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In this work, two approaches are introduced to solve a linear damped nonlinear
Schrödinger equation (NLSE) for modeling the dissipative rogue waves (DRWs) and
dissipative breathers (DBs). The linear damped NLSE is considered a non-integrable
differential equation. Thus, it does not support an explicit analytic solution until now, due to
the presence of the linear damping term. Consequently, two accurate solutions will be
derived and obtained in detail. The first solution is called a semi-analytical solution while the
second is an approximate numerical solution. In the two solutions, the analytical solution of
the standard NLSE (i.e., in the absence of the damping term) will be used as the initial
solution to solve the linear damped NLSE. With respect to the approximate numerical
solution, the moving boundary method (MBM) with the help of the finite differencesmethod
(FDM) will be devoted to achieve this purpose. The maximum residual (local and global)
errors formula for the semi-analytical solution will be derived and obtained. The numerical
values of both maximum residual local and global errors of the semi-analytical solution will
be estimated using some physical data. Moreover, the error functions related to the local
and global errors of the semi-analytical solution will be evaluated using the nonlinear
polynomial based on the Chebyshev approximation technique. Furthermore, a
comparison between the approximate analytical and numerical solutions will be carried
out to check the accuracy of the two solutions. As a realistic application to some physical
results; the obtained solutions will be used to investigate the characteristics of the
dissipative rogue waves (DRWs) and dissipative breathers (DBs) in a collisional
unmagnetized pair-ion plasma. Finally, this study helps us to interpret and understand
the dynamic behavior of modulated structures in various plasma models, fluid mechanics,
optical fiber, Bose-Einstein condensate, etc.
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1 INTRODUCTION

In the past few years, interest has increased in the treatment
required to solve differential equations analytically and
numerically which led to the interpretation of ambiguous
nonlinear phenomena that exist and propagate in various
fields of science such as the field of optical fiber, Bose-
Einstein condensate, biophysics, Ocean, physics of plasmas,
etc. [1–19]. For instance, the Schrödinger-type equation and
its family are devoted to interpreting and investigating the
behavior of waves accompanied by the movement of particles
in multimedia [4–20]. Additionally, the family of the nonlinear
Schrödinger-type equation is used to investigate modulated
envelope structures such as dark solitons, bright solitons,
gray solitons, rogue waves, breathers structures etc. which
can propagate with group wave velocity [11–20]. This family
has been solved analytically and numerically using several
analytical and numerical methods [1]. The following
standard/cubic NLSE

iztΨ + 1
2
Pz2xΨ + Q

∣∣∣∣Ψ 2Ψ � 0,
∣∣∣∣ (1)

is considered one of the most universal models used to describe
and interpret various physical nonlinear phenomena that can
exist and propagate in nonlinear and dispersive media. Numerous
monographs and published papers are devoted to studying the
NLSE which possesses a special solution in the form of pulses,
which retain their shapes and velocities after interacting among
themselves. Such a solution is called modulated envelope dark
soliton. Other nonlinear modulated structures such as bright and
gray solitons, cnoidal waves, etc. could be modeled using Eq. 1
and its family. Furthermore, the importance of Eq. 1 extends to
the explanation of some mysterious modulated unstable
phenomena such as rogue waves (RWs)/freak waves (FWs)/
killer waves/huge waves/rogons, all names are synonymous.
These waves were observed for the first time in ocean and
marine engineering [21] and then extended to appear in many
branches of science such as in water tanks [18, 22], finance [23],
optical fibers [24–26], in atmosphere and astrophysics [27, 28],
and in electronegative plasmas [29–32], etc. In recent decades,
explaining the mechanisms of rogue wave (RW) propagation in
different systems have been one of the main topics that occupy
the minds of many researchers.

RWs have been described by many researchers as temporary/
instantaneous waves “that appear suddenly and abruptly
disappear without a trace” [33]. RWs possess some
characteristics that distinguish them from other modulated
waves such as, 1) it is a space-time localized wave i.e., not
periodic in both space and time 2) it is a single wave which
propagates with the largest amplitude compared to the
surrounding waves (almost three times [29] (for first-order
RWs) or five times [31] (for second-order RWs), and 3) the
statistical distribution of the RW amplitude has a tail that does
not follow the Gaussian distribution [34]. Furthermore, there is
another type of unstable modulated structure that can be
described and investigated by Eq. 1 and its family, which are
called the solitons on finite backgrounds (SFB) or are known as

breathers waves including the Akhmediev breathers (ABs) and
the Kuznetsov–Ma breathers (KMBs) [35]. Both the ABs and the
KMBs are exact periodic solutions to Eq. 1. With respect to the
ABs and according to Eq. 1, it is a space-periodic solution but is
localized in the time domain. On the contrary, with respect to the
KMBs, it is a time-periodic solution but is localized in the space
domain. Both the ABs and KMBs have a plane wave solution
when |t|→∞ and |x|→∞, respectively. Furthermore, for a
limiting case of the periodic breathers, both the ABs and
KMBs become localized (i.e., the ABs and KMBs become
RWs) in the temporary and spatial domain, [36, 37].

To understand and interpret the puzzle of generating and
propagating these types of huge waves in various fields of
sciences, many researchers focused their efforts to solve the
integrable NLSE and its higher-orders, which describe the
analytical RWs and breathers solutions. Most published papers
about these waves have been confined to investigating the
undamped RWs and breathers in the absence of the damping
forces (the friction force or collisions between the media particles)
[19, 38–40]. In fact, we can only neglect the force of friction in
very few cases of superfluids (no viscosity). So consequently, this
force must be taken into consideration when studying the
propagation of these waves in optical fiber, laser, physics of
plasmas, etc. to ensure the phenomenon under consideration
is described accurately and comprehensively. Recently, different
experimental approaches have been used to generate the
dissipative RWs (DRWs) in Mode-Locked Laser [41],
multiple-pulsing mode-locked fiber laser [42], fiber laser [43],
and in an ultrafast fiber laser [44]. Theoretically, few attempts
have been made to understand the physical mechanism of
generating and propagating DRWs and DBs (dissipative
Akhmediev breathers (DABs) and dissipative Kuznetsov-Ma
breathers (DKMBs) in the fluid mechanics and in plasma
physics when considering the friction forces [45–50]. In these
papers, authors tried to find an approximate analytical solution to
the following non-integrable linear damped NLSE.

iztΨ + Pz2xΨ + Q
∣∣∣∣Ψ 2Ψ + iRΨ � 0
∣∣∣∣ (2)

These studies relied on the use of an appropriate transformation
[45] to convert Eq. 2 into the integrable NLSE (1) which has a
hierarchy of exact analytical solutions such as envelope solitons,
RWs, breathers, cnoidal waves, etc. Motivated by the observations
of RWs in the laboratory in the case of electronegative plasmas
and a fiber laser, we have made some subtle and distinguishable
attempts to obtain some approximate analytical and numerical
solutions for Eq. 2 without converting this equation to the
standard cubic NLSE (1). In the first attempt (our first
objective), the DRWs and DBs solutions will be obtained in
the form of semi-analytical solutions based on the exact analytical
solution to Eq. 1. To our knowledge, this is the first attempt to
derive an approximate analytical solution with high accuracy for
the DRWs and DBs of Eq. 2 without transforming it to Eq. 1. The
second objective of our study, is to use some hybrid numerical
methods, such as the moving boundary method (MBM) with the
finite difference method (FDM), to solve the non-integrable Eq. 2
numerically and to make a comparison between the numerical
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approximate solution and the semi-analytical solution to check
the accuracy and the effectiveness of both of them. Moreover, the
maximum local (at a certain value of time, say, at final time) and
global (taken over all space-time domain) errors of the semi-
analytical solution are estimated. Furthermore, the error
functions related to the whole space-time domain and final
time for the semi-analytical solution is evaluated using the
polynomial based on the Chebyshev approximation technique.
The most important characteristic of our techniques is their
ability to give an excellent, accurate, and comprehensive
description for the phenomena under study.

The remainder of this paper is structured as follows: in
Section 2, we briefly review the results obtained by Sikdar
et al. [49] studying both collisionless and collisional envelope
solitons in collisional pair-ion unmagnetized plasmas with
completely depleted electrons. The profile of modulational
instability (MI) of the (un)damped electrostatic potential is
also analyzed and investigated in Section 2. Moreover, the
(un)stable regions of ion-acoustic (IA) modulated structures
are determined precisely, depending on the criteria of the MI of
non-dissipative and dissipative modulated structures. In
Section 3, the exact analytical RW and breathers solutions to
Eq. 1 are discussed briefly. Thereafter, we devote great effort to
solve and analyze Eq. 2 analytically to obtain a semi-analytical
solution to the DRWs and DBs. In Section 4, the hybrid MBM-
FDM is introduced to analyze Eq. 2 to investigate the
characteristics behavior of both the DRWs and DBs. The
results are summarized in Section 5.

2 THE PHYSICAL MODEL AND A LINEAR
DAMPED NLSE

Sikdar et al. [49] reduced the fluid governing equations of the
collisional pair-ion unmagnetized plasmas to the linear damped
NLSE using a reductive perturbation technique (the derivative
expansion method) to study both collisionless and collisional
envelope solitons (bright and dark solitons). In this model, the
plasma system consists of warm positive and negative fullerene
ions (C+

60 and C−
60) in addition to considering the ion-neutral

collision [49, 51]. The linear damped NLSE obtained by Sikdar
et al. [49] is similar to Eq. 2. In Sikdar et al. [49] model, the linear
damping term (iRΨ) appeared as a result of considering the ion-
neutral collision. The coefficients P, Q, and R represent the
coefficients of the dispersion, nonlinear, and linear damping
terms, respectively. These coefficients are functions of various
plasma parameters such as, the temperature T± and the ion-
neutral collision frequency ]± of both the positive and negative
ions. The derivation details of the linear damped NLSE for the
present model and the values of P, Q, and Γc can be found in Ref.
49. Sikdar et al. [49] observed that in the dimensional form, the
system supports two modes, namely, high frequency ion plasma
wave (IPW) and low frequency ion-acoustic wave (IAW). They
also observed that for the IPW both P and Q are always positive
against the modulated wavenumber (k) and for different values of
(T+,T−) � (0.9, 0.6) and (T+,T−) � (0.0.54, 0.9). On the other
hand, for the IAW, the coefficient P is always negative while the

coefficient Q may be positive or negative depending on the value
of the modulated wavenumber. Moreover, it was found that the
coefficient of the dissipative term Γc is always positive for all cases.
It is known that in the absence of the dissipative/damping term
(Γc � 0), the standard NLSE supports a series of exact analytical
solutions like the dark solitons, bight solitons, gray solitons, RWs,
breathers (Akhmediev breathers (ABs), and Kuznetsov–Ma
breathers (KMBs)), etc. On the contrary, in the presence of
the dissipative term (Γc ≠ 0), the linear damped NLSE becomes
completely non-integrable, i.e., it does not have an exact
analytical solution in its present form. As a result, this
equation could be solved numerically or semi-analytically by
one of the known methods describing many nonlinear
modulated structures that can exist and propagate in different
branches of science [49].

Without loss of generality, we can rewrite the linear damped
NLSE in the following form Refs. 49 and 52.

iztΨ + 1
2
Pz2xΨ + Q

∣∣∣∣Ψ 2Ψ + iRΨ � 0,
∣∣∣∣ (3)

where P ≡ P/2 and Γc ≡ R.
According to the linear stability analysis and for undamped

modulated structures (R � 0), the nonlinear modulated envelope
excitations (IWA and IPW) become stable (unstable) if
Q> 0(Q< 0) is fulfilled [53]. In this case, the sign of the
product PQ is a necessary and sufficient condition to
determine the regions of different types of modulated
excitations in the present model. However, for damped
modulated structures (R≠ 0), the criteria for MI of envelope
excitations become a function of time in addition to the physical
parameters related to the model under consideration and in this
case, there are other restrictions on the propagation of the
dissipative IAW and IPW envelope structures [46–50, 54, 55].
In this case and according to the linear stability analysis, the value
of nonlinear dispersion relation is obtained as:
Ω2 � (PK2)2(1 − K2

c (τ)/K2), with the critical modulated
wavenumber K2

c (τ) � (2Q/P)∣∣∣∣ψ0|2exp(−2Rτ) where Ω(≪ω)
and K(≪ k) refer to the perturbation frequency and
wavenumber in the slowly coordinates (x, t), ψ0 donates the
amplitude of the pumping carrier wave (which is a constant value
and larger than the perturbation value). At first glance, we can see
that the modulated structures become unstable if PQ> 0 &Ω2 < 0
& t < tmax are fulfilled. Here, t donates the time (or period) of the
wave propagation and tmax � [1/(2R)]ln[2Q∣∣∣∣ψ0|2/(PK2)] gives
the MI period [46–50]. On the contrary, for t > tmax even if
PQ> 0, the modulated envelope structures become stable and
in this case both dissipative RWs and dissipative breathers cannot
exist in this model. It can be seen that for R � 0, the critical
wavenumber of modulated structures K2

c � (2Q/P)∣∣∣∣ψ0|2 does not
depend on t.

In the present study, we take the IAWmode as an example for
applying our numerical and semi-analytical solutions for
investigating the behavior of the dissipative RWs and
dissipative breathers. Knowing that the analytical and
numerical solutions that we obtain can be applied to any
system and mode, we only take the IAW mode as an example.
The (in)stability regions electrostatic modulated structures must
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be determined precisely before embarking on solving this equation.
Figure 1 demonstrates the (un)stable regions of the (un)damped
modulated structures according to the above mentioned criteria. In
Figures 1A–C the product of PQ, the square perturbation
frequency of modulated structures Ω2, and tmax are,
respectively, plotted against the wavenumber k for (T+,T−) �
(0.9, 0.6) and (T+,T−) � (0.0.54, 0.9). As mentioned above, the
necessary and sufficient condition to define the (in)stability regions
of modulated structures is the sign of the product of PQ which for
PQ< 0 (PQ> 0), the wave becomes stable (unstable) as shown in
Figure 1A. With respect to the damped modulated structures
(R≠ 0) when propagating the unstable wave, the conditions PQ> 0
&Ω2 < 0 & t < tmax must be fulfilled, otherwise the stable wave can
be existed and propagated. Form Figure 1C, we can determine the
time of propagation for the unstable wave by taking any time value
which satisfies the unstable conditions: PQ> 0 &Ω2 < 0 & t < tmax.
It should be mentioned here that the RWs and breathers could
propagate only in the unstable regions.

In the following sections, we devote our effort to solving Eq. 3
using two approximate methods to investigate the characteristic
behavior of some modulated structures that propagate within
such a model of DRWs and DBs (DABs and DKMBs), etc.

3 ROGUE WAVES AND BREATHERS
SOLUTIONS OF LINEAR DAMPED NLSE

The two approximate methods used to find some approximate
solutions for Eq. 3 are:

(1) The first method is the semi-analytical method where the
exact solution to the standard NLSE (R � 0) is used to

construct an approximate analytical solution to Eq. 3
without any iterations or use of computer code. In
addition, the speed obtaining the result does not depend
on the efficiency of the device.

(2) The second method is a hybrid method between two
numerical methods; the moving boundary method
(MBM) and the finite difference method (FDM).
Furthermore, in these methods, the exact solution to the
standard NLSE (R � 0) is used as the initial solution to
finding the approximate numerical solutions to Eq. 3. In
this case, the numerical solutions depend on a computer
code and the accuracy depends on the number of iterations.
The speed of running a code also depends on the efficiency
of the device.

3.1 Analytical RWs and Breathers Solutions
to the NLSE
It is obvious that the dissipation effect can be neglected (R � 0)
as compared to the dispersion effect, if the dispersion effect
becomes more dominant than the dissipation effect. In this case,
the linear damped NLSE (3) can be reduced to the following
standard NLSE

iztΦ + 1
2
Pz2xΦ + Q

∣∣∣∣Φ 2Φ � 0 & ∀(x, t) ∈ [
∣∣∣∣ (4)

where [ ∈ [Li, Lf ] × [Ti,Tf ] represents the physical domain of x
and t, Li + Lf gives the length of the plasma system, and Tf < tmax,
and for simplicity Φδ ≡ Φδ(x, t) ≡ Ψ|R�0 is used.

The exact breathers and RWs solutions of Eq. 4 is Refs. 20
and 38.

FIGURE 1 | The regions of (un)stable electrostatic ion-acoustic modulated structures according to (A) the sign of the product PQ and (B) the sign of both Ω2 are
plotted against the wavenumber k for different values of (T+ , T−). Also, (C) the maximum value of modulational instability period tmax is plotted against the wavenumber k
for different values of (T+ , T−). Note that the DRWs and DBs only exist in the regions that meet the instability conditions (PQ>0&Ω2 <0& t< tmax).
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Φδ �
��
P
Q

√ [1 + 2(1 − 2δ)cosh(l1Pt) + il1sinh(l1Pt)��
2δ

√
cos(l2x) − cosh(l1Pt) ]eiPt , (5)

where the growth factor l1 �
���������
8δ(1 − 2δ)√

and the instability
wavenumber of the breathers is l2 �

��������
4(1 − 2δ)√

, and δ is a real
and positive parameter (δ > 0) responsible for determining the
type of breathers structures as follows: for δ > 1/2, the time-
periodic KMBs solution is covered as shown in Figure 2, for
0< δ < 1/2, the space-periodic ABs solution is obtained (see
Figure 3), and the RW solution is covered for δ→ 1/2 as
illustrated in Figure 4. At (x, t � 0) and (x � 0, t � 0), both
the peaks Φδ(x, 0) and the maximum amplitudes (the
amplification) Φδ−Max of RWs and breathers (ABs and
KMBs) are

Φδ(x, 0) �
��
P
Q

√ (1 + 2(1 − 2δ)��
2δ

√
cos(b2x) − 1

), (6)

and

Φδ−Max �
��
P
Q

√ (1 + 2
��
2δ

√ ) (7)

It is also known that parameter δ is responsible for the periodicity
of both KMBs and ABs, as depicted in Figure 3. An increase in δ
leads to an increase in the number of periodicity for both KMBs
(see Figure 5A) and ABs (see Figure 5B). Moreover, as seen from
Figures 2–4 and Eq. 7 the maximum amplitude of RWs
Φδ→ 1

2−Max is larger than the ABs Φ0< δ < 1
2−Max but smaller than

the KMBs Φδ > 1
2−Max i.e., Φδ > 1

2−Max >Φδ→ 1
2−Max >Φ0< δ < 1

2−Max.

FIGURE 2 | The profile of non-dissipative (R � 0) KMBs |ΨDKMBs| is plotted in the plane (x, t) for (T+ , T−) � (0.9,0.6) i.e., (P,Q, k, δ) � (−0.0522716,−1404.1, 2, 1).

FIGURE 3 | The profile of non-dissipative (R � 0) ABs |ΨDABs| is plotted in the plane (x, t) for (T+ , T−) � (0.9, 0.6) i.e., (P,Q, k, δ) � (−0.0522716,−1404.1, 2, 0.25).
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3.2 Semi-Analytical Solution of Dissipative
RWs and Breathers
It is known that Eq. 3 is a non-integrable equation i.e., it has no
analytical solution in its current form without using any
transformation. So, in this section, we devote our efforts to
obtain an approximate analytical solution for this equation. To
do that let us suppose that Q � 0, then Eq. 3 becomes

iztΨ + 1
2
Pz2xΨ + iRΨ � 0. (8)

Also, suppose that ϕ ≡ ϕ(x, t) is an exact analytical solution to

iztϕ + 1
2
Pz2xϕ � 0. (9)

According to Eqs. 8, 9, the definition of Ψ reads

Ψ � fϕ. (10)

where f ≡ f (t) is a time-dependent function which will be
determined later.

Inserting Eq. 10 into Eq. 8, we get

iztΨ + 1
2
Pz2xΨ + iRΨ

� iϕ(f ′ + Rf )
� 0.

(11)

here, the prime “′” represents the derivative with respect to t.
It is clear that for f ′ + Rf � 0, we have

FIGURE 4 | The profile of non-dissipative (R � 0) RWs |ΨDRWs| is plotted in the plane (x, t) for (T+ ,T−) � (0.9, 0.6) i.e., (P,Q, k, δ) �
(−0.0522716,−1404.1,2, → 0.5).

FIGURE 5 | The non-dissipative (R � 0) KMBs and ABs solutions are plotted against (x, t, δ) for (T+ ,T−) � (0.9, 0.6) i.e., (P,Q, k) � (−0.0522716,−1404.1, 2).
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f � e−Rt . (12)

Then Ψ � f (t)ϕ(x, t) becomes a solution to Eq. 8. This motivates
us to seek an approximate analytical solution to Eq. 3 in the
ansatz form

Ψ � fΦ, (13)

where Φ ≡ Φ(x, t) represents any exact analytical solution
to Eq. 4.

Inserting ansatz Eq. 13 into Eq. 3 and taking the following
definition into account

Q
∣∣∣∣Φ∣∣∣∣2Φ � −1

2
Pz2xΦ − iztΦ, (14)

we obtain

⎧⎪⎪⎪⎨⎪⎪⎪⎩iztΨ + 1
2
Pz2xΨ + Q

∣∣∣∣Ψ∣∣∣∣2Ψ + iRΨ � iΦ(f ′ + Rf ) + 1
2
Pf (1 − f 2)z2xΦ + if (1 − f 2)ztΦ.

(15)

Equation 15 suggests the choice

f ′ + Rf � 0 for all t, (16)

by integrating Eq. 16 once over t, yields

f � e−Rt . (17)

Finally, the semi-analytical solution to Eq. 3 for DRWs (δ→ 1/2),
DKMBs (δ > 1/2), and DABs (0< δ < 1/2) can be expressed by

Ψ � Φδe
−Rt , (18)

where Φδ is given by Eq. 5.
The residual associated to Eq. 3 reads

H(x, t) � iztΨ + 1
2
Pz2xΨ + Q

∣∣∣∣Ψ 2Ψ + iRΨ.
∣∣∣∣ (19)

In view of Eq. 15, we get

H(x, t) � 1
2
Pf (1 − f 2)z2xΦ + if (1 − f 2)ztΦ. (20)

From Eq. 20, we obtain

LR ≡
∣∣∣∣H(x, t)∣∣∣∣≤max

Ω
[∣∣∣∣∣∣∣12 f (1 − f 2)(2ztΦ + iPz2xΦ)∣∣∣∣∣∣∣] (21)

For example, the expression of the square residual error for
the DRWs (δ � 1/2) can be estimated from Eqs. 5, 21 as
follows

∣∣∣∣H(x, t)∣∣∣∣2 � 4P3[16P4t4 + 8P2t2(4x2 + 5) + (3 − 4x2)2]3
Q(4P2t2 + 4x2 + 1)6 f 2(1 − f 2)2.

(22)

By simplifying the square root of Eq. 22, we get∣∣∣∣H(x, t)∣∣∣∣≤ 54∣∣∣∣∣∣∣∣∣∣
��
P3

Q

√
sinh(Rt)e−2Rt

∣∣∣∣∣∣∣∣∣∣. (23)

Similarly, the expression of the residual error for δ ≠ 1/2 can be
estimated after some algebraic manipulations using Eqs. 5, 21 but
the details are not inserted here because they are too large.

Let us introduce some numerical examples (or sometimes it is
called experimental examples) to investigate the characteristic
behavior of DRWs and DBs (DABs and DKMBs) to be able to
evaluate the residual errors of solution Eq. 18. In the unstable region
for the damped wave (PQ> 0 &Ω2 < 0 & t < tmax), the values of the
physical plasma parameters (T+,T−, k) � (0.9, 0.6, 2) give
(P,Q) ≈ (−0.0522716,−1404.1). Also, for the same values of the
last plasma parameters (T+,T−) � (0.9, 0.6) and different values of
wavenumber k, the values of both R and tmax could be obtained as
given in the table below.|ΨDKMBs|, DABs |ΨDABs|, and DRWs
|ΨDRWs| are, respectively, illustrated in Figures 6–8 corresponding
to the semi-analytical solution Eq. 18. Also, the impact of
normalized ion-neutral collision frequencies ]± on the profile of
DKMBs |ΨDKMBs| (similarly DABs |ΨDABs| and DRWs |ΨDRWs| but
we have not included their illustrations here) is investigated as
elucidated in Figure 9, for different values of ]± . It is observed
that the KMBs create low intensity pulses with increasing R which
has been confirmed in some laboratory experiments [41–44].
Moreover, for (T+,T−, k) � (0.9, 0.6, 1.8) which means
(P,Q) ≈ (−0.0608182,−525.935) and for different values of R,
both the maximum local (at final time Tf ) and maximum global
(on the whole domain space-time domain xi(−10)≤ x ≤ xf (10) &
0≤

∣∣∣∣t∣∣∣∣≤Tf (10)) residual errors (LR) of the approximate analytical
solution Eq. 18 are evaluated as shown in Figures 10, 11,
respectively. These errors are estimated according to formula Eq.
21 for the solution Eq. 18. Furthermore, the functions of the
maximum local and maximum global errors of solution Eq. 18
could be evaluated using the polynomials based on the Chebyshev
approximation technique [18, 19]. The comparison between the
maximum residual (local and global) errors (LR) using relation Eq.
22 and the errors functions evaluated by the Chebyshev
approximation technique is illustrated in Figure 10 for the
maximum local error and in Figure 11 for the maximum global
error. It is observed that the results produced by relationEq. 22 are in
good agreement with the results obtained by Chebyshev
polynomials. This enhances the high accuracy of the obtained
semi-analytical solution Eq. 18. It should be noted here that the
solution Eq. 18 could be used to explain and interpret the dissipative
RWs and breathers that can occur and propagate in many branches
of science such as optical fibers. Thus, any values for the coefficients
P,Q, and R could be used for any application and not only in plasma
physics which in our solution is considered to be stable with any
values for P, Q, and R.

4 NUMERICAL APPROXIMATE SOLUTIONS

Let us define the following initial value problem (i.v.p.)

iztΨ + 1
2
Pz2xΨ + Q

∣∣∣∣Ψ 2Ψ + iRΨ � 0,
∣∣∣∣ (24)

which is subjected to the initial condition

Ψ(x, t � Ti) ≡ Ψ0(x,Ti) � Φ(x), ∀ (x, t) ∈ [, (25)
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and the Dirichlet boundary conditions

{ Ψ(Li, t) � F L(t),
Ψ(Lf , t) � F R(t), (26)

where 0< |t|< tmax, [ � [Li, Lf ] × [Ti,Tf ] represents the space-
time domain, Li + Lf denotes the plasma system length, andΦ(x)
indicates any exact analytical solution to the undamped NLSE
i.e., Eq. 24 for R � 0. As a special case, the RW and breathers
solutions given in Eq. 5 could be used as the initial solution for
Eq. 24 at a certain time (say t � Ti).

4.1 Finite Differences Method
To solve the i. v.p. Eqs. 24–26 numerically using the FDM. [40,
56], we first divide the complex functionΨ ≡ Ψ(x, t) into real and
imaginary parts

Ψ � U + iV , (27)

where U ≡ U(x, t) � Re(Φ) and V ≡ V(x, t) � Im(Φ). As a
special case, the values of U and V could be obtained from
solution Eq. 5 as

U �
��
P
Q

√ [cos(Pt)
+ 2(1 − 2δ)cosh(l1Pt)cos(Pt) − l1sinh(l1Pt)sin(Pt)��

2δ
√

cos(l2x) − cosh(l1pt) ],
(28)

and

FIGURE 6 | The profile of DKMBs |ΨDKMBs| is plotted in the plane (x, t) for (P,Q, k, δ,R) � (−0.0522716,−1404.1, 2, 2,0.0136). (A) Plot3D for DKMBs |ΨDKMBs | and
(B) Contourplot for DKMBs |ΨDKMBs|.

FIGURE 7 | The profile of DABs |ΨDABs| is plotted in the plane (x, t) for (P,Q, k, δ,R) � (−0.0522716,−1404.1,2, 0.25,0.0136). (A) Plot3D for DABs |ΨDABs| and (B)
Contourplot for DABs |ΨDABs|.
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V �
��
P
Q

√ [sin(Pt)
+ 2(1 − 2δ)cosh(l1Pt)sin(Pt) + l1sinh(l1Pt)cos(Pt)��

2δ
√

cos(l2x) − cosh(l1Pt) ]
(29)

By substituting Eq. 27 into Eq. 24 and separating the obtained
equation into real and imaginary parts, we get⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2
Pz2xU + QU(U2 + V2) − ztV − RV � 0,

1
2
Pz2xV + QV(U2 + V2) + ztU + RU � 0.

(30)

To apply the FDM, the following discretization for the space-time
domain Ω are introduced

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xk � Li + kΔx& Δx � Lf − Li

m
, k � 0, 1, 2,/,m,

tj � Ti + jΔt& Δt � Tf − Ti

n
, j � 0, 1, 2, 3,/, n,

(31)

where m and n indicate the number of iterations. According to
the FDM, the values of the space and time derivatives can be
found in detail in Ref. 57.

It should be mentioned here that the FDM gives good results for
small time intervals, and this is consistent with the values of observed
time for the existing acoustic-waves in the plasma model. In general,
the large time intervals give ill conditioned systems of nonlinear
equations and they are associated to stiffness, causing numerical
instability. On the other hand, for large time intervals, the hybrid
MBM-FDM works significantly better than FDM.

FIGURE 8 | The profile of DRWs |ΨDRWs| is plotted in the plane (x, t) for (P,Q, k, δ,R) � (−0.0522716,−1404.1,2, → 0.5, 0.0136). (A) Plot3D for DRWs |ΨDRWs| and
(B) Contourplot for DRWs |ΨDRWs |.

FIGURE 9 | (A) The contourplot of DKMBs profile |ΨDKMBs| according to the semi-analytical solution Eq. 18 is plotted in the plane (t,R) and (B) The DKMBs profile
|ΨDKMBs | according to the semi-analytical solution Eq. 18 is plotted against t for different values of R. Here, (P,Q, k, δ) � (−0.0522716,−1404.1,2, 3).

Frontiers in Physics | www.frontiersin.org February 2021 | Volume 9 | Article 5802249

El-Tantawy et al. Dissipative Rogue waves and Breathers

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


FIGURE 10 | A comparison between the maximum local error (at final time Tf � 10) of the semi-analytical solution Eq. 18 according to the relation Eq. 22 and the
function of the local error related to the final time Tf � 10 based on Chebyshev approximation technique is plotted against R for (A) DKMBs δ � 0.75, (B) DABs δ � 0.25,
and (C) DRWs δ→ 0.5. Here, (T+ ,T−) � (0.9, 0.6) i.e., (P,Q, k) � (−0.0608182,−525.935, 1.8).

FIGURE 11 | A comparison between the maximum global error (on the whole domain space-time domain −10≤ x ≤10 & 0≤ |t|≤10) of the semi-analytical solution
Eq. 18 according to the relation Eq. 22 and the function of the global error related to the whole domain space-time domain based on Chebyshev approximation
technique is plotted against R for (A) DKMBs δ � 0.75, (B) DABs δ � 0.25, and (C) DRWs δ→ 0.5. Here, (T+ , T−) � (0.9, 0.6) i.e., (P,Q, k) �
(−0.0608182,−525.935,1.8).
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4.2 The Mechanism of the Moving Boundary
Method to Analyze the Linear Damped
NLSE
To improve the approximate numerical solution that has been
obtained by the FDM, the MBM is introduced to achieve this
purpose. In this method we divide the whole-time interval
Ti ≤ t ≤Tf into subintervals of length dτ � (Tf − Ti)/n; say
Ti � t0 < t1 < t2 </< tj </< tn � Tf , where tj � Ti + jdτ
(j � 0, 1, . . . , n). Thereafter, we try to find the solution through
the subintervals say: Ψ0(x,Ti) � Φ0(x,Ti) in the subinterval
[Ti, t1] × [Li, Lf ], Ψ1(x, t1) � Φ1(x) in the next subinterval
[t1, t2] × [Li, Lf ], / until arrive to the final solution Ψj(x, tj) �
Φj(x) in the final subinterval [tj, tj+1] × [Li, Lf ] with Tf � Ti +
ndτ ≡ tn where j � 0, 1, 2, 3, n − 1. Thus, the solution on the
whole domain Π � [Xi,Xf ] × [Ti,Tf ] could be written in the
form of a linear combination of characteristic functions such as

Ψ(x, t) � ∑n−1
j�0

χ[tj ,tj+1](t)Ψj(x, tj), (32)

with

χ[tj ,tj+1](t) � { 1 if tr ≤ t < tj+1,
0 otherwise.

(33)

To illustrate the high accuracy and effectiveness of the hybrid
MBM-FDM, we present some numerical examples. For instance,

let us analyze the i. v.p. Eqs. 24–26 using the hybrid MBM-FDM
and make a comparison between the semi-analytical solution Eq.
18 and the numerical approximate solution Eq. 32 for modeling
the DRWs and DBs. The profiles of the DRWs, DABs, and
DKMBs are plotted in Figures 12–14, respectively, according
to the semi-analytical solution Eq. 18 and approximate numerical
solution Eq. 32 for any random values to the coefficients (P,Q,R)
that meet the MI criteria (PQ> 0&Ω2 < 0& t < tmax). It is
observed that both the amplitude and the width of DRWs,
DABs, and DKMBs decrease gradually with the increase of the
collisional frequency. Generally, the waves decay with an
increasing damping coefficient R. Physically, increasing R leads
to dissipating wave energy, and consequently it leads to a decrease
in the nonlinearity, which leads to the decay of these waves. The
local errors (at a certain value of time (say Tf )) of both semi-
analytical and numerical solutions are also estimated according to
Eq. 19 as shown in Table 1.

The numerical values of the maximum local and global errors
of both approximate analytical and numerical solutions for
DRWs (δ→ 1/2) are presented in Table 1. It is noted that
both approximate analytical and numerical solutions give
excellent results as illustrated in Table 1. In general, our
numerical method does not require a highly efficient device
whereas the calculations of this method could be performed
by simply using a personal computer. Moreover, the semi-
analytical solution provides excellent results, and it is more stable.

FIGURE 12 | A comparison between the semi-analytical solutionEq. 18 and the approximate numerical solution Eq. 32 for DRWs is plotted in the plane (x, t) for (A)
R � 0, (B) R � 0.07, and (C) R � 0.15. In Figure 12D the comparison between the two approximate solutions (dashed curve for solution Eq. 18 and dotted curve for
solution Eq. 32) is plotted against x for different values of R. Here, (P,Q) ≈ (−0.148,−2.6).
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FIGURE 13 | A comparison between the semi-analytical solution Eq. 18 and the numerical approximate solution Eq. 32 for DABs (δ � 0.15) is plotted in the plane
(x, t) for (A) R � 0, (B) R � 0.07, and (C) R � 0.15. In Figure 13D the comparison between the two approximate solutions (dashed curve for solution Eq. 18 and dotted
curve for solution Eq. 32) is plotted against x for different values of R. Here, (P,Q) ≈ (−0.148,−2.6).

FIGURE 14 | A comparison between the semi-analytical solution Eq. 18 and the numerical approximate solution Eq. 32 (Dotted curve) for DKMBs (δ � 2) is plotted
in the plane (x, t) for (A) R � 0, (B) R � 0.07, and (C) R � 0.15. In Figure 14D the comparison between the two approximate solutions (dashed curve for solution Eq. 18
and dotted curve for solution Eq. 32) is plotted against x for different values of R. Here, (P,Q) ≈ (−0.148,−2.6).
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5 SUMMARY

The propagation of electrostatic nonlinear dissipative
envelope structures including dissipative rogue waves
(DRWs) and dissipative breathers (DBs) in nonlinear and
dispersive mediums, such as unmagnetized collisional pair-
ion plasmas composed of warm positive and negative ions, has
been investigated analytically and numerally. Sikdar et al. [49]
reduced the fluid governing equations of this model to the
linear damped nonlinear Schrödinger equation (NLSE) using
a reductive perturbation technique (the derivative expansion
method) to study both collisionless and collisional envelope
solitons (bright and dark solitons). In our study, we used the
linear damped NLSE to study both DRWs and DBs in any
nonlinear and dispersive medium. The exact analytical
solution of the linear damped NLSE has not been possible
until now, due to the presence of the damping term.
Consequently, two effective methods were devoted to
model and solve this problem. The first one is called the
semi-analytical method which was built depending on the
exact analytical solution of the standard NLSE (without linear
damping term). The semi-analytical solution of the linear
damped NLSE is considered to be the first attempt at
modeling the DRWs and DBs in plasmas or in any other
physical medium like optical fiber and so on. In the second
method, the numerical simulation solution to the linear
damped NLSE using the hybrid new method namely, the

moving boundary method (MBM) with the finite difference
method (FDM), has been carried out. In this method, the
exact solution of the standard NLSE is used as the initial
condition to solve the linear damped NLSE using the hybrid
MBM-FDM. Moreover, both the local (at final time) and
global (on the whole domain space-time domain)
maximum residual errors of the approximate solutions
have been estimated precisely depending on the physical
parameters of the model under consideration. Furthermore,
the functions of both the local and global residual errors for
solution Eq. 18 have been evaluated using the polynomials
based on the Chebyshev approximation technique. The
comparison between the error of both the semi-analytical
and numerical solutions have also been examined and it was
found that the error is very small, which enhances the high
accuracy of the two solutions. This investigation helped us to
understand the dynamic mechanism of modulated envelope
structures in a strongly coupled complex plasma and many
other branches of science such as optical fiber or mechanical
fluid, etc.
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