- 1Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
- 2Unidad Multidisciplinaria de Docencia e Investigación-Juriquilla, Facultad de Ciencias, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
- 3Department of Biomedical Engineering and Chemical Engineering, and Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX, United States
- 4Department of Chemistry, Delaware Valley University, Doylestown, PA, United States
A bidimensional (2D) thermotropic liquid crystal (LC) is investigated with Molecular Dynamics (MD) simulations. The Gay-Berne mesogen with parameterization GB(3, 5, 2, 1) is used to model a calamitic system. Spatial orientation of the LC samples is probed with the nematic order parameter: a sharp isotropic-smectic (I-Sm) transition is observed at lower pressures. At higher pressures, the I-Sm transition involves an intermediate nematic phase. Topology of the orthobaric phase diagram for the 2D case differs from the 3D case in two important respects: 1) the nematic region appears at lower temperatures and slightly lower densities, and 2) the critical point occurs at lower temperature and slightly higher density. The 2D calamitic model is used to probe the structural behavior of LC samples under strong confinement when either planar or homeotropic anchoring prevails. Samples subjected to circular, square, and triangular boundaries are gradually cooled to study how orientational order emerges. Depending on anchoring mode and confining geometry, characteristic topological defects emerge. Textures in these systems are similar to those observed in experiments and simulations of lyotropic LCs.
1 Introduction
Bulk materials exhibit properties imbued by their underlying chemical makeup: the packing of and interactions between atoms and/or molecules impart characteristic traits. On the other hand, metamaterials are synthetically produced and depend more on the relative positioning of building blocks within the structure. Such a trait allows metamaterials to achieve novel properties not exhibited by bulk materials (prominently of an electromagnetic and/or an optical nature). This has facilitated the expansion and miniaturization of existent technologies [1, 2].
Building blocks capable of molecular recognition are essential in the bottom-up production of metamaterials [3–7]. Specifically, complementary moieties can display the ability to “latch” in solution, onto a substrate, or in a combination of scenarios to produce desirable architectures. The threshold concentration of building blocks and formation steps are some issues to consider when optimizing their fabrication [8]. Structural properties in a metamaterial will remain stable provided the interaction strength between units withstands thermal fluctuations in the medium. Bottom-up approaches exploit this feature to circumvent the use of mechanical intervention. Production is scaled by merely increasing the amounts of reactants and relying on system kinetics for product formation. Packing specificity can be modulated by carrying out the assembly under spatial confinement [9–15]. Many fabrication protocols have been optimized by mimicking the strategies latent in biomolecular systems [4, 16, 17].
The solvent is a key component in the production of metamaterials, which must effectively disperse building blocks and stabilize noncovalent interactions holding structures together. Self-assembly reliant on the chemical complementarity embedded in building blocks relegates the solvent to a passive role, serving in large measure as a dispersing agent. A paradigm shift is to screen solvents for an active role in the generation of metamaterials [18–22]. In this scenario, the solvent provides additional bottom-up control that extends the gamut of attainable targets [23–26].
The solvent “paradigm shift” is exemplified in the elastic forces mediated within a liquid crystal (LC) fluid. The intrinsic anisotropy of LCs facilitates spatially ordered mesophases. Solvent order at certain state points can be disturbed in the presence of colloidal inclusions, resulting in topological defects that exert static and dynamic control. Because of their ability to spatially “communicate,” topological defects can couple (obeying topological charge rules) to yield specific colloidal arrangements, including dimers [27–38], wires (i.e., chains) [21, 28, 35, 39–44], and arrays [21, 31–34, 36–38, 43, 45, 46]. Solvents recruited as active agents contributing to the self-assembly of metamaterials enhance a variety of structural possibilities.
Much research has been devoted to three-dimensional (3D) self-assembly [25], though a two-dimensional (2D) variant continues to be of interest from an exploratory perspective [47–55] as well as in applied technologies [1, 56]. Optimal function is achieved via slab geometry in many devices, including optoelectronic/photonic materials [57–61], sensors [60, 62–68], display technologies [69–71], smart glass [72, 73], spatial light modulators [74–77], and tunable filters [78–81]. However, dimensionality plays an essential role in the type and extent of structural order that a condensed phase can maintain [52, 82–88]. When coupling the elastic forces of topological defects in LC media, colloidal ordering induced via a substrate can differ significantly from that observed via topological mediation in the bulk [21, 24, 25, 35, 36]. Slab assembly becomes relevant in 3D colloidal arrangements because it yields intermediates: metamaterials are finalized upon “stacking” slabs in layer-by-layer synthesis to achieve a target 3D structure [89–91].
In this work, we focus on two aspects of a thermotropic calamitic LC fluid relevant to colloidal self-assembly: 1) the changes in topology of the solvent phase diagram due to a reduction in dimensionality from 3D to 2D, and 2) the mesophase behavior of the solvent under strong confinement in slab geometry. The Gay-Berne (GB) model [92] is used here because it captures salient mesogenic features and has a relatively low computational overhead. Prior work with the GB mesogen has focused on different mesophases in bulk 3D systems [93–98]. Additionally, surface-induced ordering (i.e., anchoring) via boundary walls has been studied in thin films [99], droplets [100], and toroidal cavities [101]. Several GB parameterizations have reproduced nematic and smectic phases [102–104]. More recently, a discotic parameterization has been used to explore nematic and columnar phases [105–109], providing insight on structural and dynamic measurements at the molecular level [110–112]. The recognition of specific design principles has stimulated the attainment of novel targets [27].
Despite serving as a point of reference for 3D phenomena, the phase behavior of a strictly 2D thermotropic GB LC system has been limited [113, 114]. On the experimental front, optical microscopy commonly provides information on quasi-2D samples, and in most cases, data merely reflect 2D projections of an underlying 3D system [56, 115]. Renewed interest in the organization of rigid biopolymers as effective 2D systems (in bulk and under confinement) has led to new and interesting textures observed under strong confinement [116–122]. Simple simulation models reproduced the phenomenology observed in 2D [123–126]. Because those efforts focused on lyotropic liquid crystals, we extend the field by considering a thermotropic fluid. Specifically, we explore how shape of the confining area and type of anchoring induced by boundary walls affect mesophase behavior.
2 Model and Methods
The GB model is a generalization of the Lennard-Jones potential defining the interaction between anisotropic molecules. Each molecule i is represented as an ellipsoid having a center-of-mass position
FIGURE 1. Schematic defining the degrees of freedom and parameters associated with the
The intermolecular interaction between the ith and jth mesogens is written as
where
where
where
Here,
where the exponents ν and μ are adjustable parameters. The energy anisotropy functions are defined as
and
The parameter
The GB model uses four parameters conventionally represented as
The
FIGURE 2. Intermlecular potential for the
Confined systems were modeled with walls constructed from an array of spherical (i.e., circular in 2D) particles. The mesogen-wall interaction is obtained by taking the limit of Eqs. 1 and 2 when one of the interacting mesogens becomes a sphere (i.e., a wall particle) [147–149]. In that limit, the range parameter and strength anisotropy functions are given by
and
where
For Eqs. 8–10, the ith molecule denotes a wall-type particle, the jth molecule refers to a mesogen,
We focus on a strictly 2D thermotropic liquid crystal in this work: “flat” ellipsoidal mesogens evolve in a plane. All results reported herein were generated by performing MD simulations in the canonical (NAT, where A is constant area for 2D, analogous to NVT where V is constant volume in 3D) and isothermal-isobaric (NPT) ensembles. Translational and rotational equations of motion were integrated using the velocity-Verlet algorithm [150]. For bulk samples, in either the NAT or NPT ensembles, the time step used was
Global orientational order is characterized by the orientational traceless tensor
where
3 Results and Discussion
3.1 Orientational Order and Liquid Structure
In this section, we present data for a series of samples of increasing size (mesogen number) to elucidate the orientational order of the LC liquid as a function of temperature. We focus here on characterizing differences due specifically to sample size, considering
FIGURE 3. Order parameter S as a function of temperature
The nematic order parameter S displays a state with low orientational order
To investigate how finite-size effects are pronounced at higher pressures, simulations were performed for
To gain insight into the local structure, we analyzed MD snapshots for
FIGURE 4. Snapshots of the bulk 2D system when P∗
3.2 Phase Diagram Topology and Mesophases
A major contribution in this study is the orthobaric
FIGURE 5. The orthobaric phase diagram for the
When compared to the 3D case, the 2D system displays an evident shift in its phase boundaries. This behavior is justified by the fact that thermal fluctuations are stronger when the dimensionality of the system is reduced [154–156]. The 2D system shows that the nematic phase emerges over a wider (nearly double) range in temperature at slightly lower densities. Additionally, the isotropic phase occupies a larger area of stability in the
It is instructional to consider how finite-size effects influence the topology of the phase diagram. For this purpose, three isobars are included:
We note that isothermal-isobaric simulations can probe metastable regions that elude canonical simulations without yielding coexistence (i.e., phase separation). The complete mapping of such phase boundaries would require free energy calculations, such as Gibbs ensembles [159–161], Gibbs-Duhem integration [162], histogram reweighting [163], or the Frenkel-Ladd method [164], among others. The coexistence of mesophases, however, was verified by independent canonical simulations. A sample cooling routine highlighting the coexistence of different mesophases is shown in Figure 6. The snapshots trim out sparsely populated regions of the full simulation cell observed at lower temperatures.
FIGURE 6. A representative cooling sweep in the NAT ensemble. Configurations are shown for an ensemble with
3.3 Confinement: Point Defects and Domain Walls
The extent to which mesophase structure is affected by strong confinement was also explored in this study. Inspiration for this lies in the rich structures and topological defects observed in lyotropic systems: the similarity in the textures observed in our thermotropic system highlights certain universal traits of topological defects. From an applications standpoint, this is of interest because topological defects can be recruited for the self-ordering of colloidal particles. In the case of a 2D system, this arrangement has the potential to yield monolayers of colloidal particles with specific positional constraints.
The 2D LC samples were confined within walls consisting of an array of fixed Lennard-Jones particles. Three different confinement scenarios were considered in this study: circular, square, and triangular. The mesogen packing fraction was kept approximately at
To characterize the way the confining walls exert a structuring effect on the mesogenic liquid, two anchoring conditions were considered: homeotropic
Data for circular confinement are shown in Figure 7. Topological defects are sharply sensitive to the type of anchoring. For homeotropic anchoring, the confinement radius in this work affords a low-temperature director field giving rise to two defects (with topological charge
FIGURE 7. The 2D
The situation changes for planar anchoring: at low temperature, two defects are present, but they are located at opposite poles of the confining circle. As a result, the so-called polar nematic configuration is observed. This state is distinguished by a layered mesophase similar to the smectic-like state that dominates all but two thin surface shells on opposite ends
Square confinement leads to more interesting textures as shown in Figure 8. The reduced symmetry of the boundary frustrates global mesophase order. For both anchoring conditions, domain walls (i.e., boundaries between different orientationally ordered domains) appear at sufficiently low temperature
FIGURE 8. The 2D
When planar anchoring is operative under square confinement, four domain walls (i.e., five regions) appear. Four small regions display an orientation aligned with the confining walls and one interior region with a local director tilted slightly in relation to adjacent lateral domains. This arrangement is strikingly similar to the
The most severe confining geometry in this study is the triangular boundary, the results of which are shown in Figure 9. For either type of anchoring, three orientationally ordered regions are discernible at low temperature: the resulting topological defects are driven by an order that permeates from the boundary wall toward the center of the confining region. This effect promotes the formation of a near-centered defect in either anchoring case at fairly high temperature
FIGURE 9. The 2D
Although the scalar fields of the order parameter under triangular confinement for both anchoring cases are similar, the two samples can still be differentiated when accounting for local order. The approximate local directors corresponding to the three oriented domains highlighted in Figure 9 are rotated
3.4 Dynamics of Confined Samples
Ancillary data from this work are ensemble trajectories given that systems were evolved with MD simulations. Although static information obtained from simulation snapshots is useful in characterizing orientational order and topological defects, it is equally important to probe the temporal behavior of mesophases. To this end, trajectories were leveraged to probe dynamical fluctuations in the fluid structure and the scalar field of the order parameter. The Supplementary Material includes trajectory visualizations for the systems in Figures 7–9. Each visualization is labeled by temperature and anchoring mode. The timescale in each case corresponds to approximately 3% of an entire simulation run.
The system under circular confinement with planar anchoring at reasonably high temperatures already exhibits features reminiscent of the polar defects stabilized at low temperatures. However, such defects are accompanied by strong fluctuations in intensity and positional alignment. As one point defect vanishes another emerges in the same pole. For homeotropic anchoring, point defects fluctuate in number, intensity, and position at high temperatures. Upon further cooling, the homeotropic sample displays two point defects with minimal fluctuations in position and intensity, immediately after two radially oriented domains form. Before the central smectic-like region sets in, the separation between the two point defects reaches a minimum. Fluctuations in intensity are minimal at the lowest temperature studied: the separation between point defects stabilizes at a slightly larger distance
The behavior of topological defects upon sample cooling is similar for both anchoring modes under square confinement. In both cases, a highly fluctuating cross pattern with approximately two point-like defects on opposite corners of the square is observed. As soon as the sample reaches a temperature where the smectic mesophase becomes favorable, the fleeting point-like defects vanish: each anchoring case becomes distinguishable at this point
When comparing the two anchoring modes for triangular confinement, the cooling history is very similar in both cases. A point defect is characteristic of either case upon the slightest hint of ordering. Three domain walls weakly form at high temperature
4 Conclusion
Bulk and confined 2D samples were explored for the Gay-Berne mesogen with parameterization
Confined samples were subjected to three boundary geometries: circular, square, and triangular. In circular geometry, two point defects emerge: for homeotropic anchoring, point defects are stable in the bulk region of the boundary and remain at a nearly constant separation. For planar anchoring, point defects gravitate toward opposite poles of the boundary. In square geometry, no stable point defects are observed at low temperatures. Instead, two distinct domain walls give rise to three regions under homeotropic anchoring; the structure under planar anchoring results in four interconnecting domain walls, rhomboidal in form, producing five regions. In triangular geometry, confinement yields similar defects when comparing anchoring modes: three domain walls “emanate” from a nearly centered point defect yielding three regions. In this case, local directors must be accounted for to differentiate between anchoring modes.
All systems were studied with MD simulations. The resulting trajectories of confined 2D LC samples were visualized, revealing a complex evolution of textures originating from topological defects. Ordered domains at low temperatures are prefaced with strong thermal fluctuations that cause spatial variations in the mesophase at sufficiently high temperatures. Within the mesophase, flickering in position and intensity of topological defects is minimized at sufficiently low temperatures. Both the confining geometry and anchoring mode contribute to the type of defects observed.
Confined 2D LC systems provide a rich and exciting outlook. An outstanding matter with an eye toward 3D metamaterials is how disclinations couple when colloidal slabs are stacked. Practicable systems could extend layer-by-layer protocols [7, 89, 90, 168–180], thus expanding the gamut of metamaterials attainable by conventional 3D-based methods. Studies on the switching mechanics by applying external fields (as opposed to thermal tempering) would be of interest in the production of devices and associated technologies. A characterization of relevant timescales would offer an important perspective on design principles. Structured colloidal assemblies via topological defects could be exploited to yield colloidal assemblies with screw/twist properties, thus amplifying the availability of chiral materials.
Data Availability Statement
The numerical model simulations upon which this study is based are unwieldy to archive or to transfer. Instead, all information needed to replicate the simulations is provided.
Author Contributions
AC-A and JM-V performed bulk simulations, wrote post-simulation analysis codes, and implemented data analysis. AC-A carried out simulations for small-scale bulk samples as well as strongly confined systems and visualized trajectories. JM-V performed large-scale simulations of bulk samples via parallelization. SH and AR-H contributed to the interpretation of results and drafted relevant sections of the analysis. ES verified results for bulk systems, interpreted dynamical trajectories of strongly confined systems, and completed writing the manuscript. JM-R conceived the study, wrote the Gay-Berne simulation code, drafted initial versions of the manuscript, and coordinated the direction of the project.
Funding
JM-V and JM-R are thankful for the computing time generously provided under grant LANCAD-UNAM-DGTI-344. SH is grateful for funding provided by projects UNAM-DGAPA-PAPIIT IA104319, LANCAD-UNAM-DGTIC-276, and LANCAD-UNAM-DGTIC-087.
Conflict of Interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Supplementary Material
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphy.2020.622872/full#supplementary-material.
Acknowledgments
JM-R gratefully acknowledges the computing resources provided by the Laboratorio de Supercómputo y Visualización en Paralelo (LSVP) at UAM-I. SH gratefully acknowledges the technical support provided by Carlos Sair Flores Bautista, Alejandro de León Cuevas, and Luis Alberto Aguilar Bautista from the Laboratorio Nacional de Visualización Científica Avanzada (LAVIS-UNAM), as well as by Beatriz Marcela Millán Malo from CFATA-UNAM.
References
1. Fedotov V. Springer Handbook of Electronic and Photonic Materials. 2nd ed. Cham, Switzerland: Springer International Publishing (2017). 1351–77. chap. Metamaterials.
2. Liu Y, Zhang X. Metamaterials: a new frontier of science and technology. Chem Soc Rev (2011) 40:2494–507. doi:10.1039/c0cs00184h
3. Whitesides GM, Love JC. The art of building small. Sci Am (2001) 285:38–47. doi:10.1038/scientificamerican0901-38
4. Zhang S. Building from the bottom up. Mater Today (2003) 6:20–7. doi:10.1016/s1369-7021(03)00530-3
5. Shimomura M, Sawadaishi T. Bottom-up strategy of materials fabrication: a new trend in nanotechnology of soft materials. Curr Opin Colloid Interface Sci (2001) 6:11–6. doi:10.1016/s1359-0294(00)00081-9
6. Kotnala A, Zheng Y. Digital assembly of colloidal particles for nanoscale manufacturing. Part Part Syst Charact (2002) 36:1900152. doi:10.1002/ppsc.201900152
7. Borges J, Mano JF. Molecular interactions driving the layer-by-layer assembly of multilayers. Chem Rev (2014) 114:8883–942. doi:10.1021/cr400531v
8. Conti S, Cecchini M. Predicting molecular self-assembly at surfaces: a statistical thermodynamics and modeling approach. Phys Chem Chem Phys (2016) 18:31480–93. doi:10.1039/c6cp05249e
9. Israelachvili JN. Intermolecular and Surface Forces. Amsterdam, Netherlands: Academic Press (2011). 503–76 p.
10. Vilfan M, Osterman N, Čopič M, Ravnik M, Žumer S, Kotar J, et al. Confinement effect on interparticle potential in nematic colloids. Phys Rev Lett (2008) 101:237801. doi:10.1103/PhysRevLett.101.237801
11. Tasinkevych M, Andrienko D. Colloidal particles in liquid crystal films and at interfaces. Condens Matter Phys (2010) 13:33603. doi:10.5488/cmp.13.33603
12. Verstraete L, Greenwood J, Hirsch BE, De Feyter S. Self-assembly under confinement: nanocorrals for understanding fundamentals of 2D crystallization. ACS Nano (2016) 10:10706–15. doi:10.1021/acsnano.6b05954
13. Pfeiffer CR, Pearce N, Champness NR. Complexity of two-dimensional self-assembled arrays at surfaces. Chem Commun (2017) 53:11528–39. doi:10.1039/c7cc06110b
14. Nieckarz D, Szabelski P. Surface-confined self-assembly of asymmetric tetratopic molecular building blocks. Chem Phys Chem (2019) 20:1850–9. doi:10.1002/cphc.201900344
15. Całus S, Busch M, Kityk AV, Piecek W, Huber P. Chiral phases of a confined cholesteric liquid crystal: anchoring-dependent helical and smectic self-assembly in nanochannels. J Phys Chem C (2016) 120:11727–38. doi:10.1021/acs.jpcc.6b03553
16. Whitesides GM. The once and future nanomachine. Sci Am (2001) 285:78–83. doi:10.1038/scientificamerican0901-78
17. Tu RS, Tirrell M. Bottom-up design of biomimetic assemblies. Adv Drug Deliv Rev (2004) 56:1537–63. doi:10.1016/j.addr.2003.10.047
18. Min Y, Akbulut M, Kristiansen K, Golan Y, Israelachvili J. The role of interparticle and external forces in nanoparticle assembly. Nat Mater (2008) 7:527–38. doi:10.1038/nmat2206
19. Muševič I. Nematic colloids, topology and photonics. Philos Trans A Math Phys Eng Sci (2013) 371:20120266. doi:10.1098/rsta.2012.0266
20. Lavrentovich OD. Liquid crystals, photonic crystals, metamaterials, and transformation optics. Proc Natl Acad Sci U S A (2011) 108:5143–4. doi:10.1073/pnas.1102130108
21. Muševič I, Škarabot M, Tkalec U, Ravnik M, Žumer S. Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science (2006) 313:954–8. doi:10.1126/science.1129660
22. Alexander GP, Chen BGG, Matsumoto EA, Kamien RD. Colloquium: disclination loops, point defects, and all that in nematic liquid crystals. Rev Mod Phys (2012) 84:497–514. doi:10.1103/revmodphys.84.497
23. Čopar S, Porenta T, Jampani VSR, Muševič I, Žumer S. Stability and rewiring of nematic braids in chiral nematic colloids. Soft Matter (2012) 8:8595–600. doi:10.1039/C2SM25952D
24. Ravnik M, Alexander GP, Yeomans JM, Žumer S. Three-dimensional colloidal crystals in liquid crystalline blue phases. Proc Natl Acad Sci U S A (2011) 108:5188–92. doi:10.1073/pnas.1015831108
25. Nych A, Ognysta U, Škarabot M, Ravnik M, Žumer S, Muševič I. Assembly and control of 3D nematic dipolar colloidal crystals. Nat Commun (2013) 4:1489. doi:10.1038/ncomms2486
26. Poulin P, Stark H, Lubensky TC, Weitz DA. Novel colloidal interactions in anisotropic fluids. Science (1997) 275:1770–3. doi:10.1126/science.275.5307.1770
27. González-Martínez AD, Chávez-Rojo MA, Sambriski EJ, Moreno-Razo JA. Defect-mediated colloidal interactions in a nematic-phase discotic solvent. RSC Adv (2019) 9:33413–27. doi:10.1039/c9ra05377h
28. Martinez A, Hermosillo L, Tasinkevych M, Smalyukh Linked topological colloids in a nematic host. Proc Natl Acad Sci U S A (2015) 112:4546–51. doi:10.1073/pnas.1500998112
29. Wang X, Miller DS, de Pablo JJ, Abbott NL. Reversible switching of liquid crystalline order permits synthesis of homogeneous populations of dipolar patchy microparticles. Adv Funct Mater (2014) 24:6219–26. doi:10.1002/adfm.201400911
30. Cavallaro M, Gharbi MA, Beller DA, Čopar S, Shi Z, Kamien RD, et al. Ring around the colloid. Soft Matter (2013) 9:9099–102. doi:10.1039/c3sm51167g
31. Liu Q, Senyuk B, Tasinkevych M, Smalyukh Nematic liquid crystal boojums with handles on colloidal handlebodies. Proc Natl Acad Sci U S A (2013) 110:9231–6. doi:10.1073/pnas.1301464110
32. Čopar S, Tkalec U, Muševič I, Žumer S. Knot theory realizations in nematic colloids. Proc Natl Acad Sci U S A (2015) 112:1675–80. doi:10.1073/pnas.1417178112
33. Senyuk B, Liu Q, He S, Kamien RD, Kusner RB, Lubensky TC, et al. Topological colloids. Nature (2013) 493:200–5. doi:10.1038/nature11710
34. Araki T, Tanaka H. Colloidal aggregation in a nematic liquid crystal: topological arrest of particles by a single-stroke disclination line. Phys Rev Lett (2006) 97:127801. doi:10.1103/PhysRevLett.97.127801
35. Ravnik M, Škarabot M, Žumer S, Tkalec U, Poberaj I, Babic D, et al. Entangled nematic colloidal dimers and wires. Phys Rev Lett (2007) 99:247801. doi:10.1103/PhysRevLett.99.247801
36. Jampani VS, Škarabot M, Ravnik M, Čopar S, Žumer S, Muševič I. Colloidal entanglement in highly twisted chiral nematic colloids: twisted loops, Hopf links, and trefoil knots. Phys Rev E—Stat Nonlinear Soft Matter Phys (2011) 84:031703. doi:10.1103/PhysRevE.84.031703
37. Hashemi SM, Ravnik M. Nematic colloidal knots in topological environments. Soft Matter (2018) 14:4935–45. doi:10.1039/c8sm00539g
38. Tkalec U, Ravnik M, Čopar S, Žumer S, Muševič I. Reconfigurable knots and links in chiral nematic colloids. Science (2011) 333:62–5. doi:10.1126/science.1205705
39. Lubensky TC, Pettey D, Currier N, Stark H. Topological defects and interactions in nematic emulsions. Phys Rev E (1998) 57:610–25. doi:10.1103/physreve.57.610
40. Loudet JC, Barois P, Poulin P. Colloidal ordering from phase separation in a liquid-crystalline continuous phase. Nature (2000) 407:611–3. doi:10.1038/35036539
41. Wang X, Miller DS, Bukusoglu E, de Pablo JJ, Abbott NL. Topological defects in liquid crystals as templates for molecular self-assembly. Nat Mater (2016) 15:106–12. doi:10.1038/nmat4421
42. Smalyukh , Lavrentovich OD, Kuzmin AN, Kachynski AV, Prasad PN. Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal. Phys Rev Lett (2005) 95:157801–4. doi:10.1103/PhysRevLett.95.157801
43. Gharbi MA, Nobili M, Blanc C. Use of topological defects as templates to direct assembly of colloidal particles at nematic interfaces. J Colloid Interface Sci (2014) 417:250–5. doi:10.1016/j.jcis.2013.11.051
44. Pandey MB, Porenta T, Brewer J, Burkart A, Copar S, Žumer S, et al. Self-assembly of skyrmion-dressed chiral nematic colloids with tangential anchoring. Phys Rev E—Stat Nonlinear Soft Matter Phys (2014) 89:060502. doi:10.1103/PhysRevE.89.060502
45. Kim JH, Yoneya M, Yokoyama H. Tristable nematic liquid-crystal device using micropatterned surface alignment. Nature (2002) 420:159–62. doi:10.1038/nature01163
46. Machon T, Alexander GP. Knots and nonorientable surfaces in chiral nematics. Proc Natl Acad Sci U. S. A (2013) 110:14174–9. doi:10.1073/pnas.1308225110
47. Frydel D, Rice SA. Phase diagram of a quasi-two-dimensional colloid assembly. Phys Rev E—Stat Nonlinear Soft Matter Phys (2003) 68:061405. doi:10.1103/PhysRevE.68.061405
48. Fomin YD, Ryzhov VN, Tsiok EN. The influence of long-range interaction on the structure of a two-dimensional multi scale potential system. J Phys Condens Matter (2019) 31:315103. doi:10.1088/1361-648x/ab1df6
49. Fomin YD. The phase diagram of a two-dimensional core-softened system with purely repulsive monotonic potential. Phys Stat Mech Appl (2021) 565:125519. doi:10.1016/j.physa.2020.125519
50. Li B, Xiao X, Wang S, Wen W, Wang Z. Real-space mapping of the two-dimensional phase diagrams in attractive colloidal systems. Phys Rev X (2019) 9:031032. doi:10.1103/physrevx.9.031032
51. Zhu X, Truskett TM, Bonnecaze RT. Phase diagram for two-dimensional layer of soft particles. Soft Matter (2019) 15:4162–9. doi:10.1039/c9sm00333a
52. Dudalov DE, Fomin YD, Tsiok EN, Ryzhov VN. How dimensionality changes the anomalous behavior and melting scenario of a core-softened potential system? Soft Matter (2014) 10:4966–76. doi:10.1039/c4sm00124a
53. Kryuchkov NP, Yurchenko SO, Fomin YD, Tsiok EN, Ryzhov VN. Complex crystalline structures in a two-dimensional core-softened system. Soft Matter (2018) 14:2152–62. doi:10.1039/c7sm02429k
54. Padilla LA, Ramírez-Hernández A. Phase behavior of a two-dimensional core-softened system: new physical insights. J Phys Condens Matter (2020a) 32:275103. doi:10.1088/1361-648x/ab7e5c
55. Padilla LA, Ramírez-Hernández A. Phase diagrams of simple models of colloidal nanocrystals in two dimensions. J Phys Mater (2020b) 4:015006. doi:10.1088/2515-7639/abc7ed
56. Harth K, Stannarius R. Topological point defects of liquid crystals in quasi-two-dimensional geometries. Front Physiol (2020) 8:112. doi:10.3389/fphy.2020.00112
57. Hogan BT, Kovalska E, Craciun MF, Baldycheva A. 2D material liquid crystals for optoelectronics and photonics. J Mater Chem C (2017) 5:11185–95. doi:10.1039/c7tc02549a
58. Al-Zangana S, Iliut M, Turner M, Vijayaraghavan A, Dierking I. Properties of a thermotropic nematic liquid crystal doped with graphene oxide. Adv Optical Mater (2016) 4:1541. doi:10.1002/adom.201600351
59. Lavrič M, Cordoyiannis G, Tzitzios V, Lelidis I, Kralj S, Nounesis G, et al. Blue phase stabilization by CoPt-decorated reduced-graphene oxide nanosheets dispersed in a chiral liquid crystal. J Appl Phys (2020) 127:095101. doi:10.1063/1.5141930
60. Wang L, Urbas AM, Li Q. Nature‐inspired emerging chiral liquid crystal nanostructures: from molecular self‐assembly to DNA mesophase and nanocolloids. Adv Mater (2020) 32:1801335. doi:10.1002/adma.201801335
61. Li P, Wong M, Zhang X, Yao H, Ishige R, Takahara A, et al. Tunable lyotropic photonic liquid crystal based on graphene oxide. ACS Photonics (2014) 1:79–86. doi:10.1021/ph400093c
62. Oaki Y. Intercalation and flexibility chemistries of soft layered materials. Chem Commun (2020) 56:13069–81. doi:10.1039/d0cc05931e
63. Querejeta-Fernández A, Chauve G, Methot M, Bouchard J, Kumacheva E. Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals. J Am Chem Soc (2014) 136:4788–93. doi:10.1021/ja501642p
64. Atorf B, Funck T, Hegmann T, Kempter S, Liedl T, Martens K, et al. Liquid crystals and precious metal: from nanoparticle dispersions to functional plasmonic nanostructures. Liq Cryst (2017) 44:1929–47. doi:10.1080/02678292.2017.1359692
65. Boles MA, Engel M, Talapin DV. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem Rev (2016) 116:11220–89. doi:10.1021/acs.chemrev.6b00196
66. Bedolla Pantoja MA, Abbott NL. Surface-controlled orientational transitions in elastically strained films of liquid crystal that are triggered by vapors of toluene. ACS Appl Mater Interfaces (2016) 8:13114–22. doi:10.1021/acsami.6b02139
67. Ishihara S, Lee JJ, Kek KJ. Detection of volatile organic chemicals by using liquid crystals. IET Mater Circuits Devices Ser (2019) 68:315–40. doi:10.1049/pbcs068g_ch19
68. Shibaev PV, Wenzlick M, Murray J, Tantillo A, Howard-Jennings J. Rebirth of liquid crystals for sensoric applications: environmental and gas sensors. Adv Condens Matter Phys (2015) 2015:729186. doi:10.1155/2015/729186
69. Chari K, Rankin CM, Johnson DM, Blanton TN, Capurso RG. Single-substrate cholesteric liquid crystal displays by colloidal self-assembly. Appl Phys Lett (2006) 88:043502. doi:10.1063/1.2167398
70. Draude AP, Kalavalapalli TY, Iliut M, McConnell B, Dierking I. Stabilization of liquid crystal blue phases by carbon nanoparticles of varying dimensionality. Nanoscale Adv (2020) 2:2404–9. doi:10.1039/d0na00276c
71. Ge Z, Rao L, Gauza S, Wu S-T. Modeling of blue phase liquid crystal displays. J Disp Technol (2009) 5:250–6. doi:10.1109/jdt.2009.2022849
72. Kakiuchida H, Ogiwara A. Smart windows. IET Mater Circuits Devices Ser (2019) 68:341–59. doi:10.1049/pbcs068g_ch20
73. Stratford K, Henrich O, Lintuvuori JS, Cates ME, Marenduzzo D. Self-assembly of colloid-cholesteric composites provides a possible route to switchable optical materials. Nat Commun (2014) 5:3954. doi:10.1038/ncomms4954
74. Ng AY, See CW, Somekh MG. Quantitative optical microscope with enhanced resolution using a pixelated liquid crystal spatial light modulator. J Microsc (2004) 214:334–40. doi:10.1111/j.0022-2720.2004.01323.x
75. Bergamini S, Darquié B, Jones M, Jacubowiez L, Browaeys A, Grangier P. Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator. J Opt Soc Am B (2004) 21:1889–94. doi:10.1364/josab.21.001889
76. Smith PJ, Taylor CM, Shaw AJ, McCabe EM. Programmable array microscopy with a ferroelectric liquid-crystal spatial light modulator. Appl Optic (2000) 39:2664–9. doi:10.1364/ao.39.002664
77. Capeluto MG, La Mela C, Iemmi C, Marconi MC. Scanning mechanism based on a programmable liquid crystal display. Optic Commun (2004) 232:107–13. doi:10.1016/j.optcom.2003.12.080
78. Bunning TJ, Natarajan LV, Tondiglia VP, Sutherland RL. Holographic polymer-dispersed liquid crystals (H-PDLCs). Annu Rev Mater Sci (2000) 30:83–115. doi:10.1146/annurev.matsci.30.1.83
79. Qi J, Li L, De Sarkar M, Crawford GP. Nonlocal photopolymerization effect in the formation of reflective holographic polymer-dispersed liquid crystals. J Appl Phys (2004) 96:2443–50. doi:10.1063/1.1778480
80. Bowley CC, Kossyrev PA, Crawford GP, Faris S. Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals. Appl Phys Lett (2001) 79:9–11. doi:10.1063/1.1383566
81. Chen C-Y, Pan C-L, Hsieh C-F, Lin Y-F, Pan R-P. Liquid-crystal-based terahertz tunable Lyot filter. Appl Phys Lett (2006) 88:101107. doi:10.1063/1.2181271
82. Peierls R. Surprises in Theoretical Physics. Princeton, NJ: Princeton University Press (1979). p 85–91.
83. Ryzhov VN, Gaiduk EA, Tareyeva EE, Fomin YD, Tsiok EN. The Berezinskii-Kosterlitz-Thouless transition and melting scenarios of two-dimensional systems. Phys Part Nucl (2020) 51:786–90. doi:10.1134/s1063779620040632
84. Kosterlitz JM, Thouless DJ. Ordering, metastability and phase transitions in two-dimensional systems. J Phys C Solid State Phys (2002) 6:1181–203. doi:10.1088/0022-3719/6/7/010
85. Bak P, Paczuski M. Chapter 1 - Principles of Phase Transitions in Two-dimensional Systems. In: DA King, and DP. Woodruff, editors Phase transitions and adsorbate restructuring at metal surfaces. Amsterdam, Netherlands: Elsevier. The Chemical Physics of Solid Surfaces (1994), Vol. 7. p. 1–33. doi:10.1016/B978-0-444-81924-6.50006-0
86. Mermin ND. Crystalline order in two dimensions. Phys Rev (1968) 176:250–4. doi:10.1103/PhysRev.176.250
87. Kumari S, Ye F, Podgornik R. Ordering of adsorbed rigid rods mediated by the Boussinesq interaction on a soft substrate. J Chem Phys (2020) 153:144905. doi:10.1063/5.0022556
88. Wang W, Lin J-T, Su Y-S, I L. Micro-structure and motion of two-dimensional dense short spherocylinder liquids. J Phys Condens Matter (2018) 30:125102. doi:10.1088/1361-648x/aaaf03
89. Batys P, Nosek M, Weroński P. Structure analysis of layer-by-layer multilayer films of colloidal particles. Appl Surf Sci (1999) 332:318–27. doi:10.1016/j.apsusc.2015.01.171
90. Jalili R, Aboutalebi SH, Esrafilzadeh D, Konstantinov K, Moulton SE, Razal JM, et al. Organic solvent-based graphene oxide liquid crystals: a facile route toward the next generation of self-assembled layer-by-layer multifunctional 3D architectures. ACS Nano (2013) 7:3981–90. doi:10.1021/nn305906z
91. Jasieniak JJ, MacDonald BI, Mulvaney P. Nanocrystals, Layer-by-Layer Assembly, and Photovoltaic Devices. Wiley (2015). p. 357–94. Chap. 14. doi:10.1002/9781118867204.ch14
92. Gay JG, Berne BJ. Modification of the overlap potential to mimic a linear site-site potential. J Chem Phys (1981) 74:3316–9. doi:10.1063/1.441483
93. Memmer R, Kuball H-G, Schönhofer A. Computer simulation of chiral liquid crystal phases. I. The polymorphism of the chiral Gay-Berne fluid. Liq Cryst (1993) 15:345–60. doi:10.1080/02678299308029136
94. Memmer R, Janssen F. Computer simulation of chiral liquid crystal phases IX. Chiral induction in guest-host systems—calculation of the helical twisting power. Z Naturforsch (2014) 54:747–54. 10.1515/zna-1999-1212
95. Luckhurst GR, Stephens RA, Phippen RW. Computer simulation studies of anisotropic systems. XIX. Mesophases formed by the Gay-Berne model mesogen. Liq Cryst (1990) 8:451–64. doi:10.1080/02678299008047361
96. Satoh K, Mita S, Kondo S. Monte Carlo simulations on mesophase formation using dipolar Gay-Berne model. Liq Cryst (1996) 20:757–63. doi:10.1080/02678299608033169
97. Luckhurst GR, Luckhurst GR, Stephens RA, Phippen RW. The Gay‐Berne mesogen: a paradigm shift? Liq Cryst (2006) 33:1389–405. doi:10.1080/02678290601140456
98. Bartsch H, Bier M, Dietrich S. Interface structures in ionic liquid crystals. Soft Matter (2019) 15:4109–26. doi:10.1039/c9sm00062c
99. Salgado-Blanco D, Díaz-Herrera E, Mendoza CI. Effect of the anchoring strength on the phase behaviour of discotic liquid crystals under face-on confinement. J Phys Condens Matter (2019) 31:105101. doi:10.1088/1361-648x/aaf843
100. Nozawa T, Brumby PE, Ayuba S, Yasuoka K. Ordering in clusters of uniaxial anisotropic particles during homogeneous nucleation and growth. J Chem Phys (2019) 150:054903. doi:10.1063/1.5064410
101. Segatti A, Snarski M, Veneroni M. Equilibrium configurations of nematic liquid crystals on a torus. Phys Rev E—Stat Nonlinear Soft Matter Phys (2014) 90:012501. doi:10.1103/PhysRevE.90.012501
102. Cañeda-Guzmán E, Moreno-Razo JA, Díaz-Herrera E, Sambriski EJ. Molecular aspect ratio and anchoring strength effects in a confined Gay-Berne liquid crystal. Mol Phys (2014) 112:1149–59. doi:10.1080/00268976.2013.837206
103. Margola T, Satoh K, Saielli G. Comparison of the mesomorphic behaviour of 1:1 and 1:2 mixtures of charged Gay-Berne GB(4.4,20.0,1,1) and Lennard-Jones particles. Crystals (2018) 8:3711–5. doi:10.3390/cryst8100371
104. de Miguel E, Martín del Río E, Blas FJ. Stability of smectic phases in the Gay-Berne model. J Chem Phys (2004) 121:11183–94. doi:10.1063/1.1810472
105. Cienega-Cacerez O, Moreno-Razo JA, Díaz-Herrera E, Sambriski EJ. Phase equilibria, fluid structure, and diffusivity of a discotic liquid crystal. Soft Matter (2014) 10:3171–82. doi:10.1039/c3sm52301b
106. Cienega-Cacerez O, García-Alcántara C, Moreno-Razo JA, Díaz-Herrera E, Sambriski EJ. Induced stabilization of columnar phases in binary mixtures of discotic liquid crystals. Soft Matter (2016) 12:1295–312. doi:10.1039/c5sm01959a
107. Caprion D, Bellier-Castella L, Ryckaert JP. Influence of shape and energy anisotropies on the phase diagram of discotic molecules. Phys Rev E—Stat Nonlinear Soft Matter Phys (2003) 67:041703. doi:10.1103/PhysRevE.67.041703
108. Bates MA, Luckhurst GR. Computer simulation studies of anisotropic systems. XXVI. Monte Carlo investigations of a Gay-Berne discotic at constant pressure. J Chem Phys (1996) 104:6696–709. doi:10.1063/1.471387
109. Patti A, Belli S, van Roij R, Dijkstra M. Relaxation dynamics in the columnar liquid crystal phase of hard platelets. Soft Matter (2011) 7:3533–45. doi:10.1039/c0sm01265c
110. Thompson IR, Coe MK, Walker AB, Ricci M, Roscioni OM, Zannoni C. Microscopic origins of charge transport in triphenylene systems. Phys Rev Mater (2018) 2:064601. doi:10.1103/physrevmaterials.2.064601
111. Cammidge AN, Bushby RJ. Handbook of liquid crystals, Synthesis and Structural Features. Chap. VII, Vol. 2B. Weinheim, Germany: Oxford University Press (1998). p. 703–5. doi:10.1002/9783527620623.ch4
112. Phillips TJ, Jones JC, McDonnell DG. On the influence of short range order upon the physical properties of triphenylene nematic discogens. Liq Cryst (1993) 15:203–15. doi:10.1080/02678299308031951
113. Kundu P, Mishra P, Jaiswal A, Ram J. Structures and phase transition in a two-dimensional system of Gay-Berne molecules. J Mol Liq (2019) 296:111769. doi:10.1016/j.molliq.2019.111769
114. Kundu P, Mishra P. Simulation of Gay-Berne liquid crystal molecules confined to a plane. AIP Conf Proc (2020) 2220:130016. doi:10.1063/5.0001132
115. Jordens S, Isa L, Usov I, Mezzenga R. Non-equilibrium nature of two-dimensional isotropic and nematic coexistence in amyloid fibrils at liquid interfaces. Nat Commun (2013) 4:1917. doi:10.1038/ncomms2911
116. Zheng Z, Wang F, Han Y. Glass transitions in quasi-two-dimensional suspensions of colloidal ellipsoids. Phys Rev Lett (2011) 107:065702. doi:10.1103/PhysRevLett.107.065702
117. Cortes LB, Gao Y, Dullens RP, Aarts DG. Colloidal liquid crystals in square confinement: isotropic, nematic and smectic phases. J Phys Condens Matter (2017) 29:064003. doi:10.1088/1361-648X/29/6/064003
118. Gârlea IC, Mulder P, Alvarado J, Dammone O, Aarts DG, Lettinga MP, et al. Finite particle size drives defect-mediated domain structures in strongly confined colloidal liquid crystals. Nat Commun (2016) 7:12112. doi:10.1038/ncomms12112
119. de las Heras D, Velasco E, Mederos L. Topological defects in a two-dimensional liquid crystal confined in a circular nanocavity. Phys Rev E-Stat Nonlinear Soft Matter Phys (2009) 79:061703. doi:10.1103/PhysRevE.79.061703
120. González-Pinto M, Martínez-Ratón Y, Velasco E. Liquid-crystal patterns of rectangular particles in a square nanocavity. Phys Rev E-Stat Nonlinear Soft Matter Phys (2013) 88:032506. doi:10.1103/PhysRevE.88.032506
121. Yao X, Zhang H, Chen JZY. Topological defects in two-dimensional liquid crystals confined by a box. Phys Rev E (2018) 97:052707. doi:10.1103/PhysRevE.97.052707
122. Walton J, Mottram NJ, McKay G. Nematic liquid crystal director structures in rectangular regions. Phys Rev E (2018) 97:022702. doi:10.1103/PhysRevE.97.022702
123. Foulaadvand ME, Yarifard M. Two-dimensional system of hard ellipses: a molecular dynamics study. Phys Rev E-Stat Nonlinear Soft Matter Phys (2013) 88:052504. doi:10.1103/PhysRevE.88.052504
124. de las Heras D, Velasco E. Domain walls in two-dimensional nematics confined in a small circular cavity. Soft Matter (2014) 10:1758–66. doi:10.1039/c3sm52650j
125. Geigenfeind T, Rosenzweig S, Schmidt M, de Las Heras D. Confinement of two-dimensional rods in slit pores and square cavities. J Chem Phys (2015) 142:174701. doi:10.1063/1.4919307
126. Gârlea IC, Mulder BM. Defect structures mediate the isotropic-nematic transition in strongly confined liquid crystals. Soft Matter (2015) 11:608–14. doi:10.1039/c4sm02087a
127. Sidky H, Whitmer JK. Elastic properties of common Gay-Berne nematogens from density of states (DOS) simulations. Liq Cryst (2016) 43:2285–99. doi:10.1080/02678292.2016.1201869
128. de Miguel E, Rull LF, Chalam MK, Gubbins KE. Liquid crystal phase diagram of the Gay-Berne fluid. Mol Phys (1991) 74:405–24. doi:10.1080/00268979100102321
129. Brown JT, Allen MP, Martín del Río E, de Miguel E. Effects of elongation on the phase behavior of the Gay-Berne fluid. Phys Rev E (1998) 57:6685–99. doi:10.1103/physreve.57.6685
130. Bates MA, Luckhurst GR. Computer Simulation of Liquid Crystal Phases Formed by Gay-Berne Mesogens. Liquid Crystals I. Berlin, Heidelberg: Springer Berlin Heidelberg (1999). p. 65–137. doi:10.1007/3-540-68305-4_3
131. de Miguel E. Reexamining the phase diagram of the Gay-Berne fluid. Mol Phys (2002) 100:2449–59. doi:10.1080/00268970210121605
132. de Miguel E, Vega C. The global phase diagram of the Gay-Berne model. J Chem Phys (2002) 117:6313–22. doi:10.1063/1.1504430
133. Allen MP, Warren MA, Wilson MR, Sauron A, Smith W. Molecular dynamics calculation of elastic constants in Gay-Berne nematic liquid crystals. J Chem Phys (1996) 105:2850–8. doi:10.1063/1.472147
134. Joshi AA, Whitmer JK, Guzmán O, Abbott NL, de Pablo JJ. Measuring liquid crystal elastic constants with free energy perturbations. Soft Matter (2014) 10:882–93. doi:10.1039/c3sm51919h
135. Humpert A, Allen MP. Elastic constants and dynamics in nematic liquid crystals. Mol Phys (2015) 113:2680–92. doi:10.1080/00268976.2015.1067730
136. Stillings C, Martin E, Steinhart M, Pettau R, Paraknowitsch J, Geuss M, et al. Nanoscaled discotic liquid crystal/polymer systems: confinement effects on morphology and thermodynamics. Mol Cryst Liq Cryst (2008) 495:285–292. doi:10.1080/15421400802430349
137. Caprion D. Discotic molecules in cylindrical nanopores: a Monte Carlo study. Eur Phys J E Soft Matter (2009) 28:305–13. doi:10.1140/epje/i2008-10412-6
138. Busselez R, Cerclier CV, Ndao M, Ghoufi A, Lefort R, Morineau D. Discotic columnar liquid crystal studied in the bulk and nanoconfined states by molecular dynamics simulation. J Chem Phys (2014) 141:134902. doi:10.1063/1.4896052
139. Sentker K, Zantop AW, Lippmann M, Hofmann T, Seeck OH, Kityk AV, et al. Quantized self-assembly of discotic rings in a liquid crystal confined in nanopores. Phys Rev Lett (2018) 120:067801. doi:10.1103/PhysRevLett.120.067801
140. Salgado-Blanco D, Mendoza CI, Chávez-Rojo MA, Moreno-Razo JA, Díaz-Herrera E. Influence of anchoring in the phase behaviour of discotic liquid crystals. Soft Matter (2018) 14:2846–59. doi:10.1039/c7sm02311a
141. Rull LF, Romero-Enrique JM. Nanodrops of discotic liquid crystals: a Monte Carlo study. Langmuir (2017a) 33:11779–87. doi:10.1021/acs.langmuir.7b02347
142. Humpert A, Masters AJ, Allen MP. Orientational dynamics in nematic liquid crystals. Eur Phys J Spec Top (2016) 225:1723–32. doi:10.1140/epjst/e2016-60118-1
143. Allen MP. Molecular simulation of liquid crystals. Mol Phys (2019) 117:2391–417. doi:10.1080/00268976.2019.1612957
144. Rull LF, Romero-Enrique JM. Computer simulation study of the nematic-vapour interface in the Gay-Berne model. Mol Phys (2017b) 115:1214–24. doi:10.1080/00268976.2016.1274437
145. Wilson MR. Progress in computer simulations of liquid crystals. Int Rev Phys Chem (2005) 24:421–55. doi:10.1080/01442350500361244
146. Mishra P, Ram J. Effect of shape anisotropy on the phase diagram of the Gay-Berne fluid. Eur Phys J E Soft Matter (2005) 17:345–51. doi:10.1140/epje/i2005-10014-x
147. Berne BJ, Pechukas P. Gaussian model potentials for molecular interactions. J Chem Phys (1972) 56:4213–6. doi:10.1063/1.1677837
148. Cleaver DJ, Care CM, Allen MP, Neal MP. Extension and generalization of the Gay-Berne potential. Phys Rev E (1996) 54:559–67. doi:10.1103/physreve.54.559
149. Antypov D, Cleaver DJ. The effect of spherical additives on a liquid crystal colloid. J Phys Condens Matter (2004) 16:S1887–S1900. doi:10.1088/0953-8984/16/19/002
150.Frenkel D,, and Smit B, eds. Understanding Molecular Simulation: From Algorithms to Applications. 1st ed. Orlando, FL: Academic Press, Inc. (1996).
151. Gruhn T, Schoen M. Microscopic structure of molecularly thin confined liquid-crystal films. Phys Rev E (1997) 55:2861–75. doi:10.1103/physreve.55.2861
153. Cuesta JA, Frenkel D. Monte Carlo simulation of two-dimensional hard ellipses. Phys Rev (1990) 42:2126–36. doi:10.1103/physreva.42.2126
154. Illing B, Fritschi S, Kaiser H, Klix CL, Maret G, Keim P. Mermin-Wagner fluctuations in 2D amorphous solids. Proc Natl Acad Sci U S A (2017) 114:1856–61. doi:10.1073/pnas.1612964114
155. Flenner E, Szamel G. Fundamental differences between glassy dynamics in two and three dimensions. Nat Commun (2015) 6:7392. doi:10.1038/ncomms8392
156. Verbeck B. 2D materials: amorphous and fluctuating. Nat Phys (2017) 13:205. doi:10.1038/nphys4065
157. Wegner FJ. Corrections to scaling laws. Phys Rev B (1972) 5:4529–36. doi:10.1103/physrevb.5.4529
158. Armas-Pérez JC, Quintana HJ, Chapela GA. Liquid-vapor equilibrium and interfacial properties of square wells in two dimensions. J Chem Phys (2013) 138:044508. doi:10.1063/1.4775342
159. Panagiotopoulos AZ. Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. Mol Phys (1987) 61:813–26. doi:10.1080/00268978700101491
160. Bates MA, Frenkel D. Nematic-isotropic transition in polydisperse systems of infinitely thin hard platelets. J Chem Phys (1999) 110:6553–9. doi:10.1063/1.478558
161. Bianchi E, Tartaglia P, Zaccarelli E, Sciortino F. Theoretical and numerical study of the phase diagram of patchy colloids: ordered and disordered patch arrangements. J Chem Phys (2008) 128:144504. doi:10.1063/1.2888997
162. Kofke DA. Gibbs-Duhem integration: a new method for direct evaluation of phase coexistence by molecular simulation. Mol Phys (1993) 78:1331–6. doi:10.1080/00268979300100881
163. Ferrenberg AM, Swendsen RH. New Monte Carlo technique for studying phase transitions. Phys Rev Lett (1988) 61:2635–8. doi:10.1103/PhysRevLett.61.2635
164. Frenkel D, Ladd AJC. New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres. J Chem Phys (1984) 81:3188–93. doi:10.1063/1.448024
165. Selinger JV. Introduction to the Theory of Soft Matter: From Ideal Gases to Liquid Crystals. Cham, Switzerland: Springer (2016). p 99.
166. Robinson M, Luo C, Farrell PE, Erban R, Majumdar A. From molecular to continuum modelling of bistable liquid crystal devices. Liq Cryst (2017) 44:2267–84. doi:10.1080/02678292.2017.1290284
167. Guillamat P, Ignés-Mullol J, Sagués F. Control of active liquid crystals with a magnetic field. Proc Natl Acad Sci U S A (2016) 113:5498–502. doi:10.1073/pnas.1600339113
168. Wågberg L, Erlandsson J. The use of layer‐by‐layer self‐assembly and nanocellulose to prepare advanced functional materials. Adv Mater (2020) 32:2001474. doi:10.1002/adma.202001474
169. Konopelnyk OI, Aksimentyeva OI, Horbenko YY, Poliovyi DO, Opaynych IY. Layer-by-layer assembly and thermal sensitivity of poly(3,4-ethylenedioxythiophene) nanofilms. Mol Cryst Liq Cryst (2016) 640:158–64. doi:10.1080/15421406.2016.1257327
170. Amabilino DB. Supramolecular Chemistry at Surfaces (the Royal Society of Chemistry), chapter 6. Layer-by-layer growth. Monographs Supramol Chem (2016):303–39. doi:10.1039/9781782622161-00303
171. Lee T, Min SH, Gu M, Jung YK, Lee W, Lee JU, et al. Layer-by-Layer assembly for graphene-based multilayer nanocomposites: synthesis and applications. Chem Mater (2015) 27:3785–96. doi:10.1021/acs.chemmater.5b00491
172. Tjipto E, Cadwell KD, Quinn JF, Johnston AP, Abbott NL, Caruso F. Tailoring the interfaces between nematic liquid crystal emulsions and aqueous phases via layer-by-layer assembly. Nano Lett (2006) 6:2243–8. doi:10.1021/nl061604p
173. Richardson JJ, Björnmalm M, Caruso F. Multilayer assembly. Technology-driven layer-by-layer assembly of nanofilms. Science (2015) 348:aaa2491. doi:10.1126/science.aaa2491
174. Zhang X, Chen H, Zhang H. Layer-by-layer assembly: from conventional to unconventional methods. Chem Commun (2007) 1395–405. doi:10.1039/b615590a
175. Ariga K, Hill JP, Ji Q. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys (2007) 9:2319–40. doi:10.1039/b700410a
176. Tian W, VahidMohammadi A, Wang Z, Ouyang L, Beidaghi M, Hamedi MM. Layer-by-layer self-assembly of pillared two-dimensional multilayers. Nat Commun (2019) 10:2558. doi:10.1038/s41467-019-10631-0
177. Wang AC, Pereira I, Ferreira C, Veiga F, Fakhrullin R. Chapter 1.4 - Layer-by-Layer Assembly for Nanoarchitectonics. In: K Ariga, and M. Aono, editors. Norwich, NY: William Andrew Publishing, Micro and Nano Technologies (2019). p. 89–121. doi:10.1016/B978-0-12-813341-5.00005-X
178. Zhao S, Caruso F, Dähne L, Decher G, De Geest BG, Fan J, et al. The future of layer-by-layer assembly: a tribute to ACS Nano associate editor Helmuth Möhwald. ACS Nano (2019) 13:6151–69. doi:10.1021/acsnano.9b03326
179. Oliveira DA, Gasparotto LHS, Siqueira JR Processing of nanomaterials in Layer-by-Layer films: potential applications in (bio)sensing and energy storage. An Acad Bras Cienc (2019) 91:e20181343. doi:10.1590/0001-3765201920181343
Keywords: confinement, topological, disclination, transition, nematic, simulation
Citation: Calderón-Alcaraz A, Munguía-Valadez J, Hernández SI, Ramírez-Hernández A, Sambriski EJ and Moreno-Razo JA (2021) A Bidimensional Gay-Berne Calamitic Fluid: Structure and Phase Behavior in Bulk and Strongly Confined Systems. Front. Phys. 8:622872. doi: 10.3389/fphy.2020.622872
Received: 29 October 2020; Accepted: 29 December 2020;
Published: 02 March 2021.
Edited by:
Atahualpa Kraemer, National Autonomous University of Mexico, MexicoReviewed by:
Patrick Huber, Hamburg University of Technology, GermanyRamon Castañeda-Priego, University of Guanajuato, Mexico
Copyright © 2021 Calderón-Alcaraz, Munguía-Valadez, Hernández, Ramírez-Hernández, Sambriski and Moreno-Razo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: J. A. Moreno-Razo, amFtci51YW1AZ21haWwuY29t