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The resistance distance between any two vertices of a connected graph is defined as the
net effective resistance between them in the electrical network constructed from the graph
by replacing each edge with a unit resistor. In this article, using electric network approach
and combinatorial approach, we derive exact expression for resistance distances between
any two vertices of polyacene graphs.
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1 INTRODUCTION

LetG � (V(G), E(G)) be a connected graph. It is interesting to consider distance functions onG. The
most natural and best-known distance function is the shortest path distance. For any two vertices
i, j ∈ V(G), the shortest path distance between i and j, denoted by dG(i, j), is defined as the length of a
shortest path connecting i and j. Two decays ago, another novel distance function, named resistance
distance, was identified by Klein and Randić [1]. The concept of resistance distance originates from
electrical circuit theory. If we view G as an electrical network N by replacing each edge of G with a
unit resistor, then the resistance distance [1] between i and j, denoted byΩG(i, j), is defined as the net
effective resistance between the corresponding nodes in the electrical network N. In contrast to the
shortest path distance, the resistance distance has a notable feature that if i and j are connected by
more than one path, then they are closer than they are connected by the only shortest path. So it is
suggested that resistance distance is more appropriate to deal with wave-like motion in the network,
like the communication in chemical molecules. In addition, it turns out that the resistance distance
has some pure mathematical interpretations, which could be expressed in terms of the generalized
inverse of the Laplacian matrix [1], the number of spanning trees and spanning bi-trees [2], and
random walks on graphs [3, 4].

Besides being an intrinsic graph metric and an important component of electrical circuit theory,
resistance distance also turns out to have important applications in chemistry. For this reason,
resistance distance has been widely studied in the mathematical, chemical, and physical literature. In
the study of resistance distance, the main focus is placed on the problem of computation of resistance
distance. This problem has been a classical problem in electrical network theory studied by numerous
researchers for a long time. Besides, it is also relevant to a wide range of problems ranging from
random walks, the theory of harmonic functions, to lattice Green’s functions. Consequently, this
problem has attracted much attention, and many researchers have devoted themselves to it. Up to
now, resistance distances have been computed for many interesting (classes of) graphs, with
emphasis being placed on some highly concerned electrical networks and chemical interesting
graphs. For example, resistance distances have been computed for Platonic solids [5], and for some
fullerene graphs including buckminsterfullerene [6], circulant graphs [7], distance-regular graphs [8,
9], pseudo–distance-regular graphs [10], wheels and fans [11], Cayley graphs over finite abelian
groups [12], complete graphminusN edges [13], resistor network embedded on a globe [14], Möbius
ladder [15],m × n cobweb network [16], complete n-partite graphs [17],m × n resistor network [18],
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ladder graph [19], n-step network [20], Cayley graphs on
symmetric groups [21], Apollonian network [22], Sierpinski
Gasket Network [23], generalized decorated square and simple
cubic network lattices [24], self-similar (x, y) -flower networks
[25], almost complete bipartite graphs [26], straight linear 2-trees
[27], and path networks [28].

It is interesting to note that a good deal of attention has been
paid on resistance distances in plane networks, such as Platonic
solids, fullerene graphs, wheels, fans, ladder graphs, Apollonian
network, Sierpinski Gasket Network, m × n resistor network,
and straight linear 2-tree. Motivated by this fact, we are devoted
to considering other interesting plane networks. In this article,
we take the linear polyacene graphs into consideration. It is well
known that the linear polyacene graphs are graph
representations of an important class of benzenoid
hydrocarbons, and it is an interesting class of plane
hexagonal networks. We use Ln to denote the linear
polyacene graph with n − 1 benzenoid rings (i.e., hexagons),
as shown in Figure 1. Using electrical network approach and
resistance distance local rules, we derive exact expression for
resistance distances between any two vertices of Ln.

2 RESISTANCE DISTANCES IN LINEAR
POLYACENE GRAPHS

Let Ln be the linear polyacene graph with n − 1 benzenoid rings.
Obviously, Ln has 4n − 2 vertices and 5n − 4 edges. For
convenience, we label the vertices in Ln as in Figure 1. We
partite the vertex set of Ln into two classes: V1 �
{p1, p2, . . . , pn, q1, q2, . . . , qn} and V2 � {s1, s2, . . . , sn−1,
t1, t2, . . . , tn−1}. To compute resistance distances between any
two vertices of Ln, we take two steps. In the first step, we
compute resistance distances between vertices in V1. To this
end, we first view Ln as a weighted ladder graph L*n by simply
replacing all the paths pisipi+1 and qitiqi+1 (1≤ i≤ n − 1) by edges
of resistance 2. Then, by making use of the electric network
approach as inspired in [19], we obtain resistance distances
between vertices in V1. Next, for the second step, using the
results obtained in the first step together with resistance
distance local rules, we derive expressions for resistance
distances between the remaining pairs of vertices.

Before stating the main result, we introduce the elegant
resistance distance local rules, which will be frequently used
later. For any vertex a ∈ V(G), we use nG(a) to denote the set
of neighbors of a. Then, we have the following sum rules for
resistance distances.

Lemma 2.1 [29]. Let G � (V(G), E(G)) be a connected graph
with n(n≥ 2) vertices. Then,

1) For any a, b ∈ V(G) (a≠ b) (a≠ b)
ΔaΩG(a, b) + ∑

i∈nG(a)
(ΩG(i, a) − ΩG(i, b)) � 2, (1)

where Δa denotes the degree of the vertex a.
2) For any three different vertices a, b, c ∈ V ,

Δc(ΩG(c, a) −ΩG(c, b)) + ∑
i∈nG(c)

(ΩG(i, b) −ΩG(i, a)) � 0. (2)

Now, we are ready for the main theorem. For simplicity, we let
α � 3 − 2

�
2

√
, and define f (x, y) and g(x, y) as follows:

f (x, y) � (1 − αx− y)(2 − αx+y−1 + α2y−1 + α2n−2x+1(1 − αx−y − 2αx+y−1)),
g(x, y) � (1 + αx− y)(2 + αx+y−1 + α2y−1 + α2n−2x+1(1 + αx−y + 2αx+y−1)).

Then, the main result is given in the following.
Theorem 2.2. The resistance distances between any two vertices

in the linear polyacene graph Ln can be computed as follows.

ΩLn(pi, pj) � i − j + f (i, j)
4

�
2

√ (1 − α2n), (2.1)

ΩLn(qi, pj) � i − j + g(i, j)
4

�
2

√ (1 − α2n), (2.2)

ΩLn(si, pj) � i − j + 3
4
− f (i + 1, i)
16

�
2

√ (1 − α2n) +
f (i, j) + f (i + 1, j)
8

�
2

√ (1 − α2n) ,

(2.3)

ΩLn(si, qj) � j − i − 1
4
+ f (j + 1, j)
16

�
2

√ (1 − α2n) +
g(j, i) + g(j, i + 1)
8

�
2

√ (1 − α2n) ,

(2.4)

ΩLn(si, sj) �
1
2
− i + j

− f (i+1, i) + f (j+1, j)+f (j, i)+f (j+1, i)+f (j, i+1)+f (j+1, i+1)
16

�
2

√ (1 − α2n) ,

(2.5)

FIGURE 1 | Linear polyacne graph Ln and its vertex labeling.
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ΩLn(si, tj) �
1
2
+ i − j

+ g(i, j) + g(i, j + 1) + g(i + 1, j) + g(i + 1, j + 1) − f (i + 1, i)
16

�
2

√ (1 − α2n)
− f (i + 1, i) + f (i + 2, i + 1)

32
�
2

√ (1 − α2n) .

(2.6)

Proof. We divide the proof into two steps.
Step 1. Computation of resistance distances between any two

vertices in V1.
To compute resistance distances between vertices in V1, we

view Ln as a weighted ladder graph L*n by simply replacing all the
paths pisipi+1 and qitiqi+1 (1≤ i≤ n − 1) by edges of resistance 2,
see Figure 2 (left). Clearly, ΩL*n(p, q) � ΩLn(p, q) holds for all
p, q ∈ V(L*n).

First, we compute resistance distances between the end
vertices p1, pn, q1, and qn. let xn :� ΩL*n(pn, p1),
yn :� ΩL*n(pn, q1), and zn :� ΩL*n(pn, qn). Clearly, L*n can be
obtained from L*n−1 by adding two vertices pn and qn, and
the three edges with end vertices {pn−1, pn}, {pn, qn}, and
{qn, qn−1}, as shown in Figure 2 (right). Hence, according
to rules for series and parallel circuits, zn could be expressed
in term of zn−1 as

zn � zn−1 + 4
zn−1 + 5

, ∀n≥ 2, (2.7)

with initial condition z1 � 1. Solving the recurrence relation by
Mathematica [30], we obtain

zn � −2(1 + �
2

√
) + 4

�
2

√

1 − (3 − 2
�
2

√
)2n

, n≥ 1. (2.8)

Specially, we have z1 � 1, z2 � 5
6, z3 � 29

35, and z4 � 169
204. It is easily

checked that zn can also be expressed as

zn � −2(1 + �
2

√
) + 4

�
2

√
(3 + 2

�
2

√
)n

(3 + 2
�
2

√
)n − (3 − 2

�
2

√
)n
, n≥ 1. (2.9)

We proceed to use zn to find explicit formulas for xn and yn.
To this end, we make circuit reduction to the subgraph L*n of
L*n+1 with respect to pn, qn, and p1, where n≥ 1. Precisely
speaking, we reduce L*n to a Y-shaped graph which has outer
vertices pn, qn, and p1. We use A, B, and C to denote the
effective resistances between end vertices of those edges of the
Y-shaped graph. Then, we have B + C � yn, A + C � xn, and
A + B � zn. Solving these equations, we get

A � xn − yn + zn
2

,B � −xn + yn + zn
2

,C � xn + yn − zn
2

.

On the other hand, by parallel and series connection rules, we
have xn+1 � (A+2)(B+3)

zn+5 + C and yn+1 � (B+2)(A+3)
zn+5 + C. So, it follows

that

xn+1 � (xn − yn + zn + 4)( − xn + yn + zn + 6)
4(zn + 5)

+ xn + yn − zn
2

, n≥ 1,
(2.10)

yn+1 � ( − xn + yn + zn + 4)(xn − yn + zn + 6)
4(zn + 5)

+ xn + yn − zn
2

, n≥ 1,
(2.11)

with initial conditions x1 � 0 and y1 � 1. Eq. 2.10minus Eq. 2.11
yields

xn+1 − yn+1 � xn − yn
zn + 5

.

Set tn :� xn − yn. It follows that

tn+1 � tn
zn + 5

, n≥ 1 and t1 � −1. (2.12)

Thus, we have

tn+1 � −∏
k�1

n 1
zk + 5

. (2.13)

Since 1
zk+5 � (3+2 �

2
√ )k−(3−2 �

2
√ )k

(3+2 �
2

√ )k+1−(3− 2
�
2

√ )k+1, using Eq. 2.9 and doing some
algebraic calculations, we get

tn � −4 �
2

√
(3 + 2

�
2

√
)n − (3 − 2

�
2

√
)n
, n≥ 1. (2.14)

This could also be rewritten as tn � −4 �
2

√ (3−2 �
2

√ )n
1−(3− 2 �

2
√ )2n , for all n≥ 1.

Now, we come back to solve xn and yn. By using xn � tn + yn, Eqs
2.8–2.14 and doing some algebra, Eq. 2.11 becomes

FIGURE 2 | Weighted ladder graph L*n (left) and the circuit reduction of
L*n−1 with respect to pn−1 and qn−1 (right).
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yn+1 � yn + 2
�
2

√

1 − (3 − 2
�
2

√
)n+1

− 2
�
2

√
1 − (3 − 2

�
2

√
)n

+ 1, n≥ 1 and y1 � 1.

(2.15)

Solving the recursion relation, we get

yn � n − 2 − �
2

√ + 2
�
2

√
1 − (3 − 2

�
2

√
)n
, n≥ 1. (2.16)

Now, by Eqs 2.14–2.16, together with the relation xn � tn + yn,
we get

xn � n − 2 − �
2

√ + 2
�
2

√
1 + (3 − 2

�
2

√
)n
, n≥ 1. (2.17)

Next, we proceed to compute ΩL*n(pn, pi), ΩL*n(pn, qi), and
ΩL*n(pi, qi), where n> i> 1. To achieve our goal, we consider L*n
as the union of three graphs: the upper part of pi+1 and qi+1, the
lower part of pi and qi, and the middle part consisting of pi+1, qi+1,
pi, and qi, as shown in Figure 3. Note that the upper and the lower
graphs are corresponding to the graphs L*n−i and L*i , respectively.
We make circuit reductions as illustrated in Figure 3. First, make
the circuit reduction of the upper part with respect to pn, pi+1, and
qi+1 to obtain a Y-shaped graph, and assume that resistances along
its edges areM,N, andK. Then, reduce the lower part of pi and qi to
be edge with resistance ΩL*n(pi, qi) � zi. We could find that

M + N � xn−i,M + K � yn−i,N + K � zn−i. (2.18)

Note that

xn + yn − zn � 2n − 2,

xn − yn + zn � −2 − 2
�
2

√ + 4
�
2

√
1 + (3 − 2

�
2

√
)n
,

−xn + yn + zn � −2 − 2
�
2

√ + 4
�
2

√
1 − (3 − 2

�
2

√
)n
.

(2.19)

Solving M, N, and K, we obtain

M � xn−i + yn−i − zn−i
2

� n − i − 1,

N � xn−i − yn−i + zn−i
2

� −1 − �
2

√ + 2
�
2

√

1 + (3 − 2
�
2

√
)n−i

,

K � −xn−i + yn−i + zn−i
2

� −1 − �
2

√ + 2
�
2

√

1 − (3 − 2
�
2

√
)n−i

.

(2.20)

Then, applying parallel and series connection rules to the reduced
circuit in Figure 3, we obtain

ΩL*n(pn, pi) �
(N + 2)(K + zi + 2)

zn−i + zi + 4
+M,

ΩL*n(pn, qi) �
(K + 2)(N + zi + 2)

zn−i + zi + 4
+M,

ΩL*n(pi, qi) �
zi(zn−i + 4)
zn−i + zi + 4

.

(2.21)

FIGURE 3 | L*n and circuit reduction to find ΩL*n
(pn ,pi), ΩL*n

(qn ,pi), and ΩL*n
(pi ,qi).
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Substituting Eqs 2.8–2.20 into Eq. 2.21, we have

ΩL*n(pn, pi) � n − i

+ (1 − αn−i)(2 − 2αn+i − αn+i− 1 − αn− i+1 + α2i− 1 + α)
4

�
2

√ (1 − α2n) ,

ΩL*n(pn, qi) � n − i

+ (1 + αn−i)(2 + 2αn+i + αn+i− 1 + αn− i+1 + α2i− 1 + α)
4

�
2

√ (1 − α2n) ,

ΩL*n(pi, qi) �
1 + α2i−1 + α2n−2i+1 + α2n

�
2

√ (1 − α2n) . (2.22)

Finally, we compute ΩL*n(pi, pj) and ΩL*n(qi, pj) (n> i≥ j≥ 1). To
this end, we consider L*n as the union of two graphs: the upper
part and the lower part with respect to pi and qi, as illustrated in
Figure 4. Note the lower part is the graph L*i , and the upper part is
the graph L*n−i. Next, we make circuit reduction to L*n−i so that it is
reduced to an edge pi+1qi+1 with resistance zn−i. Then, we reduce
L*i to a Y-shaped graph with end vertices pi, qi, and pj, and
resistances D, E, and F along its edges. These reductions are
illustrated in Figure 4. Then, we have

D + E � ΩL*i
(pi, pj),D + F � ΩL*i

(pi, qi) � zi, E + F � ΩL*i
(qi, pj).
(2.23)

It follows that

D � ΩL*i
(pi, pj) + zi −ΩL*i

(qi, pj)
2

,

E � ΩL*i
(pi, pj) − zi +ΩL*i

(qi, pj)
2

,

F � −ΩL*i
(pi, pj) + zi + ΩL*i

(qi, pj)
2

.

(2.24)

On the other hand, by the series and parallel connection rules,
we have

ΩL*n(pi, pj) �
D(zn−i + F + 4)
zn−i + zi + 4

+ E,

ΩL*n(qi, pj) �
F(zn−i + D + 4)
zn−i + zi + 4

+ E.

(2.25)

By Eqs. (2.8), Eqs 2.22–2.25, and doing some algebra using
Mathematica [30], we obtain

ΩL*n(pi, pj) � i − j

+ (1 − αi−j)(2 − αi+j− 1 + α2j− 1 + α2n− 2i+1(1 − αi− j − 2αi+j− 1))
4

�
2

√ (1 − α2n) ,

(2.26)

ΩL*n(qi, pj) � i − j

+ (1 + αi−j)(2 + αi+j− 1 + α2j− 1 + α2n− 2i+1(1 + αi− j + 2αi+j− 1))
4

�
2

√ (1 − α2n) .

(2.27)

It is easily verified that Eq. 2.27 is valid for i � j.
Step 2. Computation of resistance distances between p, q ∈ V2

and between p ∈ V1 and q ∈ V2.
First, we compute ΩLn(si, pi) and ΩLn(si, pi+1). Applying

Lemma 2.1 to pairs of vertices {si, pi} and {si, pi+1}, we obtain

2ΩLn(si, pi) +ΩLn(pi, si) −ΩLn(pi, pi) +ΩLn(pi+1, si)
−ΩLn(pi+1, pi) � 2,

(2.28)

2ΩLn(si, pi+1) +ΩLn(pi, si) −ΩLn(pi, pi+1) +ΩLn(pi+1, si)
− ΩLn(pi+1, pi+1) � 2.

(2.29)

Multiplying Eq. 2.28 by 3 and then minus Eq. 2.29, we get

FIGURE 4 | L*n and circuit reductions to find ΩL*n
(pi ,pj) and ΩL*n

(qi ,pj).
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ΩLn(si, pi) �
1
8
(4 + 2ΩLn(pi, pi+1)). (2.30)

Then, substituting the value of ΩLn(pi, pi+1) as obtained in Step 1
into Eq. 2.30, we could obtain

ΩLn(pi+1, pi) � 1

+ (1 − α)(2 − α2i + α2i− 1 + α2n− 2i− 1(1 − α − 2α2i))
4

�
2

√ (1 − α2n) .
(2.31)

Substituting Eq. 2.31 into Eq. 2.30, we have

ΩLn(si, pi) �
3
4
+ (1 − α)(2 − α2i + α2i− 1 + α2n− 2i− 1(1 − α − 2α2i))

16
�
2

√ (1 − α2n) .

(2.32)

In the same way, we could obtain that

ΩLn(si, pi+1) �
3
4

+ (1 − α)(2 − α2i + α2i− 1 + α2n− 2i− 1(1 − α − 2α2i))
16

�
2

√ (1 − α2n) .

(2.33)

Second, we calculate the resistance distance between si and pj.
Again, applying Lemma 2.1 to {si, pj}, we obtain

2ΩLn(si, pj) +ΩLn(pi, si) −ΩLn(pi, pj) + ΩLn(pi+1, si)

−ΩLn(pi+1, pj) � 2.
(2.34)

By Eqs 2.32, 2.33, it follows that

ΩLn(pi, si) + ΩLn(pi+1, si) �
3
2

+ (1 − α)(2 − α2i + α2i− 1 + α2n− 2i− 1(1 − α − 2α2i))
8

�
2

√ (1 − α2n) . (2.35)

For the sake of simplicity, we define

f (x, y) � (1 − αx− y)(2 − αx+y−1 + α2y−1 + α2n−2x+1(1 − αx−y

− 2αx+y−1)).
(2.36)

Then, Eq. 2.35 can be rewritten as

ΩLn(pi, si) +ΩLn(pi+1, si) �
3
2
+ f (i + 1, i)
8

�
2

√ (1 − α2n). (2.37)

On the other hand, by Eq. 2.26, we have

ΩLn(pi, pj) + ΩLn(pi+1, pj) � 2i − 2j + 1 + f (i, j) + f (i + 1, j)
4

�
2

√ (1 − α2n) .

(2.38)

SubstitutingEqs. 2.37, 2.38 intoEq. 2.34, we draw the conclusion that

ΩLn(si, pj) � i − j + 3
4
− f (i + 1, i)
16

�
2

√ (1 − α2n) +
f (i, j) + f (i + 1, j)
8

�
2

√ (1 − α2n) .

(2.39)

Third, we calculate the resistance distance between sj and qi.
Apply Lemma 2.1 to {sj, qi} to obtain

2ΩLn(sj, qi) +ΩLn(pj, sj) −ΩLn(pj, qi) + ΩLn(pj+1, sj)

− ΩLn(pj+1, qi) � 2.
(2.40)

By Eq. 2.37, we have

ΩLn(pj, sj) +ΩLn(pj+1, sj) �
3
2
+ f (j + 1, j)
8

�
2

√ (1 − α2n). (2.41)

For simplicity, we define

g(x, y) � (1 + αx− y)(2 + αx+y−1 + α2y−1 + α2n−2x+1(1 + αx−y

+ 2αx+y−1)).
(2.42)

On the other hand, by Eq. 2.27, we have

ΩLn(qi, pj) + ΩLn(qi, pj+1) � 2i − 2j − 1 + g(i, j) + g(i, j + 1)
4

�
2

√ (1 − α2n) .

(2.43)

Substituting Eqs. 2.41–2.43 into Eq. 2.40, we get

ΩLn(sj, qi) � i − j − 1
4
+ f (i + 1, i)
16

�
2

√ (1 − α2n) +
g(i, j) + g(i, j + 1)
8

�
2

√ (1 − α2n) .

(2.44)

Fourth, we calculate the resistance distance between si and sj.
Applying Lemma 2.1 to {si, sj}, we have

2ΩLn(si, sj) +ΩLn(pi, si) −ΩLn(pi, sj) + ΩLn(pi+1, si)

− ΩLn(pi+1, sj) � 2.
(2.45)

As ΩLn(pi, si), ΩLn(pi, sj), ΩLn(pi+1, si), and ΩLn(pi+1, sj) have
been given by Eq. 2.39, simple calculation leads to

ΩLn(si, sj) �
1
2
− i + j

− f (i+1, i)+f (j+1, j)+f (j, i)+f (j+1, i)+f (j, i+1)+f (j+1, i+1)
16

�
2

√ (1 − α2n) .

Fifth and finally, we calculate the resistance between si and tj.
Applying Lemma 2.1 to {si, tj}, we have

2ΩLn(si, tj) +ΩLn(pi, si) −ΩLn(pi, tj) +ΩLn(pi+1, si)

− ΩLn(pi+1, tj) � 2
(2.46)

Note by the symmetry of Ln that we have ΩLn(pi, tj) �
ΩLn(qi, sj) and ΩLn(pi+1, tj) � ΩLn(qi+1, sj). Using the results
obtained in Eqs. 2.39–2.44, simple algebraic calculation
yields
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ΩLn(si, tj) �
1
2
+ i − j

+ g(i, j) + g(i, j + 1) + g(i + 1, j) + g(i + 1, j + 1) − f (i + 1, i)
16

�
2

√ (1 − α2n)

− f (i + 1, i) + f (i + 2, i + 1)
32

�
2

√ (1 − α2n) . (2.47)

3 CONCLUSION

The computation of resistance distances is a classical problem in
electrical circuit theory, which has attracted much attention. It is
of special interest to investigate resistance distances in plane
networks. Along this line, we have considered the linear
polyacene network, with exact expression for resistance
distances in this network being given. It is a primary attempt
for the computation of resistance distances in plane hexagonal
lattice. Resistance distances in more and more plane hexagonal
lattices are greatly anticipated.
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