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Since the coronavirus disease (COVID-19) pandemic started at the beginning of 2020, it
has seriously affected various countries’ economic and social development and
accelerated the economic recession worldwide. Therefore, the connectedness of the
global COVID-19 network across countries is studied in this article. Based on COVID-19
correlations in 122 countries, we construct a complex network of COVID-19 from January
19, 2020, to August 15, 2020. We then deconstruct the overall global network connectedness
and analyze the connectedness characteristics. Moreover, we empirically investigate the network
connectedness influencing factors by using various countries’ macroeconomic and social data.
We find that the global COVID-19 pandemic network has some prominent complex network
properties, such as lowpath length, high clustering, andgood community structure. Furthermore,
population density, economic size, trade, government spending, and quality of medical treatment
are significant macrofactors affecting COVID-19 connectedness in different countries.
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INTRODUCTION

The COVID-19 global pandemic has changed the world remarkably. In just a few months, from
limited local transmission in several countries, COVID-19 evolved into a multicountry spread and
raged in more than 100 countries and regions across five continents. The COVID-19 pandemic has
disrupted and changed the lifestyle of millions of people around the world and has had a profound
impact on international relations and the economy. At present, increasing attention is being paid to
the prevention and control of the COVID-19 pandemic. The pandemic is well under control in some
countries, such as China and Germany, but most countries, including the United States, still do not
have effective ways to control COVID-19. The fight against the COVID-19 pandemic has become a
top priority for governments in many countries and regions, and the public health sector has paid
unprecedented attention to protecting people’s lives.

The rapid spread of the COVID-19 pandemic is more than just a medical problem. It is also linked
to an infection network among countries worldwide. The complex network science of infectious
diseases can reveal necessary information about disease transmission behavior, as many studies have
shown. First, the research has revealed the typical characteristics of disease transmission behavior,
such as the critical transmission threshold. The virus can spread in the network only when the
transmission probability is more significant than a specific value called the propagation threshold of
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the network (Moore and Newman [1]). Moreover, nonrandom
networks, such as small-world and community structure
networks, are critical to disease transmission. Many real
networks have small-world characteristics in that they tend to
have small average distances and large clustering coefficients. In
such a network, diseases more easily infect others. In addition,
scholars [2] have found that a complex network with a
community structure can promote or effectively inhibit the
spread of diseases.

Furthermore, the key nodes in a network have a profound
impact on disease transmission. Outbreaks of infectious diseases
often spread rapidly from a small number of nodes to the entire
network. Scientists propose indicators such as page rank, node
degree, and k-shell to evaluate the network science characteristic
[3]. In disease research, the information of these key nodes can
reveal the path of disease transmission. Finally, network science
information can be formulated to control the spread of diseases
and reduce harmful transmission processes. In recent research,
Wang et al. [4] use a two-layer networkmodel method to find that
people who received positive prevention information had a lower
risk of disease infection than those who received negative
prevention information.

Therefore, this study establishes a complex network of COVID-
19 infections worldwide and investigates the influencing factors of
the pandemic’s connectedness across countries. We integrate three
methods, i.e., complex networks, visualization principles, and
regression models, to examine the global infection path of the
COVID-19 pandemic and explore possible causes for the rapid
COVID-19 spread. First, we calculate the correlation of COVID-19
infection growth rates between each pair of countries and obtain a
global correlation matrix for COVID-19 infections using the
sample from January 19, 2020, to August 15, 2020. Second, we
establish a global infection complex network using a global
correlation matrix to outline global COVID-19 pandemic
relations and study the global infection complex network
properties. Third, based on the properties of our complex
network, we further investigate how economic and social factors
(such as economic size, population density, international trade,
government expenditure, inflation, and medical level) affect the
network connectedness of the global COVID-19 infection complex
network, shedding light on the prevention and control of the
COVID-19 pandemic for policymakers.

The main conclusions are as follows. First, the complex
network of the global COVID-19 pandemic has some
prominent complex network properties, such as small-world
network and community structure characteristics. In our
network, there are a total of 958 edges in 122 countries
around the world. The average path length between any two
countries is approximately 3, the clustering coefficient is 0.58, and
the network can be divided into several modularity classes.
Second, in terms of intercountry connectedness, we further
examine important topological characteristics in our network,
e.g., degree, triangles, centrality, modularity class, hub, and
authority. We use visual figures to demonstrate these features.
The deeper the color is, the greater the connectedness in the visual
figure is. This suggests that our network reflects the actual
situation of the COVID-19 pandemic. Moreover, based on

similarity, we divide the complex network into ten modularity
classes. On the one hand, the community classification shows that
the United States, Russia, and Colombia, which are suffering
severely from the COVID-19 pandemic, are in one community,
and China and Japan, which have better epidemic control, are in
another community. On the other hand, the community
classification is closely related to each country’s geographical
location. Finally, the analysis of influencing factors reveals that
countries with considerable economic size, high population
density, and high government expenditure have a higher
network connectedness value. In contrast, countries with
adequate import capacity and better medical levels can reduce
the connectedness. In short, these empirical results can clearly
explain the reasons for the rapid global spread of the COVID-19
pandemic.

The contributions of this study are as follows. First, the global
COVID-19 pandemic network is constructed based on the
number of infected people, and the topological information
and connectedness characteristics of the network are obtained,
to some extent explaining the spread of the COVID-19 pandemic
from the perspective of a complex network. The global COVID-
19 pandemic network is a complex network with the
characteristics of short average distance and large clustering
coefficient and has a good community structure division.
Second, integrating the visualization method into the global
COVID-19 pandemic network provides visual results of
network connectedness, helping us determine the potentially
dangerous countries. Finally, we identify economic and social
factors affecting COVID-19 network connectedness, including
population density, GDP, exports, government spending, and
life expectancy. To reduce network connectedness, the
government should implement measures to reduce
population density, increase medical equipment imports,
improve the medical treatment level, and effectively allocate
government expenditures.

LITERATURE REVIEW

Vespignani, a professor who is famous for modeling the global
spread of epidemics, proposes that there are inherent limitations
to predictions in complex sociotechnical systems. However,
mathematical and computational models have successfully
forecast the size of epidemics and have been used to
communicate the risks of uncurbed infectious disease
outbreaks in recent years [5]. Since the beginning of the
COVID-19 outbreak, many mathematical models have been
proposed to describe the pandemic’s spread. Some of them
forecast the future dynamics of COVID-19. Perc et al. [6]
forecast COVID-19 by using a simple iteration method that
needs only the daily values of confirmed cases as input. Other
researchers focus on diagnosing the spread of COVID-19 and
analyzing the factors of disease transmission. Liu et al. [7] propose
a susceptible-asymptomatic-infected-removed (SAIR) model on
social networks to describe the spread of COVID-19 and analyze
the outbreak based on epidemic data fromWuhan. Kraemer et al.
[8] show that China’s drastic control measures substantially
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mitigated the spread of COVID-19. Tsiotas andMagafas [9] build
on the visibility graph algorithm to study the Greek COVID-19
infection curve as a complex network. These studies consider the
spread of COVID-19 to be complicated, and diagnosing the scale
and characteristics of the COVID-19 pandemic is conducive to
governments effectively blocking the spread of this epidemic in
their nations. Hence, we believe that it is very effective and
important to prevent and control the further spread of
COVID-19 by studying the connectedness characteristics of
the pandemic complex network.

Studying the connectedness characteristics in a complex
network through theoretical analysis and numerical simulation
is helpful in understanding the microscopic mechanism of the
spread process of an epidemic to discover practical ways to
control the spread. Previous research has shown that a real
social network is a typical complex network with small-world,
scale-free, and high clustering characteristics. Small-world
characteristics accelerate the spread of an epidemic, scale-free
features facilitate the spread of an epidemic, and high clustering
characteristics cause community clustering in epidemic
transmission [5, 10–17].

Hence, some scholars have combined complex network theory
with epidemiology. Ni [18] builds a dynamic model of an
epidemic and shows that infectious diseases spread much
faster in public networks than in in-home networks. In the
beginning, the number of infected people in the network
increases exponentially, and the spread speed obviously
increases with increasing local structural scale. Chen et al. [19]
simulate the propagation of the H1N1 virus based on complex
networks. The simulation results show that the targeted
immunization strategy can effectively inhibit the spread of
diseases. Wang et al. [3] deeply investigates influential
spreaders’ identification in complex networks based on various
centrality indices. Wang et al. [4] use a two-layer network model
method to find that people who received positive prevention
information had a lower risk of disease infection than those who
received negative prevention information.

All the abovementioned studies try to provide feasible ways to
curb the spread of the epidemic by using mathematical models or
complex network tools. They can help us to work with limited
data to solve problems in a constantly changing environment.
However, at present, there are few studies that examine the global
network of COVID-19. Therefore, determining the complicated
connectedness of the COVID-19 complex network can fill gaps in
the literature and effectively help the government identify good
policies to prevent the COVID-19 pandemic in a timely manner.
This study attempts to show the global situation of the COVID-19
pandemic based on a complex network. It profoundly analyzes
the significant economic and social factors that affect the
connectedness of the COVID-19 network to powerfully
supplement the above literature.

DATA

The growth rate of COVID-19-infected people in each country is
calculated using the COVID-19 infection sample from January

19, 2020, to August 15, 2020. The data came from the CSMAR
database. To analyze the influencing factors of global COVID-19
infection network connectedness, we use each country’s
economic and social macrodata in 2018 as samples. Economic
and social variables include GDP, total exports, total imports,
inflation rate, government expenses, population density, and life
expectancy. All these data are from the World Bank database.
From them, we take logarithms of GDP, total exports, total
imports, government expenses, and population density to
reduce the absolute values.

METHODOLOGY

Construction of COVID-19 Pandemic
Network
In this study, we build a COVID-19 infection complex network
among 122 countries. Any node in our network is a specific
country. Moreover, the possible connection between any two
countries is called an edge in the network. These nodes and
connected edges constitute the entire network of global COVID-
19 infections. The network may rely more on certain countries, as
many paths pass through them. Once this kind of country is
identified and excluded, the network may collapse. Therefore,
identifying these import infection nodes can enable governments
to better fight the pandemic.

The key step in constructing the COVID-19 pandemic
network is measuring the correlation of the growth rate of
COVID-19-infected people among countries. The specific
construction process of the COVID-19 pandemic network is
as follows.

First, we exclude countries with fewer than 2,000 infected
people and then calculate the growth rate of infected people in the
remaining 122 countries individually.

gi,t � ( infectedi,t
infectedi,t−1

− 1) × 100% i � 1, 2, . . . , 122, (1)

where gi,t is the infected persons growth rate of country i in
month t, infectedi,t is the number of infected persons of country i
in month t, and infectedi,t−1 is the number of infected persons in
country i in month t−1.

Second, we compute the correlation coefficients of the infected
persons’ growth rate between any two countries. The correlation
coefficient is formulated as follows:

ρX,Y � Cov(X,Y)������������
Var[X]Var[Y]√ , (2)

where Cov(X,Y) is the covariance of X and Y, Var[X] is the
variance of X, and Var[Y] is the variance of Y.

Third, we need to set a threshold for correlation
coefficients to define the existence of the possible
connection. To fulfill this purpose, we take half of the
mean of each country’s maximum correlation coefficient
(approximately 0.4) as the threshold value for the existence
of connectedness. If the correlation coefficient between the
two countries is higher than the threshold, a line is drawn in
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the network to connect these two countries, indicating a
connection between them.

This method can test the network connectedness between all
countries, draw undirected connecting lines in the network, and
finally create a COVID-19 pandemic infection network.

Complex Network Characteristics
Centrality Analysis
Centrality is an important indicator of each node’s status and role
in the network, and it can be used to judge whether an individual
node is influential [3]. The higher a node’s centrality is, the more
significant its influence in the network is, suggesting that it can
influence other nodes more prominently. In complex network
analysis, there are many ways to characterize the centrality of a
node. The most important are betweenness centrality, closeness
centrality, eigenvector centrality, and page rank.

1) Betweenness centrality
In a network, a certain node’s degree may be very small, but it
may be the intermediate node between any two other
nonadjacent nodes. If this node is removed, the connectivity
between the nonadjacent nodes will be interrupted. Therefore,
the node plays a vital role in the network. For such a node, we
can define betweenness.
The core idea is that the interaction between two nonadjacent
nodes depends on other nodes in the network, especially those
on the shortest path. They exert a certain control over the two
nonadjacent nodes. For example, if node A is located on
multiple shortest paths between other nonadjacent nodes,
node A plays a greater role and has greater betweenness
centrality.
Freeman [20] suggests that the shortest path between
nonadjacent nodes vj and vl will pass some nodes in a
network. If vi is passed by many other shortest paths, then
it is important in the network. Moreover, the importance or
influence of vi for vj and vl can be represented by Bi, defined as
follows:

Bi � ∑
1≤j≤N

[njl(i)
njl

], (3)

where njl is the number of shortest paths between nodes vj and
vl ; njl(i) is the shortest path between nodes vj and vl , which
passes through node vi; and N is the total number of nodes in
the network.
Then, the betweenness centrality of vi is defined as follows:

CB(vi) � 2Bi

[(N − 1)(N − 2)]. (4)

2) Closeness centrality
Sabidussi [21] proposes that the closeness centrality of vi
measures the extent of proximity to other nodes through
the shortest path. The closer the node is, the more
important it is in the network. The closeness centrality
value is the reciprocal of the average distance between node

vi and all other nodes that vi can reach. Specifically, closeness
centrality is defined as follows:

Cc
i �

1
Li

� n − 1
∑j∈Γ,j≠ idij

, (5)

where Γ is the set of nodes that vi can reach, Li is the average
distance to all other reachable nodes of vi, and dij is the distance
between vi and vj. The closeness indicator describes the
difficulty of reaching other nodes in the network through a
certain node vi. It reflects the ability of node vi to exert
influence on other nodes in the network. Therefore, the
closeness centrality can effectively reflect the global structure
of the network.

3) Eigenvector centrality
Bonacich [22] suggests that eigenvector centrality is another
important centrality measurement method for nodes. For node
vi, let the centrality score xi be proportional to the sum of the
centrality scores of all nodes connected to it.

xi � 1
λ
∑N
j�1

aijxj, (6)

where N is the total number of nodes and λ is the maximum
eigenvalue. Each score of the eigenvector must be positive.

4) Page rank
Page rank [23] can be understood as a randomwalk on a graph.
It can be defined as follows:

xk � ∑N
i�1

aikxi � (1 − d) + d ∑
i:bik�1

xi
ri
, (7)

where xk is the page rank value of node k; d is the model
parameter, usually d � 0.85; and aik is the probability of
transition from page i to page j.

Small-World Network
The small-world property is an important topological feature of
the network. Watts and Strogatz [10] propose the small-world
network model (WS small-world network). They argue that some
network systems are large in size but have a relatively small
distance between any two nodes. A typical small-world network
has a shorter average distance and a larger clustering coefficient.
For example, there are no more than six people between any two
strangers in a small-world social network.

1) Clustering coefficient

In a WS small-world network, the clustering coefficient
quantifies the tendency of the nodes of a complex graph to
cluster. In terms of a certain node v in the WS small-world
network, vi and vj are two neighboring nodes of node v. If we
reconnect vi and vj by random probability p, then the probability
of vi and vj still being neighboring nodes is (1 − p), and (1 − p)3 is
the probability that there is still an edge between vi and vj. Watts
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and Strogatz [10] and Barrat and Weigt [24] argue that the WS
clustering coefficient can be calculated as follows:

CWS(p) � 3(k − 1)
2(2k − 1) (1 − p)3. (8)

The initial network is a one-dimensional lattice of N sites, with
periodic boundary conditions (i.e., a ring), each vertex being
connected to its 2k nearest neighbors. The vertices are then visited
one after the other; each link connecting a vertex to one of its k
nearest neighbors in the clockwise sense is left in place with
probability (1 − p) and with probability p is reconnected to a
randomly chosen other vertex.

2) Average path length

The average distance between any two nodes would also show
interesting properties in a given complex network. The diameter
D of a complex network is defined as the maximum distance
between any pair of nodes.

Watts and Strogatz [10] argue that in terms of random
networks, almost all networks have the same diameter. This
means that the Nth-order random network with probability P
has a tiny change in diameter. Watts [25] suggests that the
diameter D is usually concentrated as follows:

D � lnN
ln〈k〉 ≈

lnN
ln(pN). (9)

Supposing LER is the average path length of the ER random
network, for a randomly selected node in the ER random
network, there are approximately 〈k〉LER other nodes in the
network with a distance from the selected node that is equal
or very close to LER. Therefore, LER ∝ lnN

ln〈k〉. It is a typical small-
world property that the average path length is proportional to the
logarithmic growth function. Since lnN grows slowly with N, a
large random network may have small average path lengths.

Modularity Class
Newman [26, 27] proposes modularity, which enables a clear
evaluation indicator to measure the segmentation of network
communities. In other words, modularity refers to the difference
between an ordinary network and a random network under a
specific community division criterion. Because the random
network does not have a community structure, the larger the
difference is, the better the community division will be.

Newman [27] defines modularity as follows:

Q � 1
4m

∑
ij

(Aij − kikj
2m

)(si,sj + 1) � 1
4m

∑
ij

(Aij − kikj
2m

)sisj, (10)

where m is the total number of edges in the network, A is the
corresponding adjacency matrix of the network, and Aij � 1
represents the existence of an edge between node i and node j.
Otherwise, there is no edge connection. ki is the degree of node i,
si is the label of node i belonging to a community, and 1

2 (si,sj +
1) � 1 if and only if si � sj; otherwise, 12 (si,sj + 1) � 0.

EMPIRICAL RESULTS AND DISCUSSION

COVID-19 Pandemic Network
In this section, we present our COVID-19 pandemic network.We
first calculate the daily growth rate of the infected population in
122 countries individually and then calculate the correlation
coefficient (ρij) of the growth rate between any two countries.
Furthermore, the threshold value for the existence of
connectedness is set as 0.4 since the half mean of each
country’s maximum correlation coefficient is 0.38. If the
correlation coefficient between country i and country j is
higher than the threshold value, i.e., ρij > 0.4, then the element
{aij} in the connectedness matrix is 1; otherwise, it is 0. If aij � 1,
there is an edge between country i and country j, and if aij � 0,
there is no edge between country i and country j. In addition, the
value of the element on the diagonal of the connectedness matrix
is set as 0, which indicates that there is no link between any
country and itself. We obtain our COVID-19 pandemic
connectedness matrix through the above calculation method
(as the number of countries involved is 122, we cannot
present the 122 × 122 matrix here). Because a zero growth
rate will affect the similarity calculation, we excluded 91
countries and regions with fewer than 2,000 infected people.

Finally, the COVID-19 pandemic network obtained in this
study is a complex network without considering the direction,
and it is an undirected network with 122 nodes and 958
connected edges.

Using the software Gephi, we generate a visual graph of our
network. The results are shown in Figure 1. Taking China, the
United States, and Brazil as examples, China has connectedness
with Singapore, Japan, and Thailand; the United States has
connectedness with Australia, Kenya, Colombia, Pakistan,
Dominica, Turkey, and Luxembourg; and Brazil has
connectedness with 16 countries, including Austria, Portugal,
Denmark, Saudi Arabia, and France.

Then, we use Gephi to obtain the network topology
characteristic values, which is the basis for the next step of the
analysis. Figures 2 and 3 show the COVID-19 pandemic network
parameters. Figure 2 shows the degree distribution in our
COVID-19 pandemic network. The overall distribution of the
graph shows that the COVID-19 pandemic network is relatively
dispersed. Figure 3 shows the clustering coefficient graph. The
larger the clustering coefficient is, the higher the extent of the
connection between neighbors is. Our COVID-19 pandemic
network has a clustering coefficient of 0.58. This large
clustering coefficient indicates that the COVID-19 pandemic
network is a very close world.

Other overall characteristics of the COVID-19 pandemic
network are shown in the following table.

Table 1 shows that the COVID-19 pandemic network has 122
nodes, and the number of edges between nodes is 985 with an
average degree of 7.85, average path length of 3.104, clustering
coefficient of 0.58, and diameter of 8. Moreover, the clustering
coefficient is large, so the network has close-world network
characteristics.
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FIGURE 1 | The global COVID-19 pandemic network. Note: This is the global COVID-19 pandemic network. It excludes countries with fewer than 2,000 infected
people. When the correlation of the growth rate of infected people is larger than 0.4, there is a connected edge between countries.

FIGURE 2 | The degree distribution of the global network. Note: Figure 2 represents the degree distribution. The vertical and horizontal axes of each subplot are
node counts and parameter distribution values, respectively. The horizontal axis represents the degree value of each country. The vertical axis represents the number of
countries. For example, value � 2 and count � 7 means that there are seven countries, and they all have a degree of two.
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In addition, the small-world network has the characteristics of
a small path length and a high clustering coefficient between
nodes. Our global COVID-19 pandemic network’s average path
length is 3.104, and its clustering coefficient is 0.58, indicating
that the global COVID-19 pandemic network has some
characteristics of a small-world network.

Connectedness Characteristics of the
Global COVID-19 Pandemic Network
In this section, we further analyze some important characteristics
of the global COVID-19 pandemic network. Specifically, we focus
on the degree, triangles, centrality, modularity class, and
authority and then provide the visual results.

Figure 4 represents the degree of each country in the global
COVID-19 pandemic network. The degree of country i is the total
number of edges directly connected to that country. The deeper a
country’s color is, the greater its degree is. As shown in Figure 4,
Brazil has the deepest color on the American continents; in
Europe, Austria has the greatest degree; in Asia, Israel and Sri
Lanka have the highest number of edges; in Oceania, the color of
Australia is the deepest; and in Africa, the countries with the
greatest degree are South Africa and Morocco. The above results

indicate that these countries have the greatest degrees with other
countries and a prominent ability to spread COVID-19 to other
countries. Thus, more attention should be paid to their capacity
and measures for COVID-19 pandemic prevention and control.

Figures 5–8 show the centrality analysis results, reflecting the
relative importance of each node in the network. Figure 5 shows
betweenness centrality. The countries with the deepest colors are
the Democratic Republic of the Congo, Australia, and Croatia,
which are located in Africa, Oceania, and Europe, respectively.
This finding indicates that these three countries play an
important betweenness role in the COVID-19 pandemic
network. Additionally, Canada and Cuba in North America
are also significant. We may more easily halt the global spread
of COVID-19 if we control the pandemic in these three
countries first.

Figure 6 shows eigenvector centrality. The three countries
with the deepest colors are Moldova, Sri Lanka, and Austria,
located in Europe, Asia, and Europe, respectively. This finding
shows that the three countries have the highest centrality scores
and are the nodes with the greatest importance in the COVID-19
pandemic network. Again, Austria shows its importance in the
COVID-19 pandemic network, indicating that the effective
control of COVID-19 in Austria has a significant role in
halting the global spread of the COVID-19 pandemic.

Figure 7 represents closeness centrality. The three countries
with the deepest colors are Kazakhstan, Iraq, and Uzbekistan, all
located in Asia. This means that Kazakhstan, Iraq, and
Uzbekistan may be important for Asian COVID-19 control.
Figure 8 shows harmonic closeness centrality. The empirical
results are the same as those shown in Figure 7.

Figure 9 shows the analysis results of authority, reflecting the
influence of nodes in the network. The three countries with the
deepest colors are Moldova, Israel, and Austria, located in

FIGURE 3 | The clustering coefficient distribution of the global network. Note: Figure 3 represents the distribution of clustering coefficients in various countries. The
vertical and horizontal axes of each subplot are node counts and parameter distribution values, respectively. The horizontal axis represents the clustering coefficient value
of each country. The vertical axis represents the number of countries.

TABLE 1 | Topological characteristics of the COVID-19 pandemic network.

Network N E <d> K C D

COVID-19 pandemic 122 958 7.85 3.104 0.58 8

Table 1 presents the topological information of the COVID-19 pandemic network. N is
the number of nodes. E is the number of edges. <d> is the average degree of the whole
network. K represents the average path length of the network. C is the clustering
coefficient of the network. D is the diameter of the network.
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Europe, Asia, and Europe, respectively. This indicates that the
infections in Moldova, Israel, and Austria are highly dangerous,
as these three countries may have high virus spread capacity.

Figure 10 shows modularity-class analysis results, describing
the community situation in the network. The results show that
the modularity coefficient is 0.526, and the COVID-19 pandemic
network is divided into 10 communities, representing community
structures. Community 0 contains 8 countries, including
Palestine, Poland, and the United Arab Emirates. Community
1 contains Cuba, the Democratic Republic of the Congo, and 23
other countries. Community 2 contains Mexico, Moldova, Sri
Lanka, Israel, and so on. Community 3 contains 13 countries,
including China, Canada, Britain, India, Germany, Australia, and
Japan. Community 4 contains 24 countries, including France,
Brazil, Austria, and South Africa. Community 5 contains Bahrain,
Iraq, and Oman. Community 6 contains 11 countries, including
Bangladesh, Kyrgyzstan, and Ghana. The countries in
Community 7 are Uzbekistan, Kazakhstan, and Guatemala.

The countries in Community 8 are Iran, South Korea, and
Italy. Community 9 contains 16 countries, including the
United States, the Russian Federation, and Colombia.

The Determinants of Connectedness
According to the above analysis, the connectedness of the global
COVID-19 infection network varies across different countries.
Therefore, what factors influence the network connectedness of
COVID-19 infection? Hereafter, this study further explores how
economic factors, population density, medical level, and other
social factors influence the connectedness of COVID-19 by using
a quantitative regression method to provide a theoretical basis
and guidance for policymakers’ prevention and control measures.

We build the econometric model as follows:

connectednessi � β0 + β1LnDensity + β2LnGDP + β3LnExport

+ β4LnImport + β5Inflation + β5Expense

+ β6LifeExpectancy + εi,

FIGURE 4 | The degree of the global COVID-19 pandemic network.

FIGURE 5 | The betweenness centrality of the global COVID-19 pandemic network.
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where connectednessi represents degree, eigenvector centrality,
betweenness centrality, closeness centrality, harmonic centrality,
page rank, authority, hub, and triangles separately. LnDensity
means the logarithms of population density. LnGDP is the
logarithms of economic size. LnExport is the logarithms of
total exports. LnImport is the logarithms of total imports.
Inflation indicates monetary policy. Expense represents
government expenditure. Life represents life expectancy,
reflecting the quality of medical treatment.

Table 2 shows the regression results between the characteristics
of the COVID-19 pandemic network and other possible
determinant factors. In columns (1)–(7), we investigate how the
degree, eigenvector centrality, betweenness centrality, closeness
centrality, harmonic closeness centrality, page rank, authority,
hub, and triangles are affected by possible influencing factors.

In columns (1) and (2), LnGDP and Expense are significantly
positive at the 10% confidence level, indicating that economic
level and government expenditure will significantly increase
degree and eigenvector centrality. In column (3), LnGDP is
also significantly positive at the 5% confidence level, indicating
that the economic scale significantly increases betweenness
centrality, consistent with the result of degree and eigenvector
centrality. Inflation is significantly negative at the 5% confidence
level, suggesting that it significantly reduces betweenness
centrality. In column (5), the estimated coefficient of LnGDP
is still significantly positive at 10%, suggesting that economic size
will significantly increase harmonic closeness centrality. In
column (6), LnDensity, LnGDP, and Expense are all
significantly positive at the 5% confidence level, indicating that
population density, economic scale, and government expenditure

FIGURE 6 | The eigencentrality of the global COVID-19 pandemic network.

FIGURE 7 | The closeness centrality of the global COVID-19 pandemic network.
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increase page rank. However, LnImport is significantly negative at
5%, indicating that imports significantly reduce page rank. In
columns (7) and (8), Expense has a significantly positive
coefficient at 1%, meaning that the amount of government
expenditure will significantly increase authority and hub. In
column (9), LnGDP and Expense are significantly positive at
5%, indicating that the size of the economy and government
spending significantly increase triangles.

Overall, the economic development level and government
spending show significant positive effects on COVID-19
infection connectedness. If policymakers hope to curb the
spread of COVID-19 effectively, they should give priority to

the COVID-19 pandemic, appropriately reduce economic
activities, and avoid crowd gatherings to reduce the risk of
infection. Moreover, government expenditures need to be
allocated more effectively. Controlling and preventing the
spread of COVID-19 should be the first goal of government
expenditures. More government resources should be used to
purchase medical devices and improve medical staff
protection and treatment. The United States is a case in
point. As the United States has prioritized the economy in
its COVID-19 prevention policy, a large amount of fiscal
spending has been used to subsidize economic activities
rather than medical resources. As a result, the number of

FIGURE 8 | The harmonic closeness of the global COVID-19 pandemic network.

FIGURE 9 | The authority of the global COVID-19 pandemic network.
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confirmed COVID-19 cases in the United States is
approaching 9 million.

The Determinants of Connectedness: Asia
and Europe
To further analyze how economic and social factors affect Asian
and European countries’ connectedness characteristics
differently, this study divides the samples into Asian and
European countries.

Table 3 shows the empirical results in Asia. In Asia,
LnDensity, LnGDP, and LnExport are significantly positive at
the 10% confidence level for degree, eigenvector, authority, hub,
and triangles, indicating that population density, economic
activities, and export activities show significantly positive
effects in the Asian COVID-19 pandemic network. However,
LnImport is persistently significantly negative at the 10 or 5%
confidence level for degree, eigenvector, page rank, authority,
hub, and triangles, showing that imports can effectively reduce
the characteristics of the COVID-19 pandemic network in Asia.

FIGURE 10 | The modularity class of the global COVID-19 pandemic network.

TABLE 2 | Determinants of connectedness: global.

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9)

Degree Eigen Betweenness Closeness Harmonic Page
rank

Authority Hub Triangles

LnDensity 0.7450 0.0217 −13.9320 −0.0020 0.0024 0.0007** 0.0036 0.0036 2.1949
(1.46) (0.75) (−0.53) (−0.12) (0.14) (2.03) (0.55) (0.55) (1.50)

LnGDP 2.9796** 0.1207* 72.1867** 0.0440 0.0551* 0.0025*** 0.0249 0.0249 8.1021**
(2.28) (1.76) (2.39) (1.60) (1.81) (3.51) (1.63) (1.63) (2.08)

LnExport 0.2037 −0.0009 −10.2764 −0.0181 −0.0111 0.0004 −0.0014 −0.0014 0.3559
(0.10) (−0.01) (−0.20) (−0.52) (−0.27) (0.31) (−0.06) (−0.06) (0.05)

LnImport −4.1171 −0.1654 −73.2675 −0.0328 −0.0537 −0.0036** −0.0341 −0.0341 −12.4868
(−1.50) (−1.12) (−1.06) (−0.80) (−1.05) (−2.36) (−1.03) (−1.03) (−1.48)

Inflation −0.0531 −0.0037 −6.4161** −0.0000 −0.0001 −0.0001* −0.0010 −0.0010 −0.0766
(−0.78) (−1.03) (−2.39) (−0.02) (−0.02) (−1.78) (−1.29) (−1.29) (−0.33)

Expense 0.2523*** 0.0126*** 2.4979 −0.0001 0.0012 0.0001*** 0.0029*** 0.0029*** 0.7041***
(3.53) (3.47) (1.06) (−0.03) (0.55) (3.39) (3.48) (3.48) (3.25)

Life 0.0605 0.0067 0.6182 0.0031 0.0033 0.0000 0.0019 0.0019 0.5413
(0.54) (1.12) (0.14) (1.28) (1.29) (0.46) (1.38) (1.38) (1.47)

Constant 7.0192 0.0728 217.2144 0.2184 0.2472 0.0080* −0.0029 −0.0029 8.3716
(1.00) (0.21) (0.92) (1.48) (1.45) (1.95) (−0.04) (−0.04) (0.41)

Observations 79 79 79 79 79 79 79 79 79
R-squared 0.228 0.212 0.102 0.039 0.057 0.232 0.218 0.218 0.232

This table constructs regression models for global determinants of connectedness. Dependent variables are network connectedness characteristics. Independent variables are economic
and social factors. Values in parentheses are the T statistical values; ***, **, and * indicate significance at the levels of 1, 5, and 10%, respectively.
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In summary, for Asian countries, population density and
economic activities significantly increase the connectedness of
the COVID-19 pandemic network, which is consistent with the
full sample results. As most Asian countries have large
populations and high residential density, it is very important
and influential for them to decrease economic activities and
strengthen quarantine measures appropriately. In addition,
more substantial imports would reduce the connectedness of

the COVID-19 pandemic network in Asian countries. We suspect
that one of the reasons is that most Asian countries’medical level
is still relatively low. More imports of materials and medical
equipment can effectively reduce domestic resource pressure,
thus reducing connectedness.

Table 4 shows the empirical results for Europe. In Europe, the
coefficients of Expense for degree, eigenvector, closeness,
harmonic closeness, and page rank are significantly positive at

TABLE 3 | Determinants of connectedness: Asia.

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9)

Degree Eigen Betweenness Closeness Harmonic Page
rank

Authority Hub Triangles

LnDensity 3.1811* 0.1962** 21.1112 −0.0711 −0.0586 0.0013* 0.0438** 0.0438** 10.8935**
(2.28) (2.87) (0.69) (−1.01) (−0.88) (1.92) (2.87) (2.87) (2.80)

LnGDP 6.5357* 0.3872* 62.9644 0.0091 0.0281 0.0038* 0.0874* 0.0874* 21.9928*
(2.00) (2.30) (0.79) (0.09) (0.26) (1.96) (2.29) (2.29) (2.24)

LnExport 10.9008 0.6387* 50.8330 0.0305 0.0631 0.0059 0.1464* 0.1464* 35.9940*
(1.78) (2.16) (0.37) (0.16) (0.31) (1.36) (2.19) (2.19) (1.96)

LnImport −21.0506** −1.2356** −149.3194 −0.0607 −0.1177 −0.0118* −0.2827** −0.2827** −70.3091**
(−2.43) (−3.04) (−0.74) (−0.25) (−0.46) (−1.92) (−3.06) (−3.06) (−2.81)

Inflation 0.0684 −0.0058 −7.8613 0.0080 0.0072 0.0000 −0.0025 −0.0025 0.4325
(0.19) (−0.34) (−0.82) (0.52) (0.48) (0.19) (−0.65) (−0.65) (0.41)

Expense 0.1327 0.0092 3.9181 −0.0034 −0.0019 0.0000 0.0023 0.0023 0.3640
(0.46) (0.67) (0.74) (−0.35) (−0.20) (0.22) (0.74) (0.74) (0.43)

Life −0.3162 −0.0248 −2.2921 0.0116 0.0087 0.0001 −0.0051 −0.0051 −0.6678
(−0.69) (−1.13) (−0.22) (0.56) (0.42) (0.44) (−1.05) (−1.05) (−0.50)

Constant 66.9493* 4.1986** 655.5296 0.2487 0.5011 0.0241 0.9375** 0.9375** 188.7532
(1.88) (2.42) (0.83) (0.16) (0.29) (1.08) (2.39) (2.39) (1.77)

Observations 16 16 16 16 16 16 16 16 16
R-squared 0.545 0.632 0.250 0.311 0.292 0.520 0.640 0.640 0.611

Note: This table constructs regression models for the determinants of connectedness in Asia. Dependent variables are network connectedness characteristics. Independent variables are
economic and social factors. Values in parentheses are the T statistical values; ***, **, and * represent significance at the levels of 1, 5, and 10%, respectively.

TABLE 4 | Determinants of connectedness: Europe.

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9)

Degree Eigen Betweenness Closeness Harmonic Page
rank

Authority Hub Triangles

LnDensity 0.9020 0.0689 28.5923 0.0345 0.0392 0.0007 0.0157 0.0157 3.5322
(0.60) (0.89) (0.72) (1.67) (1.68) (0.69) (0.87) (0.87) (0.74)

LnGDP 0.2223 0.0478 60.4216 0.0681 0.0740 0.0009 0.0140 0.0140 −0.1817
(0.09) (0.36) (0.73) (1.37) (1.39) (0.56) (0.45) (0.45) (−0.02)

LnExport 0.5186 0.1156 12.5290 0.0634 0.0832 −0.0007 0.0137 0.0137 −7.0843
(0.07) (0.30) (0.06) (0.89) (0.95) (−0.14) (0.15) (0.15) (−0.28)

LnImport −2.1137 −0.2598 −113.1319 −0.1503 −0.1819 −0.0010 −0.0503 −0.0503 2.1277
(−0.21) (−0.49) (−0.36) (−1.25) (−1.30) (−0.14) (−0.41) (−0.41) (0.06)

Inflation −1.0538** −0.0673*** −25.0360* −0.0101** −0.0120** −0.0007** −0.0168*** −0.0168*** −4.0368**
(−2.37) (−2.85) (−1.85) (−2.22) (−2.15) (−2.26) (−3.01) (−3.01) (−2.49)

Expense 0.2490** 0.0105* 6.4767 0.0034* 0.0045** 0.0002** 0.0023 0.0023 0.6057*
(2.26) (1.83) (1.54) (1.99) (2.37) (2.60) (1.69) (1.69) (1.73)

Life −0.5094* −0.0381** −8.2352 −0.0066** −0.0073** −0.0003 −0.0088** −0.0088** −1.7204*
(−1.90) (−2.62) (−1.06) (−2.61) (−2.34) (−1.48) (−2.57) (−2.57) (−1.77)

Constant 62.6958** 4.5161*** 1,092.8542 0.9114*** 1.0772*** 0.0359** 1.0523*** 1.0523*** 217.3826**
(2.78) (3.93) (1.45) (4.58) (4.53) (2.30) (3.94) (3.94) (2.71)

Observations 33 33 33 33 33 33 33 33 33
R-squared 0.326 0.398 0.232 0.301 0.335 0.330 0.410 0.410 0.409

Note: This table constructs regression models for the determinants of connectedness in Europe. Dependent variables are network connectedness characteristics. Independent variables
are economic and social factors. Values in parentheses are the T statistical values; ***, **, and * indicate significance at the levels of 1, 5, and 10%, respectively.
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10 or 5%, meaning that government expenses in Europe may be a
burden and that governments do not effectively use their
resources to control the COVID-19 pandemic. The estimated
coefficients of inflation for all characteristics are all significantly
negative except for betweenness and page rank. All the estimated
coefficients of Life are significantly negative at 10 or 5%,
indicating that as countries with higher life expectancy are
more likely to have a better medical level; life expectancy is
negatively associated with the connectedness of the COVID-19
pandemic network.

Compared with Asian countries, economic activity,
population density, and government expenditure do not
significantly increase the connectedness of the COVID-19
pandemic network in Europe. However, life expectancy can
effectively reduce network connections. As European countries
have more capital intensive and high value-added industries
compared with Asia, the infection possibility of COVID-19 is
relatively low in those industries. We believe that cutting down
economic activities can not effectively prevent and control the
spread of COVID-19 pandemic in Europe. Moreover, as the
population density in Europe is much lower than that in Asia, it
is difficult for the government of European countries to lower
their population density furthermore. Therefore, population
density is not significantly associated with the connectedness
of the COVID-19 pandemic in Europe. Compared with Asian
countries, most European countries have a higher economic
development level, so their government expenditure is generally
used for medical expenditure. Government expenditure can
effectively strengthen a country’s medical resources.
Therefore, life expectancy in Europe is higher, and life
expectancy is negatively associated with the connectedness of
the COVID-19 network, suggesting that the European medical
level is useful for preventing and controlling COVID-19.

Due to differences in economic and social characteristics,
policymakers should use different prevention and control
measures for different countries. Each country should
implement prevention policy measures according to its local
conditions. Only in this way can we effectively control the
further spread of COVID-19.

CONCLUSION

Based on the growth pattern of the number of COVID-19
infections worldwide, this study constructed a complex
network among 122 countries. Complex network analysis was
used to deconstruct the overall connectedness of COVID-19
infection networks, visualize the connectedness characteristics
among countries in the network, and further explore the
influencing factors of the global COVID-19 infection network
based on macrodata such as the economy, population, and life
expectancy.

Our research shows that, first, in terms of overall
connectedness, the global COVID-19 pandemic network has

small-world network, close-world network, and community
structure features. There are a total of 958 edges in 122
countries worldwide, which are divided into ten communities.
This network has a small average path length (3.14) and a high
clustering coefficient (0.58), and its diameter is 8. Second, in
terms of intercountry connectedness, some countries have a
significant influence on the global COVID-19 pandemic
network, such as Austria (Europe), Croatia (Europe), Moldova
(Europe), Brazil (South America), Canada (North America), Iran
(Asia), Kazakhstan (Asia), Uzbekistan (Asia), Republic of the
Congo (Africa), and Austria (Oceania). More attention should be
paid to these countries for further control of COVID-19.

In addition, we divide the network into ten communities. The
United States, Russia, and Colombia, which are suffering more
severely from COVID-19, are in a community, while China and
Japan, which have better control of COVID-19, are in another
community.

Finally, in the influencing factor analysis, our study finds that
population density, economic size, exports, and government
expenditure significantly increased the connectedness of the
COVID-19 infection network. However, imports and life
expectancy significantly reduced the connectedness of the
COVID-19 infection network. This result indicates that
countries with large economic size, high population density,
and high government expenditure more easily suffer from and
spread COVID-19. In contrast, countries with adequate import
capacity and a better medical level can reduce the network
connectedness.
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