.

Note that, in general, RBS may have nonzero velocity v ≠ 0.
To account its influence, one can make a transformation
u(x, t)→ eivx/2−iv2t/4 · u(x − vt, t), which also prompts a
simple way to find the velocity. Indeed, at the time of the
maximum elevation t0, a RBS with zero velocity, v � 0, has
constant phase arg ψ(x, t0) � const in the region between the
two zeros closest to the maximum amplitude. In contrast, a
RBS with nonzero velocity, v ≠ 0, has constant phase slope,
arg ψ(x, t0)−ivx/2 � const, in the same region. Hence, by
computing the phase slope one can approximate RWs with
RBS of nonzero velocity. For all the RWs studied in this paper,
we have checked that taking into account velocity improves our
approximations only very slightly, and for this reason we have
decided to use RBS with zero velocity only.

Also note that in addition to the RBS1 and the RBS2, we have
examined approximation with the RBS of the 3rd order [8]; as
well. However, we have found that it works worse than either the
RBS1, or the RBS2 for all 2000 examined RWs, and thereby
excluded it from the analysis.

3 Rogue Waves With Rational Profiles
We start this Section with description of one RW event for the
soliton gas case, and then continue with examination of RW
properties for both systems–the noise-induced MI close to its
asymptotic stationary state and the soliton gas representing the
solitonic model of this state.

An example of one of the 10 largest RWs collected for the
soliton gas case is shown in Figure 1. The space profile

∣∣∣∣ψ(x, t0)∣∣∣∣
and the phase argψ(x, t0) at the time of the maximum elevation
t0 ≈ 39.2 are demonstrated in Figure 1A, the temporal evolution
of the maximum amplitude maxx

∣∣∣∣ψ∣∣∣∣—in Figure 1B, and the
space-time representation of the amplitude

∣∣∣∣ψ(x, t)∣∣∣∣ near the RW
event–in Figure 1C. As indicated in the figures, the space profile∣∣∣∣ψ(x, t0)∣∣∣∣ and the maximum amplitude maxx

∣∣∣∣ψ∣∣∣∣ are very well
approximated by the amplitude-scaled RBS2, and the space-time
representation strongly resembles that of the RBS2 as well. At the
time of the maximum elevation, the RBS2 has four zeros; the RW
presented in Figure 1 also has four local minimums that are very
close to zero and where the phase argψ(x, t0) jumps
approximately by π, see Figure 1A. Note that the phase is
practically constant between the two local minimums closest
to the maximum amplitude, as for the velocity-free RBS1 and
RBS2. The described phase pattern is sometimes considered as a
characteristic feature of RW formation, see [24, 25].

The deviation between a RW and its approximation with a
RBS can be measured locally as

d(1,2)p (x, t) �
∣∣∣∣∣ψ − ψ(1,2)

p

∣∣∣∣∣∣∣∣∣ψ∣∣∣∣ (6)
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Figure 1D shows this deviationd(2)p for theRBS2 in the(x, t)-plane:
in space–between the two local minimums closest to the maximum
amplitude x ∈ Ω, and in time–in the interval t − t0 ∈ [−0.5, 0.5],
since outside of it the maximum amplitude noticeably deviates from
the fit with the RBS2 in Figure 1C. The deviation d(2)p remains well

within 5% for most of the area demonstrated in the figure, so that the
RBS2 turns out to be a very good approximation for the presented
RW–simultaneously in space and in time.

As an integral measure reflecting the deviation between a RW
and a RBS, one can consider a quantity

FIGURE 1 | (Color on-line) One of the 10 largest RWs (the coordinate of maximum amplitude is shifted to zero for better visualization) for the soliton gas case with
time of occurrence t0 ≈ 39.2, maximum amplitude A ≈ 4.4 and deviation Eq. 7 from the RBS2 D(2)

p ≈ 0.02: (A) space profile of the RW
∣∣∣∣ψ(x, t0)∣∣∣∣ at the time t0 of its

maximum elevation, (B) time dependency of the maximum amplitude maxx
∣∣∣∣ψ∣∣∣∣, (C) space-time representation of the amplitude

∣∣∣∣ψ(x, t)∣∣∣∣ near the RW event, and (D)
relative deviation Eq. 6 between the wavefield and the fit with the RBS2 in the (x, t)-plane. In the panel (A), the thick black and the thin dash-dot red lines indicate the
space profile

∣∣∣∣ψ(x, t0)∣∣∣∣ and the phase argψ(x, t0). In the panels (A,B), the dashed blue and green lines show the fits with the RBS1 and the RBS2, respectively. In the
panel (D), the deviations d(2)

p ≥ 0.1 are demonstrated with constant deep red color.

FIGURE 2 | (Color on-line) (A,B) DeviationDp � min{D(1)
p ,D(2)

p } between RWs and their best fits with either the RBS1 or the RBS2 vs. the maximum amplitude A of
the RW: (A) for the soliton gas and (B) for the MI of the condensate close to its statistically stationary state. The blue squares indicate that the best fit is achieved with the
RBS1 and the green circles–with the RBS2. (C,D) The PDFs of (C) the maximum amplitude A for all the RWs and (D) the deviationD(2)

p for the RWs better approximated
with the RBS2, for the soliton gas (blue) and the MI of the condensate close to its statistically stationary state (red).
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D(1,2)
p � ⎡⎢⎢⎢⎢⎢⎣∫x∈Ω ∫t0+ΔT

t0−ΔT
∣∣∣∣∣ψ − ψ(1,2)

p

∣∣∣∣∣2dxdt∫
x∈Ω ∫t0+ΔT

t0−ΔT
∣∣∣∣ψ∣∣∣∣2dxdt ⎤⎥⎥⎥⎥⎥⎦1/2 (7)

Here we choose the region of integration over time t ∈ [t0 −
ΔT , t0 + ΔT] from the condition that at t0 ± ΔT the RBS2 fit
halves its maximum amplitude. Indeed, as demonstrated below,
the collected RWs have maximum amplitudes roughly between
3.3 and 5, and their halving translates the waves below the RW
threshold

∣∣∣∣ψ∣∣∣∣> 2.8, see e.g., [19]; also, for most of the RWs, the
best fit is the RBS2. For the RW presented in Figure 1, the interval
of integration in time is |t − t0|≤ 0.31 and the deviations are
D(1)

p ≈ 0.2 for the RBS1 and D(2)
p ≈ 0.02 for the RBS2.

The quantity Eq. 7 can be used to assess how well a RW can be
approximated by a RBS. Figure 2A shows the minimum
deviation Dp � min{D(1)

p ,D(2)
p } vs. the maximum amplitude of

the RW A � max
∣∣∣∣ψ∣∣∣∣ for all 1,000 RWs collected for the soliton gas

case; the RWs better approximated with the RBS1 are indicated
with the blue squares and those with the RBS2—with the green
circles. For 57 RWs the best fit turns out to be the RBS1—the
Peregrine breather, while the other 943 RWs are better
approximated by the RBS2. According to our observations, the
value of the deviation Eq. 7 below 0.05 typically means that such a
RW is very well approximated with the corresponding RBS; for
0.05(D(1,2)

p (0.1 the approximation is satisfactory, and for
D(1,2)

p T0.1—poor. Of 57 RWs better approximated with the
RBS1, only four have deviations below 0.1 and none–below
0.05; hence, approximation with the RBS1 turns out to be
satisfactory at best. For the RBS2 we have completely different
picture: 768 RWs show deviations from the RBS2 below 0.1 and
220—below 0.05. As demonstrated in Figure 2A, larger RWs are
typically better approximated with the RBS2. In particular, of 143
RWs having maximum amplitude above 4, 68 have deviation
from the RBS2 below 0.05, and the mean deviation for the entire
group of 143 RWs is 〈D(2)

p 〉 ≈ 0.055. Hence, we can conclude that
the largest RWs are typically very well approximated by the RBS2.

RWs collected close to the statistically stationary state of the
noise-induced MI show the same general properties as those for
the soliton gas case. Figure 2B demonstrates very similar
“clouds” of RWs approximated with either the RBS1, or the
RBS2 on the diagram representing the minimum deviation Dp

vs. the maximum amplitude A. Of 1,000 RWs in total, 36 are
better approximated with the RBS1 and 964—with the RBS2. Of
those better approximated with the RBS1, only three have
deviations below 0.1 and none–below 0.05. Of 964 RWs
better approximated with the RBS2, 792 have deviations
below 0.1 and 215—below 0.05. In total, 150 RWs have
amplitudes above four; out of them, 64 have deviation from
the RBS2 below 0.05, and the mean deviation among the group
of 150 RWs equals to 〈D(2)

p 〉 ≈ 0.059.
The RWs for the two types of initial conditions turn out to be

practically identically distributed by their maximum amplitude,
as demonstrated in Figure 2C with the corresponding probability
density functions (PDFs). The PDFs of the deviation D(2)

p for the
RWs better approximated by the RBS2 (green circles in Figures
2A,B) are also nearly identical, Figure 2D. Hence, we conclude
that the largest RWs for the two systems show practically identical

dynamical (resemblance with the RBS2) and statistical properties.
Note that we have repeated simulations for the MI case with
smaller and larger 1) computational boxes and 2) time windows
for collecting the RWs. As a result, we have obtained the PDF of
the maximum amplitude shifted to smaller or larger amplitudes,
respectively. The nearly perfect correspondence of the two PDFs
in Figure 2C additionally justifies the usage of the simulation
parameters discussed in the previous Section.

4 DISCUSSION AND FUTURE DIRECTIONS

As we have mentioned in [21]; some two- and three-soliton
collisions at the time of their maximum elevation have space
profiles remarkably similar to those of the RBS1 and the RBS2.
Moreover, we have presented an example of a phase-synchronized
three-soliton collision, for which both the space profile and the
temporal evolution of the maximum amplitude are very well
approximated by the RBS2. The solitons in [21] had nonzero
velocities; here we modify the two- and three-soliton examples for
the case of zero velocities and also examine the local deviations
d(1,2)p (x, t) Eq. 6 together with the integral deviations D(1,2)

p Eq. 7.
Figure 3 shows an example of three-soliton interaction with

solitons having amplitudes a1 � 1, a2 � 1.5 and a3 � 2, zero
velocities vj � 0, zero space position parameters x0j � 0 and, at
the initial time t � 0, zero phasesΘj � 0. The space profile

∣∣∣∣ψ(x, t0)∣∣∣∣
at the time of the maximum elevation t0 � 0 is remarkably similar
to that of the RBS2, and the local deviation d(2)p (x, t) remains well
within 5% for most of the area presented in the figure as well. The
integral deviation Eq. 7 equals toD(2)

p ≈ 0.016, that is even smaller
than for the RW presented in Figure 1.

To analyze how often phase-synchronized interactions of two
and three solitons of various amplitudes may lead to such quasi-
rational profiles, we have created 20 two-soliton and 20 three-soliton
interactions with solitons of random amplitudes, zero velocities
vj � 0, zero space positions parameters x0j � 0 and phases Θj � 0.
For the two-soliton interactions, the minimum deviations from the
RBS1 and the RBS2 turned out to beD(1)

p ≈ 0.077 andD(2)
p ≈ 0.061,

and the average ones—〈D(1)
p 〉 ≈ 0.14 and 〈D(2)

p 〉 ≈ 0.075,
respectively. For the three-soliton case, the minimum deviations
were D(1)

p ≈ 0.18 and D(2)
p ≈ 0.003, and the average

ones—〈D(1)
p 〉 ≈ 0.23 and 〈D(2)

p 〉 ≈ 0.022; the maximum
deviation from the RBS2 equaled to D(2)

p ≈ 0.03, that is still very
good for comparison with the RBS2. Hence, we conclude that quasi-
rational profiles very similar to that of the RBS2 appear already for
three-soliton interactions, provided that the solitons are properly
synchronized (that is, have coinciding positions and phases).

We think that the presented elementary three-soliton model
might provide an explanation of RW formation inside multi-
soliton solutions. The most direct way for future studies might
be a demonstration of a RW for synchronized many-soliton
solution. Here, however, we face a new question, that is,
whether formation of a RW is a collective phenomenon that
requires synchronization of all the solitons, or a “local” event
that can be achieved by synchronizing of a few with arbitrary
parameters of the others. Note that even the latter case represents a
challenging problem. Indeed, the few solitons that generate a RW
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acquire space and phase shifts due to the presence of the remaining
solitons, that should influence their optimal synchronization
condition. For remote solitons, the shifts can be computed
analytically using the well-known asymptotic formulas, see e.g.,
[14]; which however do not work for our case of a dense soliton gas
where all solitons effectively interact with each other. This leaves us
two options: 1) a local numerical synchronization of a small group
with “trial and error” method and 2) calculation of generalized
space-phase shifts for closely located solitons. Both ways seem
challenging at the moment.

Also note that our study is limited with respect to statistical
analysis of RWs, as we have focused on the largest RWs, while the
“common” RWs may have different dynamical and statistical
properties. Nevertheless, we believe that, since the largest RWs for
the two systems show identical properties, the “common” RWs
have identical properties too. Identification of all the RWs
according to the standard criterion A≥ 2.8 is a nontrivial
problem by itself, and we plan to return to it in the near future.

5 CONCLUSION

In this brief report we have presented our observations of RWs
within the 1D-NLSE model for 1) the modulationally unstable
plane wave at its long-time statistically stationary state and 2) the
bound-state multi-soliton solutions representing the solitonic
model of this state. Focusing our analysis on the largest RWs,
we have found their practically identical dynamical and statistical
properties for both systems. In particular, most of the RWs turn
out to be very well approximated–simultaneously in space and in
time–by the amplitude-scaled rational breather solution of the
second order (RBS2), see Figures 1, 2 and the two sets of the
collected RWs are identically distributed by their maximum
amplitude and deviation from the RBS2, see Figures 2C,D.
Additionally, we have demonstrated the appearance of quasi-
rational profiles very similar to that of the RBS2 already for
synchronized three-soliton interactions, see e.g., Figure 3.

The main messages of the present paper can be summarized as
follows. First, a quasi-rational profile very similar to a RBS does not
necessarily mean emergence of the corresponding rational breather,
as it can be a manifestation of a multi-soliton interaction. Second,

the identical dynamical and statistical properties of RWs collected
for the two examined systems strongly suggest that the main
mechanism of RW formation should be the same, i.e., that RWs
emerging in the asymptotic stationary state of theMI (and, possibly,
in other strongly nonlinear wavefields) are formed as interaction of
solitons. However, more study is necessary to clarify exactly how
interaction of solitons within a large wavefieldmay lead to formation
of a RW, and we plan to continue this research in the future.

As future directions of our studies, we consider two problems.
The first is about examination of whether formation of a RW
in a soliton gas is a collective phenomenon that requires
synchronization of all the solitons, or a “local” event that can be
achieved by synchronizing of a few. The second problem relates to
statistical analysis of all the RWs according to the standard criterion
A> 2.8, in contrast to the largest RWs analyzed in this paper.
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FIGURE 3 | (Color on-line) Synchronized three-soliton interaction of solitons having amplitudes a1 � 1, a2 � 1.5 and a3 � 2, zero velocities vj � 0, zero space
positions parameters x0j � 0 and, at the initial time t � 0, zero phasesΘj � 0: (A) space profile

∣∣∣∣ψ(x, t0)∣∣∣∣ and phase argψ(x, t0) at the time of themaximum elevation t0 � 0,
and (B) relative deviation Eq. 6 between the wavefield and the fit with the RBS2 in the (x, t)-plane. All notations are the same as in Figures 1A,D. The deviation Eq. 7 from
the RBS2 fit equals to D(2)

p ≈ 0.016.
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