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The solar wind is a highly turbulent medium exhibiting scalings of the fluctuations ranging
over several decades of scales from the correlation length down to proton and electron
gyroradii, thus suggesting a self-similar nature for these fluctuations. During its journey, the
solar wind encounters the region of space surrounding Earth dominated by the
geomagnetic field which is called magnetosphere. The latter is exposed to the
continuous buffeting of the solar wind which determines its characteristic comet-like
shape. The solar wind and the magnetosphere interact continously, thus constituting a
coupled system, since perturbations in the interplanetary medium cause geomagnetic
disturbances. However, strong variations in the geomagnetic field occur even in absence
of large solar perturbations. In this case, a major role is attributed to solar wind turbulence
as a driver of geomagnetic activity especially at high latitudes. In this review, we report
about the state-of-art related to this topic. Since the solar wind and themagnetosphere are
both high Reynolds number plasmas, both follow a scale-invariant dynamics and are in a
state far from equilibrium. Moreover, the geomagnetic response, although closely related
to the changes of the interplanetary magnetic field condition, is also strongly affected by the
intrinsic dynamics of the magnetosphere generated by geomagnetic field variations
caused by the internal conditions.
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1. INTRODUCTION

Ref. [1] discovered an important connection between the solar wind and the magnetosphere: the level
of magnetospheric storminess depends strongly on the direction of the z component of the
interplanetary magnetic field (IMF) given in geocentric solar magnetospheric (GSM)
coordinates. In particular, the geomagnetic activity is driven mainly by interplanetary structures
with intense, long-duration and southward turning of magnetic fields (Bs), reconnecting with the
Earth’s magnetic field, following the scenario proposed by Ref. [2]. This process initiates the
substorm sequence, with a net transfer of solar wind energy to Earth [3–6]. Overall, the
magnetospheric activity results into several phenomena including geomagnetic substorms and
storms, turbulence, ionospheric currents and auroras, and magnetic reconnection [7], thus
determining a system far from equilibrium [8]. The response of the magnetosphere to the
forcing exerted by the solar wind is not simply proportional to the input. When a critical
threshold is reached, the magnetospheric system tends to reconfigure through a sequence of
energy-loading and stress-developing processes [9, 10], determining episodic and abrupt, rather
than slow and gradual, changes in the magnetosphere. This behavior motivates the description of the
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Earth’s magnetosphere as a complex system in which several
nonlinearly sub-systems co-exist and are multiply interconnected
on a wide range of spatial and temporal scales [11–15]; (and
references therein).

Although there is a remarkable literature focusing on the
geoeffectiveness of large interplanetary perturbations as
Interplanetary counterpart of Coronal Mass Ejections
(ICMEs), predominant during maximum of the solar cycle,
and Corotating Intercation Regions (CIRs), more frequent
during minimum e.g., [16–21], a significant geomagnetic
activity is sometimes present even in the absence of such large
perturbations. Within this framework and to understand the
perspective of this review, a distinguishing feature of the solar
wind system driver, namely turbulence, cannot be ignored. In
fact, early solar wind observations by Mariner 2 in 1962
provided the first power spectral density (PSD) of magnetic
field fluctuations that closely resembled a typical turbulent
spectrum [22], interpreted as the proof that non-linear
interactions among turbulent eddies were actively transferring
energy from large to small scales. References [23, 24] highlighted

that the energy cascade process is caused by the non-linear
interaction of Alfvén waves. [25, 26], indeed, identified for the
first time a strong correlation between velocity and magnetic field
fluctuations that correspond to large amplitude Alfvén waves
always propagating away from the Sun [27]. On the other hand,
observations by Ref. [25] resulted to be critical for the paradigm
adopted by Ref. [22] to explain the presence of a turbulence
spectrum. As a matter of fact, if all the Alfvén waves were
propagating outward, and there were no inward modes to
interact with and produce a turbulent cascade, where did the
turbulent spectrum observed by Coleman come from? This
debate led Ref. [28] to the formulation of a new model in
which both inward and outward Alfvén modes, present in the
solar wind in different amounts, interact nonlinearly, producing a
turbulent energy cascade. In fast solar wind streams mainly,
fluctuations show a high Alfvénic character and are non-
compressive, or in other words, the fluctuations in the proton
density and in the magnitude of the magnetic field are remarkably
depleted, being thus purely directional fluctuations, as expected
for Alfvén waves. Solar wind turbulence is invoked to explain

FIGURE 1 | (A) From top to bottom: time series of solar wind bulk speed (VSW ), temperature (TSW ), number density (nSW ); magnetic field components (Bx , By , Bz )
and magnitude (B); geomagnetic indices: SYM-H, AU/AL and AE. Adapted from Figure 1 of Ref. 31. (B) Probability distribution function of AE index, P (AE), (black dots).
The solid line refers to a nonlinear best fit obtained as the superposition of two Log-normal distribution functions. The two dotted lines show the two components relative
to quiet and active periods, respectively. The vertical dashed line is the threshold discriminating active and quiet periods, evaluated from the data. Adapted from
Figure 1 of Ref. 74. (C) Probability distribution function of Dst index, P (Dst) (black dots). The solid line refers to a nonlinear best fit obtained as the superposition of two
Log-normal distribution functions. The individual lognormal distributions are shown as the dashed and dashed-dot lines. Adapted from Figure 2 of Ref. 115. (D)
Probability distribution function of AE burst lifetime (black dots) fitted by a power law (solid line) for small timescale and by a lognormal distribution (dashed line) for larger
timescales. Adapted from Figure 7 of Ref. 70. (E)Comparison of the best fit functions of the burst lifetime distribution functions for SYM-H (red), ϵ (green), and VBs (blue).
Adapted from Figure 2 of Ref. 80.
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different processes occurring not only in the heliosphere (e.g.,
solar wind heating and acceleration, energetic particle
acceleration, and cosmic-ray propagation) but also in the solar
wind-magnetosphere coupling with particular reference to the
auroral activity caused by reconnection between the southward
components of the Alfvénic fluctuations magnetic fields and
magnetospheric fields. Without establishing a connection
between solar wind turbulence and geomagnetic response,
these geomagnetic disturbances have earlier been called high-
intensity (AE peak values exceeding 1,000 nT and never droping
below 200 nT) long-duration (greater than 2 days) continuous
AE-activity or HILDCAA [29] which are separated from
magnetic storm main phases. Moreover, the auroral
intensifications during HILDCAAs are not substorm
expansion events, nor convection bay events [30]. Figure 1,
panel A), shows an example of solar wind parameters,
interplanetary magnetic field and geomagnetic indices of a
typical HILDCAA event triggered by Alfvénic fluctuations,
following a geomagnetic storm. This figure has been adapted
from and has been described in details in Ref. [31].

Within this framework, this review focuses on the effects of
solar wind turbulence on the geomagnetic response, providing a
brief overview of the state-of-art with particular reference to the
scale-invariant dynamics of the solar wind and the
magnetosphere (section 2) and proposed connection between
solar wind turbulence and geomagnetic response (section 3).
Section 4 sums up the results and contains a brief discussion.

2. SCALE-INVARIANT DYNAMICS OF THE
SOLAR WIND AND THE MAGNETOSPHERE

The solar wind dynamics is associated with many characteristic
spatial and temporal scales, thus retaining a multi-scale nature
[32]. The PSD of magnetic-field fluctuations cover an extended
scale range, from several days to the proton and electron
gyroperiods and can generally be characterized by four
distinguishable dynamical ranges of scales, usually represented
in the frequency domain (e.g., [33–37]; and references therein): i)
a scaling of ∼ f −1 in the energy-containing range [38–41]; ii) a
scaling of f −5/3 [42] or f −3/2 [23, 24] in the inertial range or at
magnetohydrodynamics (MHD) scales; iii) a scaling of ∼ f −α at
sub-ion scales with a broader range of slopes, with α
approximately ∈ [–4, –2] strongly related to the power of the
fluctuations in the inertial range [43, 44]; iv) even steeper scaling
at electron scales [33–35]. The reader is redirected to other
seminal papers and reviews (e.g., [32, 36]; and references
therein) for a thorough description of solar wind turbulence,
being outside the scope of the present review to go into further
detail.

It must be noted, however, that beside the strong connection
existing between the solar wind and the magnetosphere via
reconnection processes, the solar wind and the magnetosphere
are both high Reynolds number plasmas [45]. As a result, we
would expect that not only the solar wind but also the
magnetosphere shows a scale-invariant dynamics and power-
law PSD (e.g., [46–51]). On the other hand, geomagnetic indices

are widely used to study the magnetospheric output and are
indicative of the most important magnetospheric current
systems. Although, historically, the first geomagnetic indices
were related to a global description of the geomagnetic activity
(Kp index introduced by Ref. [52]; and derived indices), more
specific indices are now used. They take into account the separate
contribution of the auroral activity, dominated by the auroral
electroject dynamics (the auroral electrojet indices, AE, AU, AL,
AO defined and developed by Ref. [53], and the low-latitude
activity, dominated by the ring current dynamics. The latter
includes the disturbance storm, Dst, index derived by Refs.
[54, 55] and the a longitudinally asymmetric (ASY) and a
symmetric (SYM) disturbance index introduced and derived
for both the horizontal (dipole pole) direction H (SYM-H,
ASY-H) and the orthogonal (East-West) direction D (SYM-D,
ASY-D). In particular, the SYM-H index, derived by Ref. [56] is
essentially the same as Sugiura’s hourly Dst index, although 1 min
values are derived from different sets of stations and a slightly
different coordinate system. Both AE and Dst (and SYM-H) show
a bimodal behavior being characterized by two components
relative to quiet and disturbed periods as shown in Figure 1
panel B) and C).

Observational evidence of the non-linear behavior of the
magnetosphere in terms of the geomagnetic indices was given
by Ref. [57] and later by, e.g., [58] who showed that the AE and
Dst PSD, respectively, are characterized by a power law. In
addition, the AE index has a multifractal (intermittent)
structure both in quiet and disturbed periods and its
fluctuations are not distributed according to a Gaussian
distribution rather by a leptokurtic distribution [59–63], with
AE more intermittent at maximum of solar activity than at solar
minimum [64, 65].

Reference [66] found that AE burst lifetime (defined as the
duration for which the measurement exceeds a given threshold
value, see also Ref. [67]) probability distribution functions (PDFs)
are characterized by power laws (see also Ref. [68, 69], as shown
in Figure 1, panel d), adapted from Ref. [70]. References [71, 72]
interpreted these results suggesting that the magnetosphere can
be described in terms of a stochastic non-linear system that
evolves toward metastable configurations identifying a state of
self-organized criticality (SOC) [73] independent from initial
conditions. The traditional SOC systems are characterized by
energy dissipation in the form of avalanches. According to the
theory, the events generated in this way are not correlated and
would follow a Poissonian distribution. However, observations
show waiting time distributions of the geomagnetic indices
following power laws as for correlated events (e.g., [70, 74]),
thus suggesting to attribute to an external forcing, the solar
wind, the long time correlation found in the geomagnetic
response, supporting the idea of forced and/or self-organized
criticality (FSOC) systems [72, 75]. Evidence suggesting a
significant SOC component in the dynamics of substorms in
the magnetosphere was presented by Ref. [76] showing
observations of bursty bulk flows, fast flows, localized
dipolarization plasma turbulence, and multiple localized
reconnection sites that would provide the basic avalanche
phenomenon in the establishment of SOC in the plasma sheet.
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According to Ref. [77]; the magnetosphere can be assimilated to a
metastable system, consisting of a collection of temporarily stable
states. Some of them are related to the others by relatively quick
transition processes, which can be identified as the loading-
unloading component during substorms. For a comprehensive
review on SOC, the interested reader is redirected to the papers by
Refs. [78, 79].

SOC models are invoked also to explain power laws lifetime
distributions of the SYM-H index [80] as shown in Figure 1E),
adapted from Ref. [80]. In particular, the scaling properties of
SYM-H for both quiet and active periods are described by power
law scaling behaviors, each with a single nonlinear scaling
exponent, characteristic of fractional Brownian motion (fBm)
[81, 82]. However, the significant differences between quiet and
active intervals suggests, according to their interpretation, that
the basic dynamics of SYM-H could be captured by a
modification to fBm [83], indicating that the SYM-H time
series, rather than being monofractal, is probably weakly
multifractal.

3. CONNECTING SOLAR WIND
TURBULENCE AND GEOMAGNETIC
RESPONSE
Significant effort has been made in establishing the relationship
between fluctuations in the energy delivered by the solar wind to
the magnetosphere and variations in the magnetospheric response.
Common quantities, referred as coupling parameters, used to study
the coupling between the solar wind and the magnetosphere are
vBs [84] measuring the interplanetary magnetic field advected in
the magnetosphere by the reconnection process and the ϵ
parameter [85] which estimates the fraction of the solar-wind
Poynting flux through the dayside magnetosphere.

Several studies have been performed to compare the behavior
of the coupling parameters and the interplanetary magnetic field
with the geomagnetic indices. Reference [86] showed that the
burst lifetime PDFs of the coupling parameters are finite-range
power laws with an exponential cut-off. Although the burst
lifetime PDFs of AU, AL and AE have the same power law
component, a second component can be recognized in the auroral
indices distributions and are highlighted in Figure 1, panel B) and
d), showing AE PDFs and AE burst lifetime PDFs, respectively,
adapted from Refs. [70, 74]; respectively. The power law
component is directly linked to the solar wind input at short
(about 20 min) lag [87] and it is commonly referred as “directly
driven component”, in which energy is directly dissipated in the
auroral ionosphere and ring current with a delay of about 20 min
being due to the inductance of the magnetosphere-ionosphere
system. This component is associated with the DP2 current
systems consisting of the eastward electrojet centered in the
evening sector and the westward electrojet centered in the late
morning sector [88–90]. The second component is related to the
global magnetospheric output that is an intrinsic property of the
magnetosphere. This is linked to the DP1 current system
dominated by the westward electrojet in the midnight sector
and it is referred as “loading unloading component”, indicating

that the energy from the solar wind is first stored in the
magnetotail and then is suddenly released to be deposited in
the auroral ionosphere and ring current as a consequence of
external changes in the interplanetary medium or internal
triggering processes [87, 91–93] such as, e.g., magnetic
reconnection in the tail [94].

Reference [70] confirmed previous results and showed in
addition that while the power law associated to the directly
driven component depends on the phase of the solar cycle, the
second component related to the loading-unloading mechanisms
does not change accordingly, supporting the idea that it is related
to the intrinsic response of the magnetosphere. Studying the
statistical properties of fluctuations in AU, AL and AE indices and
in the ϵ parameter, Ref. [95] found that the fluctuations are self-
similar up to 4 h for AU and AL and up to 2 h for AE.
Fluctuations on shorter time scales are found to have similar
long-tailed (leptokurtic) PDFs, consistent with an underlying
nonlinear process. [96]; using the Local Intermittency Measure
(LIM) technique to extract the intermittent component of the AE
index, found that this corresponds to the impulsive unloading
process. Further investigations by Ref. [97] focused on the scaling
properties of the solar wind driver and geomagnetic indices
during solar minimum and maximum. They found that
fluctuations in the AL index exhibit scaling properties
insensitive to the phase of the solar cycle while the scaling
exponent of AU changes with the solar cycle and the trend
follows that of the ϵ parameter. This is consistent with the AU
index more closely monitoring activity on the dayside and AL
reflecting activity in the magnetotail [97].

Similar to Ref [80], ref [86] performed a comparative studies
between the behavior of the input parameters and the
geomagnetic response at low latitudes by means of the SYM-H
index and found power law distributions for all parameters.
Although during solar minimum the scaling exponents
obtained for SYM-H, vBs and ϵ were essentially the same, this
was not the case for solar maximum. The authors interpreted the
similar values between coupling parameters and SYM-H during
solar minimum as merely fortuitous and that the scaling
properties of the low-latitude magnetosphere are not purely a
direct response to the scale-free properties of the solar wind but
are due to inherent properties of the magnetosphere. The same
authors questioned the role of the solar wind as a direct driver for
the SYM-H (or Dst) scaling in agreement with Ref. [98]. This
results agrees with SYM-H being the product of a SOC system
[99] and would be consistent with the observation that the ring
current is frequently the product of multiple spatial and temporal
fine structures (e.g., [100]). In this case, Dst (and SYM-H) is
produced by superposition of multiple processes, rather than by a
single monolithic ring current, which operate in a SOC state. The
effect of interplanetary magnetic field fluctuations on the
geomagnetic response at low latitudes, using the SYM-H
index, was studied using higher order statistical moments
[101]. While the asymmetry of the probability density
functions (described in terms of the skewness) does not seem
to be important as a geoeffective parameter, there is a relationship
between the kurtosis of the two parameters, thus appearing to be a
representative geoeffective parameter, which can influence the
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reconnection process at the Earth’s magnetopause and the
efficiency of the solar wind–magnetosphere coupling.

Correlations between the basic characteristics of turbulence in
the upstream solar wind and various geomagnetic indices have
also shown that geomagnetic activity increases with an increase in
the amplitude of the turbulence in the solar wind. Reference [45]
highlighted that the amplitude of the turbulence in the solar wind
upstream of the Earth is strongly correlated with the geomagnetic
activity during both northward and southward IMF. During
southward Bz , when magnetic reconnection operates at the
magnetopause, the antiparallel orientations of interplanetary
and magnetospheric magnetic fields are essential. On the
contrary, during northward Bz a viscous coupling of the solar
wind flow to the magnetosphere is enhanced and therefore the
level of turbulence in the solar wind is the key parameter. In this
case, an increased upstream turbulence leads to a larger eddy
viscosity (which reflects in a larger Reynolds stress), determining
more momentum transport from the solar wind flow into the
magnetosphere. This causes a greater convection in the
magnetosphere, which drives stronger current systems between
the magnetosphere and the ionosphere, and which leads to raised
geomagnetic indices. This is in agreement with a later study by
Ref. [102] on the role of the solar wind fluctuations in
geomagnetic activity during southward and northward IMF.
They demonstrated that, in both cases, high power
fluctuations in Bz systematically result in a greater level of
geomagnetic activity on timescales consistent with viscous
processes. Within the same framework, Ref. [103] showed that
the substorm activity is associated not only to flux loading rather
also to high solar wind velocity, causing viscous terms to have an
important role in substorm loading or onsets than previously
supposed. On the other hand, the triggering of geomagnetic
activity can be caused by the passage of a velocity-shear layer
determining sudden changes in the cross-polar-cap potential and
ionospheric Joule dissipation are seen as the shear layers pass
and eventually generating ULF oscillations responsible for the
energization of the outer electron radiation belt [104]. It must be
noted that a southward direction of the IMF as the primary driver
of the geomagnetic activity is not the only crucial parameter.
Indeed, an important role is played also by the energy carried by
solar wind fluctuations. Reference [105] studied the correlation
between the solar wind total (kinetic + magnetic) energy and the
Dst index and found that high-energy solar wind plasma can
severely perturb the near-Earth space environment even
without reconnecting with the geomagnetic field at the dayside
magnetopause.

The first statistical evidence of the role played by Alfvénic
turbulence in the solar wind-magnetosphere coupling was shown
by Ref. [106] who performed a comparitive study over different
phases of the solar cycle. In particular, these authors identified the
turbulent Alfvénic content of the solar wind fluctuations using
the normalized cross-helicity, σC , indicating the predominance of
an Alfvénic mode (either inward or outward) with respect to the
other, and the normalized residual energy, σR, indicating a
predominance of magnetic energy on kinetic energy or
viceversa. For Alfvénic fluctuations, σC � ± 1 and σR � 0. For
further details refer to Ref. [106]. It was found that the level of AE

depends not only on the presence of Alfvénic fluctuations but also
on the amplitude of such fluctuations as shown in Figure 2, panel
A) and B), adapted from Ref. [106]. These results were further
supported by another study by the same authors [107] who
presented the first statistical evidence of the presence of a slow
Alfvénic solar wind during maximum of solar activity and found
to be very similar to the fast wind on many respects and not only
for the Alfvénic content of the fluctuations [44, 108–112]. [107]
demonstrated that the nature of these kind of fluctuations plays a
major role in the geomagnetic activity rather than the type of
wind selected on the basis of the flow speed. On the other hand,
the same statistical relationship was not established between solar
wind turbulence and low-latitude geomagnetic response (see
Figure 2 panel C), adapted from Ref. [98]. In addition, Ref.
[65] performed a statistical study on the intermittency of Bs

and AE. They focused on their respective extreme (say
intermittent) events and studied the distribution of the elapsed
time, or waiting time, between consecutive events, finding
distributions characterized by well-defined power laws which
would suggest the existence of long term correlations typical of
turbulent processes. These events were found to be weakly
dependent on the phase of the solar cycle. However, these
results have been overall questioned by observations of the
turbulent fluctuations downstream of the Earth’s bow shock
that show that the shock destroys the information from the
solar wind. If this is the case, the turbulent spectrum that
eventually forms far from the shock is due to the local
property of the magnetosheath (e.g., [47]) and therefore,
according to this study, the property of power laws in the
interplanetary magnetic field does not map into the property
of power laws in the inner magnetosphere.

4. DISCUSSION

The solar wind and the magnetosphere are high Reynolds
number plasma environments [45], both showing scale-
invariant dynamics and power-law PSDs. Several studies have
been carried out to investigate the turbulent nature of the solar
wind (e.g., [32, 36]; and references therein) and the
magnetosphere (e.g., [46–51]) separately, invoking turbulence
and a SOC approach to describe the dynamics of the two plasma
environments, respectively. At this stage, an obvious question
arises: whether SOC is different from turbulence. Since they
basically exhibit several similarities (e.g., power-law functions in
the power spectrum, scale-free size distributions, and many
degrees of freedom), the answer to this question is rather
difficult. We refer the reader to Ref. [79] that have been
exhaustively discussed this topic, invoking a SOC-turbulence
duality as a generic feature of astrophysical plasmas, although
the explicit complementarity between the two has not been
demonstrated. According to the same authors, SOC can be
identified as a state of near-critical turbulence, which is in
the transition between the laminar state and the fully
developed turbulence state. On the other hand, several
models have been used within the SOC approach to
reproduce the observed fluctuation spectra in terms of
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sandpile cellular automata models. These models are clearly
useful to improve forecasting (or, at least, nowcasting) within
the framework of Space Weather studies. Although they are
overall capable of reproducing the observations, they also show
some limitations in explaining for example the turbulent
behavior of the Earth’s plasma sheet [13].

On the other hand, since the solar wind and the
magnetosphere constitute a coupled system, at a later stage, a
scientific effort has been carried out to establish a link between
solar wind turbulence and geomagnetic response (e.g., [45, 65, 70,
80, 86, 97, 98, 101, 106, 107]). The previous papers have identified
a direct link between the so-called “directly driven
component”, characteristic of the magnetosphere dynamics
at auroral latitudes, and solar wind turbulence. This link is
eventually established via reconnection processes between
the southward components of the Alfvénic fluctuations
magnetic fields and magnetospheric fields. On the other
hand, the connection between the turbulent solar wind and
the geomagnetic response at low latitudes has been
questioned [80, 98], although the magnetic storms
recovery phase has been found to be related to large-
amplitude Alfvén waves [113, 114]. Conversely, the
previous results have been distrusted by observations
performed across the Earth’s bow shock that would destroy
the information from the solar wind. Therefore, according to
this study, the property of power laws in the interplanetary
magnetic field cannot be directly related to the property of
power laws in the inner magnetosphere [47]. This conjecture
would allow other interpretations aiming at identifying the
trigger of the geomagnetic activity as, for instance, i) the role
played by viscous coupling especially during northward IMF
[45, 102, 103]; ii) the presence of velocity-shear layers that
eventually lead to the generation of ULF oscillations

responsible for the energization of the outer electron
radiation belt [104], iii) the role of the energy associated
to solar wind fluctuations in determining Dst perturbations
even without reconnecting with the geomagnetic field at the
dayside magnetopause [105].

To summarize, the solar wind and the magnetosphere are
nonlinear environments, forming a coupled system, mainly via
reconnection processes. The magnetosphere reacts nonlinearly
to the system’s driver. Being a metastable system characterized
by quick transition processes, it loads the energy accumulated
in an impulsive way when a critical threshold is reached to
reconfigure toward an equilibrium configuration. Given the
complexity of the system, the authors are in favor of using a
statistical approach rather than a one-to-one study. In this
case, there is some evidence of the statistical relationship
between solar wind turbulence and the geomagnetic
response, although this is cannot be considered, for sure,
the only physical mechanism involved in the
magnetosphere’s dynamics.
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