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Generation rates of hydrogen peroxide (H2O2), hydroxyl radicals (•OH), molecular
hydrogen (H2), and molecular oxygen (O2) forming during the optical breakdown of
aqueous colloidal solutions containing Au, Mo, Zr, Fe, and Ni nanoparticles have been
studied. It is shown that the processes occurring during the dissociation of water
molecules under the influence of laser breakdown plasma and leading to the formation
of various chemical products depend on the material of the nanoparticles present in the
colloid. It was found that the highest rates of generation of water decomposition products
are observed in aqueous colloidal solutions of Fe and Ni nanoparticles. The use of Au
nanoparticles leads to the lowest generation rate. In general, the materials from which the
nanoparticles are made, depending on the efficiency of the formation of water
decomposition products, are arranged as follows: Ni> Fe> Mo> Zr> Au.
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INTRODUCTION

The processes occurring under the action of high-power laser radiation on a matter has been actively
studied since the creation of the first high-power lasers. Nowadays, the optical breakdown of liquids
is intensively studied [1–3]. This topic is mainly associated with laser ablation technologies in liquids
[4–6] and Laser-Induced Breakdown Spectroscopy (LIBS) technology [7–9].

It is known that the intensity of the processes occurring during the optical breakdown of liquids
can increase significantly when nanoparticles are added to the liquid. For example, it has been shown
that the rate of generation of H2 and O2 during optical breakdown of a liquid containing
nanoparticles increases significantly [10, 11]. In the case of optical breakdown in the presence of
gold nanoparticles in water, the rate of generation of hydroxyl radicals increases by almost two orders
of magnitude [12]; similar results were obtained for hydrogen peroxide. It was found that the rate of
generation of water decomposition products is significantly affected by the concentration of
nanoparticles in an aqueous solution.

Usually, the dependence of the optical breakdown efficiency on the concentration of nanoparticles
has one extremum, although there are also more complex dependencies [13]. Therefore, in this work,
we used the same concentration of nanoparticles for all experimental groups. It is also known that the
efficiency of optical breakdown is influenced by the size of nanoparticles present in a colloidal
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solution [14]. Thus, in this work, we used nanoparticles of close
sizes for all experimental groups. It is known that the rate of
formation of hydrogen peroxide, molecular hydrogen, or
molecular oxygen during the ablation of massive targets from
different metals differs significantly [15]. It is assumed that the
rate of generation of water decomposition products is directly
related to the redox potential of the target’s material. It can be
assumed that the effect of the nanoparticle material on the
generation of water decomposition products can also be
associated with the redox potential; however, unlike metals,
nanoparticles often have an oxide layer on the surface [16].
Such a layer can even occur on gold [17] and other inert
materials [18]. The surface oxide layer of a nanoparticle does
not allow estimating its redox potential with the required
accuracy, although researches in this area are being intensively
conducted [19].

To date, there is insufficient information on the effect of the
nanoparticle material on the processes accompanying laser
breakdown in colloidal systems. In this regard, the aim of this
work is to identify and characterize the effect of the nanoparticle
material on the processes accompanying laser breakdown in
colloidal systems. The study was carried out using the most
similar transition metals of fourth periods (Fe, Ni) and fifth
periods (Zr, Mo). Gold, The sixth period transition element, was
used as a comparison. Gold is a good marker for comparison due
to its relative inertness and widespread prevalence in studies.

METHODS

Nanoparticles of various metals were obtained by laser ablation in
a liquid, details were published earlier [20, 21]. The size

distribution and concentration of nanoparticles in the resulting
colloids were determined using a CPS disc centrifuge. In the
experiments, nanoparticles with the following average sizes were
used: Au - 23 ± 3 nm, Zr - 20 ± 5 nm, Mo - 25 ± 3 nm, Fe - 29 ±
3 nm, Ni - 22 ± 2 nm. The nanoparticles had a metal core. An
oxide layer with a thickness of no more than several nanometers
was observed on the surface of nanoparticles.

The experimental setup is shown in Figure 1. A Nd: YAG laser
with a wavelength λ � 1,064 nm, pulse duration τ � 10 ns,
frequency ] � 10 kHz, average pulse energy ε � 1.25 mJ was
used as a source of laser radiation. The laser beam was focused
inside the cuvette using a motorized system of lenses and mirrors
and moved along a fixed direction. Moving the laser beam is
necessary for the following reason. Previously, we found that
optical breakdown on individual nanoparticles occurs only in an
undisturbed medium. After optical breakdown, the laser pulse
cannot make a breakdown in the same place for several tens of
microseconds; this is due to the emergence of air bubbles and
thermal defocusing. Amperometric sensors of molecular oxygen
and hydrogen connected to portable analyzers were mounted
inside the cuvette. The experimental cuvette was filled with 20 ml
deionized water. The cuvette was cooled externally, 20 ml is the
optimal volume for temperature control and measurements.
Then, nanoparticles of a certain metal were added to the
cuvette to a final concentration of n � 1010 pcs/ml. Earlier, we
found that at a given concentration of nanoparticles in aqueous
solutions, the highest rate of formation of water decomposition
products is observed [22]. During irradiation of the colloidal
solution of nanoparticles, the concentration of molecular
hydrogen and molecular oxygen dissolved in the water was
recorded.

Registration of hydrogen peroxide was carried out
immediately after exposure to laser radiation. About 1 ml of
colloidal solution was taken from the experimental cuvette.
The hydrogen peroxide concentration was measured using the
enhanced chemiluminescence method in the luminol-4-
iodophenol-horseradish peroxidase system. We used a highly
sensitive luminometer Biotoks 7A USE (ultra-sensitive edition).
All experimental details were described earlier [23].

The concentration of short-lived hydroxyl radicals was
measured using a coumarin-3-carboxylic acid (CCA)
fluorescent probe. When molecules of hydroxyl radicals
interact with molecules of coumarin-3-carboxylic acid, 7-OH-
coumarin-3-carboxylic acid is formed with intense fluorescence
(λex � 410 nm, λem � 475 nm). The fluorescence response was
measured using a high-sensitivity spectrofluorimeter. All
experimental details were described earlier [22].

RESULTS AND DISCUSSION

Figure 2A shows the concentration dependence of molecular
oxygen on the irradiation time of colloidal solutions of Au, Zr,
Mo, Fe, and Ni nanoparticles. As can be seen from the figure, the
concentration of molecular oxygen in the experimental cuvette
does not undergo any changes during the first few minutes. After
the onset of equilibrium between the mixture of atmospheric

FIGURE 1 | Scheme of the experimental setup. 1) Nd:YAG laser, λ �
1,064 nm, τ � 100 ns, ν � 10 kHz, 2) Laser radiation, 3) Motorized system of
reflecting mirrors and lenses, 4) Cuvette with an aqueous solution of
nanoparticles, 5) H2 and O2 analyzer.

Frontiers in Physics | www.frontiersin.org December 2020 | Volume 8 | Article 6209382

Baimler et al. Water Decomposition During Laser Breakdown

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


gases (N2 + O2) and newly formed gases (H2 + O2), the
concentration of molecular oxygen in the colloid begins to
monotonically increase with the time of irradiation. The slope
of the straight line was used to calculate the rate of formation of
molecular oxygen. Approximating the area in the interval from 10
to 15 min, which corresponds to the maximum slope i.e., the
maximum rate of generation of molecular oxygen.

The concentration dependence of molecular hydrogen on the
time of irradiation of colloidal solutions of Au, Zr, Mo, Fe, and Ni
nanoparticles was studied, Figure 2B. The presented
dependencies are characterized by nonlinear curves with a
monotonic increase in concentration throughout the entire
exposure time. The rate of generation of molecular hydrogen
was determined from the slope of a straight line approximating a
part of the experimental curve in the interval from 10 to 20 min.
As can be seen from Figure 2B, the generation rate of molecular
hydrogen is maximum when using nickel nanoparticles, and
minimum when using gold nanoparticles.

Figure 2C shows the concentration dependence of hydrogen
peroxide on the time of irradiation of the colloid. As can be seen
from the figure, the dependence of the concentration of
hydrogen peroxide on time has a linear form. The
dependencies corresponding to different materials of
nanoparticles are characterized by different rates of
generation of hydrogen peroxide. It is shown that a high rate
of hydrogen peroxide generation is observed upon irradiation of
colloidal solutions of nickel nanoparticles. The lowest rate of
hydrogen peroxide generation is observed upon irradiation of
Au nanoparticles.

Figure 2D demonstrates the concentration dependence of
hydroxyl radicals on the time of irradiation. The presented
dependencies are approximated by straight lines with different
slopes corresponding to a certain material of nanoparticles. Just
as in the case of hydrogen peroxide, the highest rate of generation
of hydroxyl radicals is observed upon irradiation of nickel
nanoparticles, and the lowest—for gold nanoparticles.

It was found that the concentration of hydrogen peroxide and
hydroxyl radicals increases linearly with the time of exposure to
laser radiation. In contrast, the concentration of gases (molecular
hydrogen and molecular oxygen) does not change linearly. At the
initial stages, a lag phase is observed, with prolonged exposure,
saturation is observed. It is obvious that the generation of gases
during optical breakdown proceeds at the same rate; the change
in the concentration of gases in a liquid is primarily associated
with their solubility. At the initial stages, atmospheric gases
(molecular nitrogen and molecular oxygen) are in the colloidal
solution. Molecular oxygen and molecular hydrogen formed
during optical breakdown begin to displace atmospheric gases
from the system. In this case, molecular hydrogen displaces
molecular oxygen and molecular nitrogen. In this regard, a
quasi-equilibrium is formed in the system, which is shifted
toward the accumulation of gases in the system when
molecular nitrogen is displaced [10]. At later stages of laser
exposure, the concentration of gases reaches the solubility
limit and saturation occurs.

Figure 3 shows the values of the generation rates of various
products of water decomposition depending on the used material
of nanoparticles. As can be seen from Figure 3, the presence of

FIGURE 2 |Concentration change vs. irradiation time of the colloidal solution of nanoparticles (A)molecular oxygen (B)molecular hydrogen (C) hydrogen peroxide
(D) hydroxyl radicals.
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different nanoparticles in solution leads to different rates of
generation of all products. Obviously, this is associated with
an increase in the probability of a breakdown and, as a
consequence, the number of breakdowns in the cell. The
highest generation rates of all registered water decomposition
products are observed when using colloidal solutions containing
nickel nanoparticles, the lowest when using gold nanoparticles.
The ratio of the rates of generation of H2/H2O2/O2 can, with
some assumptions, be written as 4/2/1. From this it follows that
for a certain number of water molecules, four hydrogen
molecules, two hydrogen peroxide molecules and one oxygen
molecule are formed.

It is interesting, that when all nanoparticles are used, the total
equation of water decomposition has a form close to the
following: 6H2O → 4H2 + 2H2O2 + O2. This means that the
nanoparticle material does not make a significant contribution to
the overall balance of the equation. In other words, the
material of nanoparticles does not substantially participate
in the chemical transformations. Under the influence of various
metals, the Fenton reaction (the reaction of decomposition
of hydrogen peroxide) is most often observed: H2O2 + Me →
-OH + •OH + Me+ [24].

In a separate series of experiments, the effect of the
obtained nanoparticles was tested. Nanoparticles were
added to a 100 μM hydrogen peroxide solution to a final
concentration of 1010 pcs/ml and left for 30 min at 20°C. It
was shown that all the nanoparticles used did not
significantly affect the hydrogen peroxide concentration.

The greatest decomposition of hydrogen peroxide (about 10%)
was recorded in colloidal solutions of iron and nickel
nanoparticles. In principle, this result is predictable, since in the
molar ratio in the colloid there were much fewer metal ions than
hydrogen peroxide molecules.

FIGURE 3 | Influence of nanoparticle material on generation processes. (A) generation rates of hydrogen peroxide (B) generation rates of hydroxyl radicals (C)
generation rates of molecular hydrogen (D) generation rates of molecular oxygen.

FIGURE 4 | Refractive index and absorption coefficient of metals at
1,064 nm wavelength. Data obtained from the database https://
refractiveindex.info.
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The arrangement of the nanoparticle materials in the order
presented can be explained by the difference in the absorption
coefficient of the selected materials. Indeed, the fraction of
radiation absorbed by a nanoparticle is determined by the
absorption coefficient of the corresponding metal. With other
parameters being equal, a larger amount of absorbed radiation
leads to the formation of a breakdown plasma with a higher
temperature and a larger localization region. As a result, the
intensity of the decay of water molecules and the rate of formation
of new chemical compounds are directly related to the fraction of
the laser radiation energy absorbed by nanoparticles. The values
for the absorption coefficient of each material at the radiation
wavelengths of the laser used in the experiment (1,064 nm) are
taken from ref. 25 and are shown in Figure 4. As one can see, the
order in which the materials are arranged corresponds to that
obtained in the experiment.

The discrepancies with the experimental data can be explained
by the fact that the exact values of the absorption coefficients may
differ for nanoparticles. It should also be taken into account that
nanoparticle materials are mostly an oxide of a particular
material, which also affects the value of the absorption coefficient.

CONCLUSION

The concentration dependencies of hydrogen peroxide, hydroxyl
radicals, molecular hydrogen, and oxygen on the irradiation time
of aqueous colloidal solutions of Au, Mo, Zr, Fe, and Ni
nanoparticles have been investigated experimentally. It was
found that when a fixed concentration of nanoparticles
(n � 1010 pcs/ml) is added to the solution and the
resulting solution is irradiated, the rate of generation of

chemical products changes for various materials of
nanoparticles. The observed changes in the generation
rates, presumably, depend on the optical properties of a
particular material and can change significantly during the
oxidation of nanoparticles.
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