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Over the last decade, new developments in Similarity Renormalization Group techniques

and nuclear many-body methods have dramatically increased the capabilities of ab

initio nuclear structure and reaction theory. Ground and excited-state properties can

be computed up to the tin region, and from the proton to the presumptive neutron

drip lines, providing unprecedented opportunities to confront two- plus three-nucleon

interactions from chiral Effective Field Theory with experimental data. In this contribution,

I will give a broad survey of the current status of nuclear many-body approaches, and I

will use selected results to discuss both achievements and open issues that need to be

addressed in the coming decade.

Keywords: similarity renormalization group, nuclear theory, many-body theory, ab initio nuclear structure, ab initio

nuclear reactions

1. INTRODUCTION

Over the past decade, the reach and capabilities of ab initio nuclear many-body theory have grown
exponentially. The widespread adoption of Renormalization Group (RG) techniques, in particular
the Similarity Renormalization Group (SRG) [1], and Effective Field Theory (EFT) [2–4] in the
2000s laid the foundation for these developments. Consistent two-nucleon (NN) and three-nucleon
(3N) interactions from chiral EFT were quickly established as a new “standard” inputs for a variety
of approaches, which made true multi-method benchmarks possible. The SRG equipped us with
the ability to dial the resolution scale of nuclear interactions, accelerating model-space and many-
body convergence alike. Suddenly, even (high-order) Many-Body Perturbation Theory (MBPT)
became a viable tool for rapid benchmarking [5, 6], and exact diagonalization approaches were
able to extend their reach into the lower sd-shell [7–9]. A variety of computationally efficient
techniques with controlled truncations were readied, like the Self-Consistent Green’s Function
method (SCGF) [10], the In-Medium SRG (IMSRG) [11] and Coupled Cluster (CC) [12], the
prodigal son [13, 14] who returned home after finding success in foreign lands, i.e., quantum
chemistry and solid state physics.

At the start of the last decade the race was on, and Figure 1 documents the progress that ensued.
Calculations started at closed-shell nuclei [15–19] and their vicinity before extending to semi-magic
isotopic chains with the development of the Multi-Reference IMSRG [20, 21] and Gor’kov SCGF
[22, 23] techniques, and just a couple of years later, the use of CC [24, 25] and IMSRG [26, 27]
techniques to construct valence-space interactions opened all nuclei that were amenable to Shell
Model calculations for exploration. Owing to very recent developments that extend these combined
approaches to multi-shell valence spaces, the open region between the nickel and tin isotopic chain
is poised to be filled in rapidly [28]. Development of the no-core versions of these methods has
continued as well, and made direct calculations for intrinsically deformed nuclei possible [29].
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The growing reach of ab initio many-body methods made
it possible to confront chiral NN+3N forces with a wealth of
experimental data, revealing shortcomings of those interactions
and sparking new efforts toward their improvement. There were
other surprises along the way, some good, some bad. Due to the
benchmarking capabilities and further developments in many-
body theory, we are now often able to understand the reasons
for the failure of certain calculations (see, e.g., reference [27])—
hindsight is 2020, as they say1.

The present collection of Frontiers in Physics contributions
provides us with a timely and welcome opportunity to attempt a
look back at some of the impressive results from the past decade
and the developments that brought us here, as well as a look
ahead at the challenges to come as we enter a new decade.

Let us conclude this section with a brief outline of the
main body of this work. In section 2, I will discuss the main
ingredients of modern nuclear many-body calculations: The
input interactions from chiral EFT, the application of the SRG
to process Hamiltonians and operators, and eventually a variety
of many-body methods that are used to solve the Schrödinger
equation. I will review key ideas but keep technical details to a
minimum, touching only upon aspects that will become relevant
again later on. Section 3 presents selected applications from the
past decade, and discusses both the advances they represent as
well as open issues. This will provide a starting point for section
4, which presents ideas for addressing the aforementioned issues
and highlights important directions for the next decade.

Naturally, the discussion in sections 3 and 4 is highly
subjective. While this work grew from a more restricted scope
into a rambling, albeit not random, walk through the landscape
of modern nuclear many-body theory, it still cannot encompass
the field in its entirety. The upside is that this reflects the breadth
of ideas that are being pursued by the ab initio nuclear theory
community, including those with cross-disciplinary impact, as
well as our community’s ability to attract junior researchers. The
downside is that the present work can only scratch the tip of the
iceberg of impressive results from the past decade. I hope that the
readers will use it as a jumping-off point for delving into the cited
literature, including the contributions to this volume.

2. PLAYERS ON A STAGE: ELEMENTS OF
NUCLEAR MANY-BODY THEORY

2.1. Interactions From Chiral Effective Field
Theory
Quantum Chromodynamics (QCD) is the fundamental theory
of the strong interaction between quarks and gluons. One of its
characteristic features is that the strong coupling, which governs
the strength of interaction processes, is sufficiently small to
allow perturbative expansions at high energies, but large in the
low-energy domain relevant for nuclear structure and dynamics
[30, 31]. This makes the description of all but the lightest
nuclei at the QCD level inefficient at best, and impossible at
worst. However, strongly interacting matter undergoes a phase

1This exhausts my contractually allowed contingent of 2020 vision puns, I swear.

transition that leads to the confinement of quarks in composite
hadronic particles, like nucleons and pions. These particles can
be used as the degrees of freedom for a hierarchy of EFTs that
describe the strong interaction across multiple scales.

Following Weinberg [32, 33], one can construct effective
Lagrangians that consist of interactions that are consistent with
the symmetries of QCD and organized by an expansion in
(Q/3). Here, Q is a typical momentum of the interacting
system, and 3 is the breakdown scale of the theory, which
is associated with physics that is not explicitly resolved. In
chiral EFT with explicit nucleons and pions, 3 = 3χ is
traditionally considered to be in the range 700 − 1000 MeV,
although newer analyses of observable truncation errors using
Bayesian methods favor slightly lower values [34–36]. From a
chiral EFT Lagrangian, one can then construct a systematic
low-momentum expansion of nuclear interactions, as shown in
Figure 2 (see references [2, 3, 32, 37, 39]). These interactions
consist of (multi-)pion exchanges between nucleons, indicated by
dashed lines, as well as nucleon contact interactions. The different
types of vertices are proportional to the low-energy constants
(LECs) of chiral EFT, which encode physics that is not explicitly
resolved because it involves either a high momentum scale or
excluded degrees of freedom. Eventually, one hopes to calculate
these LECs directly from the underlying QCD either through
matching or renormalization group evolution of the couplings
(see section 2.2), but at present, the LECs are fit to experimental
data [3, 4, 39–41].

The power counting scheme shown in Figure 2 yields
consistent two-, three- and higher many-nucleon interactions,
and explains their empirical hierarchy, i.e.,VNN > V3N > V4N >

. . .. Moreover, one can readily extend the chiral Lagrangian with
couplings to the electroweak sector by gauging the derivatives. In
this way, nuclear interactions and electroweak currents depend
on the same LECs, and one can use electroweak observables to
constrain their values [42–45]. Last but not least, the existence of
a power counting scheme offers inherent diagnostics for assessing
the theoretical uncertainties that result from working at a given
chiral order [34–36]. This is especially useful since issues relating
to the regularization and renormalization of these interactions
remain (see, e.g., references [2, 46–51] and section 4.4).

2.2. The Similarity Renormalization Group
Renormalization group methods are a natural companion to the
hierarchy of EFTs for the strong interaction. They provide the
means to systematically dial the resolution scales and cutoffs of
these theories, and this makes it possible, at least in principle,
to connect the different levels in our hierarchy of EFTs. The
RGs also expand the diagnostic toolkit for assessing the inherent
consistency of EFT power counting schemes, e.g., by tracing
the enhancement or suppression of specific operators, or by
identifying important missing operators.

In nuclear many-body theory, the SRG has become the
method of choice. In contrast to Wilsonian RG [52], which
is based on decimation, i.e., integrating out high-momentum
degrees of freedom, SRGs decouple low- and high-momentum
physics using continuous unitary transformations. Note that this
concept is not limited to RG applications: we can construct
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FIGURE 1 | Progress in ab initio nuclear structure calculations over the past decade. The blue arrow indicates nuclei that will become accessible with new advances

for open-shell nuclei in the very near term (see section 2.3).

transformations that adapt a many-body Hamiltonian or other
observables of interest to our needs, e.g., to extract eigenvalues
[11, 53], or impose specific structures on the operator [1, 26, 27,
54, 55].

We define the flowing Hamiltonian

H(s) = U(s)H(0)U†(s) , (1)

where H(s = 0) is the starting Hamiltonian, and the flow
parameter s parameterizes the unitary transformation. Instead of
making an ansatz for U(s), we take the derivative of Equation (1)
and obtain the operator flow equation

d

ds
H(s) = [η(s),H(s)] , (2)

where the anti-Hermitian generator η(s) is related to U(s) by

η(s) =
dU(s)

ds
U†(s) = −η†(s) . (3)

We can choose η(s) to achieve the desired transformation of the
Hamiltonian as we integrate the flow Equation (2) for s → ∞.
Wegner [56] originally proposed a class of generators of the form

η(s) ≡ [Hd(s),Hod(s)] , (4)

that is widely used in applications, although it gives rise to stiff
flow equations, and more efficient alternatives exist for specific
applications [1, 11, 53]. Wegner generators are constructed by
splitting the Hamiltonian into suitably chosen diagonal (Hd(s))
and off-diagonal (Hod(s)) parts. These labels are a legacy of
applying this generator to drive finite-dimensional matrices
toward diagonality. For our purposes, they reflect the desired
structure of the operator in the limit s → ∞: We want to keep
the diagonal part and drive Hod(s) to zero by evolving it via
Equation (2) (see references [1, 11, 53, 56, 57]).

To implement the operator flow equation (23), we need to
express η(s) and H(s) in a basis of suitable operators {Oi}i∈N,

η(s) =
∑

i

ηi(s)Oi , (5)

H(s) =
∑

i

Hi(s)Oi(s) , (6)

where ηi(s) and Hi(s) are the running couplings of the operators.
If the algebra of the operators Oi is closed naturally or with some
truncation, we have

[Oi,Oj] =
∑

k

cijkOk (+ . . .) (7)
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FIGURE 2 | Chiral two-, three-, and four nucleon forces through next-to-next-to-next-to-leading order (N3LO) (see, e.g., [2, 37, 38]). Dashed lines represent pion

exchanges between nucleons. The large solid circles, boxes and diamonds represent vertices that are proportional to low-energy constants (LECs) of the theory (see

text).

and Equation (2) becomes a system of flow equations for the
coupling coefficients:

d

ds
Hi(s) = fi(c, η(s),H(s)) , (8)

where the bold quantities collect the algebra’s structure constants
and the running couplings, respectively. From this discussion, it
is clear that the choice of the Oi can have a significant effect on
the size of the system of flow equations, as well as the quality of
any introduced truncations.

An important application of the SRG in nuclear many-body
theory is the dialing of the operators’ resolution scales. This is
achieved by using the Wegner-type generator

η(λ) = [T,H(λ)] (9)

to band-diagonalize the Hamiltonian in momentum space, and
thereby decouple low- and high-momentum physics in the
operators and eigenstates. As indicated in Equation (9) the flow

is typically re-parameterized by λ = s−1/4, which characterizes
the width of the band in momentum space and controls the
magnitude of the momentum transferred in an interaction
process. For example, |ki − kf | . λ in a two-nucleon system
[1, 58].

Nowadays, the momentum space evolution is regularly
performed for two- and three-nucleon forces [1, 59–62]. In light
of the previous discussion, it can be understood as choosing the
operator basis

B = {a†
paq, a

†
pa

†
qasar , a

†
pa

†
qa

†
r auatas, . . .}pqrstu...∈N , (10)

with creation and annihilation operators referring to
(discretized) single-particle momentum modes, and truncating
four- and higher-body terms that appear when the commutators
of the basis operators are evaluated. Since the commutator of an
M-body and an N-body operator in the basis (10) acts at least
on K = max(M,N) particles, the SRG evolution is exact for
A ≤ 3 systems under this truncation [59, 61]. It is implemented
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by working with the matrix representations of H(s) in two- and
three-nucleon systems, whose entries correspond to the coupling
constants in our chosen operator basis (cf. Equation 6). For
efficiency, an additional basis change is made to center-of-mass
and relative coordinates.

In principle, the strategy for evolving nuclear interactions
toward some form of “diagonality” could be used to determine
eigenvalues of many-body Hamiltonians, but the computational
cost for dealing either with exponentially growing matrix
representations or induced terms of high particle rank is
prohibitive. This motivates the implementation of the flow
equation with a different choice of basis operators in the In-
Medium SRG (see section 2.3.3).

2.3. Many-Body Methods
Let us now discuss commonly used many-body methods for
solving the nuclear Schrödinger equation. Roughly speaking, they
fall into two categories: configuration space methods that expand
the nuclear eigenstates on a basis of known many-body states,
or coordinate-space methods that work directly with the wave
function and optimize them in some fashion. Our goal is to
use approaches that systematically converge to an exact result,
e.g., by adding more and more particle-hole excitations of a
selected reference state to the many-body basis of a configuration
space, or by exhausting the distribution of meaningful wave
function parameters.

The discussion in the following sections will be light on
mathematical details, which can be found in more specialized
articles and reviews, including other contributions to the present
volume. The goal is to review only certain ideas that will become
relevant later on.

2.3.1. The Many-Body Problem in Configuration

Space
Let us briefly discuss the general setup of the configuration-
space approaches. We choose a single-particle basis, e.g., the
eigenstates of a harmonic oscillator, and use it to construct a
basis of Slater determinants for the many-body Hilbert space.
Usually, themany-body basis is organized by selecting a reference
state |8〉 and constructing its particle-hole excitations in order
to account for the natural energy scales of the system under
consideration. For further use, we define

|8a...
i... 〉 ≡ {a†

a . . . ai . . .} |8〉 , (11)

where particle (a, b, . . .) and hole (i, j, . . .) indices run over
unoccupied and occupied single-particle states, respectively2.
The parentheses indicate that the strings of creation and
annihilation operators are normal ordered with respect to the
reference state. They are related to the original operators by

a†
paq = {a†

paq} + Cqp , (12)

a†
pa

†
qasar = {a†

pa
†
qasar} + Crp{a

†
qas} − Csp{a

†
qar} (13)

+ Csq{a
†
par} − Crq{a

†
pas} + CrpCsq − CspCrq ,

2This labeling scheme is commonly used in chemistry [63], and it is used with
increasing frequency in nuclear physics as well.

where the indices p, q, . . . run over all single-particle states, and
the contractions are defined as

Cqp ≡ 〈8| a†
paq |8〉 = ρqp (14)

(see, e.g., references [11, 53] for more details).
Let us now consider a Hamiltonian containing up to two-body

interactions, for simplicity. In normal-ordered form, it is given by

H = E0 +
∑

pq

fpq{a
†
paq} +

1

4

∑

pqrs

Ŵpqrs{a
†
pa

†
qasar} , (15)

where E is the energy expectation value of the reference state,
while f and Ŵ are the mean-field Hamiltonian and residual
two-body interaction, respectively [11, 53]. Our task is to
solve the many-body Schrödinger equation for this Hamiltonian
to determine its eigenvalues and eigenstates, either in an
approximate fashion or by exactly diagonalizing its matrix
representation, which is shown in Figure 3A.

2.3.2. Many-Body Perturbation Theory
Many-Body Perturbation Theory (MBPT) is the simplest
configuration-space approach for capturing correlations in
interacting quantum many-body systems. It has enjoyed
widespread popularity in treatments of the many-electron system
since the early days of quantum mechanics, and it comes in
a myriad of flavors (see, e.g., reference [64] and references
therein). A major factor in its success is that the Coulomb
interaction is sufficiently weak to make perturbative treatments
feasible. Applications in nuclear physics had long been hindered
by the strong short-range repulsion and tensor interactions in
realistic nuclear forces, despite the introduction of techniques
like Brueckner’s G matrix formalism that were meant to resum
the strong correlations from these contributions [65–68]. These
issues were overcome with the introduction of the SRG evolution
to low resolution scales, which makes nuclear interactions
genuinely perturbative, albeit at the cost of inducing three-and
higher many-body interactions [1]. As a consequence, MBPT has
undergone a renaissance in nuclear physics in the past decade
[69], leading to efficient applications for the computation of
ground-state properties [5, 6, 70] and the construction of effective
Shell Model interactions and operators (see, e.g., references [71–
74], or the reviews [75, 76], and references therein). These
successes have also motivated the development of novel types of
MBPTs [69, 77, 78].

In a nutshell, MBPT assumes that the Hamiltonian can be
partitioned into a solvable part H0 and a perturbation HI ,

H = H0 +HI , (16)

which then allows an order-by-order expansion of its eigenvalues
and eigenstates in powers of HI , usually starting from a mean-
field solution. In the Rayleigh-Schrödinger formulation ofMBPT,
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A B C

FIGURE 3 | Decoupling of particle-hole excitations from a 0p0h reference state: the schematic matrix representation of the initial Hamiltonian H0 (A) and the

transformed Hamiltonians obtained from IMSRG (B) and CC (C), respectively (see text for details).

which is widely used for its convenience,

|9〉 = |8〉 +

∞
∑

n=1

(

HI

H0 − E(0)

)n

|8〉 , (17)

E = E(0) +

∞
∑

n=0

〈8|HI

(

HI

H0 − E(0)

)n

|8〉 , (18)

where E(0) is the unperturbed energy. If we assume that
the reference Slater determinant |8〉 has been variationally
optimized by solving the Hartree-Fock equations, E0 in
Equation (15) is the Hartree-Fock energy and f is diagonal. Then
we can introduce the so-called Møller-Plesset partitioning,

H0 = E0 +
∑

p

fp{a
†
pap} , HI =

1

4

∑

pqrs

Ŵpqrs{a
†
pa

†
qasar} , (19)

and note that the Slater determinants of the basis introduced in
section 2.3.1 are eigenstates of H0:

H0 |8
a...
i... 〉 = (E0 + fa + . . . − fi − . . .) |8a...

i... 〉 . (20)

The eigenvalues of H0 then become the unperturbed energies
appearing in Equations (17), (18), and the energy including
a finite number of correction terms can be evaluated
straightforwardly. For example, the ground-state energy
through second order is given by

E = E0 −
1

4

∑

abij

|Ŵabij|
2

fa + fb − fi − fj
. (21)

For a more detailed discussion, we refer to reference [69] and
references therein.

The expression (21) can serve to illustrate both advantages
and drawbacks of an MBPT treatment of nuclei. We see that
the second-order energy can be evaluated very efficiently, since

it requires a non-iterative calculation whose computational
effort scales polynomially in the single-particle basis size N,
namely as O(N4). The reason is that the construction of the
Hamiltonian matrix (Figure 3A) can be avoided. In fact, the
computational scaling is even more favorable, because we can
distinguish particle and hole states and achieveO(N2

pN
2
h
), and we

typically have Nh ∼ A ≪ Np. Although there is a proliferation
of terms with increasing order [63, 69, 79], MBPT is still
fundamentally polynomial and therefore more efficient than
an exact diagonalization, whose cost scales exponentially with
N. It is also clear from Equation (21) that the expansion of
the exact eigenvalue will break down if one (or more) of the
energy denominators become small due to (near-)degeneracies
of the unperturbed energies. Thus, MBPT works best for ground
states in systems with a strong energy gap, i.e., closed-shell
nuclei, although extensions for more complex scenarios exist (see
references [63, 68, 69] and references therein). A noteworthy
new development is BogoliubovMBPT, in which particle number
symmetry is broken and eventually restored [77, 80, 81].

As mentioned at the beginning of this section, MBPT can
be used to derive effective interactions and operators. The
primary tool for such efforts is the Q̂-box or folded-diagram
resummation of the perturbative series (see references [75, 76, 82]
and references therein).

2.3.3. In-Medium Similarity Renormalization Group
As already mentioned in our discussion of the SRG in section
2.2, we could envision applying SRG techniques not only
to preprocess the nuclear interactions, but also to compute
eigenvalues and eigenstates. For all but the lightest nuclei,
applying the SRG to the Hamiltonian matrix is hopeless, so we
work with the operators instead.

Let us again consider the matrix representation shown in
Figure 3A. We want to design a transformation that will
decouple the one-dimensional 0p0h block in the Hamiltonian
matrix, spanned by a reference state Slater determinant |8〉, from
all excitations as the flow equation (2) is integrated. The matrix
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element in this block will then be driven toward an eigenvalue (up
to truncation errors), and the unitary transformation becomes
a mapping between the reference Slater determinant and the
exact eigenstate (see below). In principle, we could use a suitably
chosen reference to target different eigenstates, e.g., by taking
references which are expected to have a large overlap with the
target state (see section 10.3 in reference [58]). In practice, we
usually target the ground state by using a Hartree-Fock Slater
determinant as our reference.

To implement the operator flow, we need to choose an
operator basis to express H(s) and the generator η(s). Instead
of using the basis (10), we switch to operators that are normal
ordered with respect to the reference state |8〉:

B =
{

{a†
paq}, {a

†
pa

†
qasar}, {a

†
pa

†
qa

†
r auatas}, . . .

}

pqrstu...∈N
. (22)

Commutators of these operators can feed into terms of lower
particle rank: For instance, a commutator of M-body and
N−body operators generates |M − N|-body through (M +

N − 1)-body operators, while the lower bound for the basis
(10) is max(M,N) (cf. section 2.2). As a result, the complexity
of the flow equations for the operators’ coupling coefficients
increases due to the appearance of additional terms that depend
on the contractions introduced in Equations (12) and (13).
These contractions translate into density matrices (or occupation
numbers)—hence the name In-Medium SRG. At the same time,
we achieve a reduction of the truncation error because only the
residual, contraction-independent parts of the operators (12) and
(13) are omitted. In the majority of applications to date, we
truncate all operators and their commutators at the two-body
level, defining the IMSRG(2) truncation scheme.More details can
be found in references [11, 53, 58, 76].

In the chosen basis we now identify the parts of the
Hamiltonian that are responsible for coupling the reference
state to 1p1h and 2p2h excitations, and define the off-diagonal
Hamiltonian (cf. 2.2) as

Hod ≡
∑

ai

fai{a
†
aai} +

1

4

∑

abij

Ŵabij{a
†
aa

†
b
ajai} +H. c. . (23)

We use this Hod to construct a generator, either using Wegner’s
ansatz (4) or an alternative choice [11, 53]. Plugging the
generator into the operator flow equation (2), we obtain a
system of flow equations for the energy E(s) and the coefficients
fpq(s),Ŵpqrs(s), . . . (cf. Equation 8 and references [11, 53, 76]).
By integrating these flow equations, we evolve the Hamiltonian
operator so that its matrix representation assumes the shape
shown in Figure 3B. We note that the suppression of Hod not
only leads to the desired ground-state decoupling, but also
eliminates the outermost band in the Hamiltonian matrix. This
simplification makes the evolved Hamiltonian an attractive input
for other approaches, e.g., configuration interaction (CI) or
equation-of-motion methods (see references [27, 29, 76, 83–86]
and discussion below).
Valence-space IMSRG. Soon after introducing the IMSRG in
nuclear physics [87], Tsukiyama, Bogner, and Schwenk proposed

the use of the IMSRG flow to derive Hamiltonians (and other
effective operators) for use in nuclear Shell Model calculations
[88]. This is achieved by partitioning the single-particle basis
into core, valence, and beyond-valence states, normal ordering
all operators with respect to a Slater determinant describing the
closed-shell core, and extending the definition of the off-diagonal
Hamiltonian (23) to include all terms that couple valence and
non-valence states. The eigenvalue problem for the evolved
Hamiltonian can then be solved in the valence space with widely
available Shell model codes [89–93]. After a study of the oxygen
isotopic chain revealed an increasing overbinding away from the
chosen core [26], we adopted a normal-ordering scheme that uses
an ensemble of Slater determinants to account for partially filled
shells in open-shell nuclei [27, 54]. This improved operator basis,
along with the valence decoupling procedure and subsequent
Shell Model diagonalization defines what is nowadays called
the valence-space IMSRG (VS-IMSRG)—see reference [76] for a
recent review.
Correlated reference states and multi-reference IMSRG.

Another important development was the extension of the
IMSRG formalism to correlated reference states, in the so-called
Multi-Reference IMSRG (MR-IMSRG) [20, 53, 58]. The unitarity
of the IMSRG transformation allows us to control to what extent
correlations are described by either the Hamiltonian or the
reference state. We can see this by considering the stationary
Schrödinger equation and applying U(s):

[

U(s)HU†(s)
]

U(s) |9k〉 = EkU(s) |9k〉 . (24)

The transformation shifts correlations from the wave
function into the evolved, RG-improved Hamiltonian
H(s) = U(s)HU†(s), and any many-body method that uses
this Hamiltonian as input now needs to describe U(s) |9k〉,
which should be less correlated than the exact eigenstate |9k〉.
In the extreme cases, U(s) = 1 and the wave function carries
all correlations, or U(s) has shifted all correlations into the
Hamiltonian and |8〉 = U(s) |9〉 is a simple Slater determinant.

Correlated reference states can be particularly useful for the
description of systems with strong static or collective correlations,
like open-shell nuclei with strong intrinsic deformation or
shape coexistence. Reference states that describe these types
of correlations efficiently, e.g., through symmetry breaking and
restoration (also see section 2.3.4), are an ideal complement to
the IMSRG transformation, which excels at capturing dynamic
correlations, involving the excitation of a few particles up to
high energies. This complementarity is schematically illustrated
in Figure 4: Collective correlations that would require as much
as an IMSRG(A) calculation in the conventional approach are
built into the reference state, and an MR-IMSRG(2) calculation
is sufficient to treat the bulk of the dynamical correlations in
the system.

Reference state correlations are built into the MR-IMSRG
framework by using a generalized normal ordering [53, 94, 95]
that is extended with contractions of higher rank, namely the
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FIGURE 4 | Schematic view of correlations in nuclei. Solid circles indicate

nucleons, transparent circles hole states, and dashed ellipses indicate

correlations between nucleons. Certain 2p2h, 3p3h and higher correlations

(indicated in blue) are built into a correlated wave function that then serves as

the reference state for an MR-IMSRG(2) calculation (capturing correlations

indicated in red), while up to an IMSRG(A) calculation would be needed for an

equivalent description in the conventional framework.

irreducible k-body density matrices λ(k):

λpq ≡ ρpq , (25)

λpqrs ≡ ρpqrs − ρprρqs + ρqrρps , (26)

etc. The irreducible densities matrices encode the correlation
content of an arbitrary reference state |8〉, hence they vanish
for Slater determinants. While the basis of normal-ordered
operators superficially is the same as in the conventional
IMSRG, shown in Equation (22), the inclusion of the irreducible
densities (cf. Equations 12 and 13) equips the basis with the
capability to describe the correlations that are present in the
reference state, which in turn should help to reduce MR-IMSRG
truncation errors. To understand this, let us assume that we
know the ground state of our system, and we normal order the
Hamiltonian with respect to this correlated state. Then the zero-
body part of the normal ordered Hamiltonian already is the
exact ground-state energy, and the normal-ordered one-, two-,
and higher-body parts do not matter at all for our result, and
neither does their evolution under an exact or truncated MR-
IMSRG flow. Thus, the better the reference state matches the
ground state, the less work the MR-IMSRG evolution and any
subsequent many-body method have to do to obtain the correct
ground-state energy.
Computational scaling and Magnus expansion. The
computational scaling of all three IMSRG flavors discussed
here—traditional, VS-IMSRG, and MR-IMSRG—is governed
by the truncation scheme. If we truncate operators and
commutators at the two-body level, as briefly mentioned
above, the number of flow equations scales as O(N4) with the
single-particle basis size N, and the computational effort for
evaluating the right-hand sides as O(N6). This holds despite
the greater complexity of the MR-IMSRG flow equations, which
contain terms containing irreducible two- and higher-body
density matrices.

Any observables of interest must, in principle, be evolved
alongside the Hamiltonian for consistency, which would create

a significant overhead. In practice, we can address this issue by
using the so-called Magnus formulation of the IMSRG [58, 76,
83, 96]: Assuming that the IMSRG transformation can be written
as an explicit exponential, U(s) = exp�(s), we can solve a single
set of flow equations for the anti-Hermitian operator�(s) instead
of evolving observables separately. All operators of interest can
then be computed by applying the Baker-Campbell-Hausdorff
expansion to O(s) = exp[�(s)]O exp[−�(s)].
IMSRG hybrid methods. As noted earlier in this section, the
conventional IMSRG evolution makes the matrix representation
of the Hamiltonian more diagonal by suppressing couplings
between the npnh excitations of the reference state. This implies a
decoupling of energy scales of the many-body system, analogous
to the decoupling of momentum scales by the free-space SRG,
although there are differences in detail that are associated with
the operator bases in which the flow is expressed (cf. Equations 10
and 22).

From this realization, it is not a big step to consider using the
IMSRG to construct RG-improved Hamiltonians for applications
in other methods, defining novel hybrid approaches. In fact, even
the original IMSRG formulation can be understood from this
perspective: The evolution generates a Hamiltonian that yields
the exact ground-state energy (up to truncations) in a Hartree-
Fock calculation, except the HF equations are automatically
satisfied for the evolved H, and we can read off the ground-state
energy directly. The same Hamiltonian can then be used as input
for EOM methods to compute excitation spectra [83]. Likewise,
the VS-IMSRG produces an RG-improved Hamiltonian that
serves as input for a Shell Model diagonalization.

Applying the same logic as in the VS-IMSRG case, the
IMSRG has been merged with the No-Core Shell Model
(NCSM, see section 2.3.6) into the In-Medium NCSM [84,
97]. In this approach, the IMSRG improves the Hamiltonian
with dynamical correlations from high-energy few-nucleon
excitations that would require enormously large model spaces
in the conventional NCSM, and the exact diagonalization in
a small model space describes the dynamics of many-nucleon
excitations. The NCSM as the “host” method is rooted in the
same particle-hole expansion picture as the IMSRG itself, but
this is not a requirement. Another new hybrid method is the In-
Medium Generator Coordinate Method (IM-GCM), which relies
on the GCM as a host method to capture collective correlations
[29, 85, 86]. In this approach, a many-body basis is generated
by restoring the symmetries of mean field solutions with various
types of shape and gauge configuration constraints, which is very
different from the particle-hole excitation basis discussed so far.

2.3.4. Coupled Cluster Methods
The Coupled Cluster (CC) method [12, 63] is an older cousin of
the IMSRG approach. It can also be understood as a decoupling
transformation of the Hamiltonian, but in contrast to the
IMSRG, it relies on a non-unitary similarity transformation
(see Figure 3). Traditionally, CC is motivated by an exponential
ansatz for the exact wave function of a system,

|9CC〉 = eT |8〉 , (27)
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where |8〉 is a reference Slater determinant, and T is
the so-called cluster operator. This operator is expanded on
particle-hole excitations,

T =
∑

ph

tai{a
†
aai} +

1

4

∑

abij

tabij{a
†
aa

†
b
ajai} + . . . , (28)

with the cluster amplitudes tai, tabij, . . .. In practical applications,
the T is truncated to include up to 2p2h (CC with Singles and
Doubles, or CCSD) or 3p3h terms (CCSDT, including Triples).
Various schemes exist for iteratively or non-iteratively including
subsets of Triples [12, 63, 98–100]. When it acts on the reference
state |8〉, eT admixes arbitrary powers of few-particle, few-hole
excitations. Note, however, that the cluster operator T is not anti-
Hermitian because it lacks de-excitation operators, and therefore
eT is not unitary.

The cluster amplitudes are determined by demanding that the
transformed Hamiltonian,

HCC ≡ e−THeT , (29)

does not couple the reference to 1p1h and 2p2h states
(see Figure 3). Using notation introduced in section 2.3.1,
the decoupling conditions lead to the following system of
non-linear equations:

〈8| e−THeT |8〉 = ECC , (30)

〈8a
i | e

−THeT |8〉 = 0 , (31)

〈8ab
ij | e

−THeT |8〉 = 0 . (32)

Here, ECC is the CC ground-state energy, which corresponds
to the one-dimensional block in the upper left of Figure 3C

and is analogous to the zero-body part of the IMSRG-evolved
Hamiltonian, as discussed in the previous section. The other
blocks in the first column of the matrix vanish because of the CC
Equations (30)–(32).

Since the CC transformation is non-unitary, one needs
to be careful when one evaluates observables using the
CC wave function, or uses HCC as input for equation-
of-motion calculations or other applications [12, 63]. For
instance, the non-Hermiticity of HCC forces us to consider
left and right eigenstates separately. This is a drawback
compared to unitary transformation methods like the
IMSRG. Coupled Cluster also has advantages, though: For
instance, the Baker-Campbell-Hausdorff expansion appearing
in Equations (30)–(32) automatically terminates at finite order
because the cluster operator only contains excitation operators.
For the same reason, Equation (31) will automatically solve
the Hartree-Fock equations, so any Slater determinant is
equally well-suited as a reference state, while MBPT, IMSRG,
and even exact diagonalization approaches exhibit (some)
reference-state dependence.
Symmetry breaking and collective correlations. While most
applications of CC theory in nuclear physics have enforced and
exploited spherical symmetry, the capabilities for performing
M-scheme calculations that allow nuclei to develop intrinsic

deformation have existed for more than a decade. This is a
more natural approach for capturing collective correlations than
the construction of Triples, Quadruples (4p4h), and ever higher
particle-hole excitations of a spherical reference (cf. section
2.3.3). Converging such calculations is challenging because the
single-particle basis typically grows by an order of magnitude
or more, and the broken symmetries must eventually be
restored. The formalism for symmetry restoration in CC has
been developed in references [101–104]. In fact, the work of
Duguet et al. forms the basis of recent works on symmetry
breaking and restoration in MBPT [77, 80, 81]. Applications are
currently underway.
Shell-model CC. Like the IMSRG, the CC framework can be used
to construct effective interactions and operators for Shell model
calculations. Initial work in that direction applied Hilbert space
projection techniques (cf. section 2.3.6) to construct a so-called
CC effective interaction (CCEI) [24, 105], but the construction of
the model spaces via Equation-of-Motion CC methods proved
to be computationally expensive. The CCEI approach is now
superseded by the Shell Model CC method [25], which applies
a second similarity transformation to HCC in Fock space, similar
to VS-IMSRG decoupling (cf. section 2.3.3).
Unitary CC. While almost all applications of CC in nuclear
physics use the traditional ansatz (27), unitary CC (UCC)
approaches that parameterize the wave function as |9UCC〉 =

eT−T†
|8〉 have been used in numerous studies in quantum

chemistry (see, e.g., [106, 107]). Unitary CC wave functions
have also become a popular ansatz for the Variational Quantum
Eigensolver (VQE) algorithm on current and near-term quantum
devices [108, 109]. It is also worth noting that the recently revived
Unitary Model Operator Approach (UMOA) is closely related to
UCC [110, 111].

2.3.5. Self-Consistent Green’s Functions
Self-Consistent Green’s Function (SCGF) theory is another
prominent approach for solving the nuclear many-body
problem with systematic approximations [112–115]. The Green’s
Functions in question are correlation functions of the form

gpq...rs ≡ 〈9A
0 | T [ap(tp)aq(tq) . . . a

†
s (ts)a

†
r (tr)] |9

A
0 〉 , (33)

which describe the propagation of nucleons in the exact ground
state |9A

0 〉 of the system. UsingWick’s theorem, the exactA-body
propagator (33) can be factorized into products of irreducible
one-, two-, etc. propagators, similar to the decomposition of
density matrices briefly touched upon in section 2.3.3. One can
then formulate coupled equations of motion for propagators, and
introduce truncations to obtain polynomially scaling methods,
again somewhat analogous to IMSRG and CC. We must remain
aware that the propagators of SCGF, the induced operators of
IMSRG, and the CC amplitudes are all different objects, and
while their definitions may make the seem complementary to
each other, there are subtle distinctions. One of these is that
the g(k) are formally defined with respect to the exact wave
function, while IMSRG and CC use definitions with respect to a
reference state.
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Practical implementations of the SCGF technique usually
work with the Fourier transforms of the propagators to the energy
domain. One needs to solve integral equations of motion of
the form

g = g0 + g06g , (34)

where g0 is the propagator of the non-interacting system and
6 a kernel that encodes the particles’ interactions, which is
constructed using diagrammatic techniques. For example, the
one-body propagator is obtained by solving

gpq(ω) = g
(0)
pq (ω)+

∑

rs

g
(0)
pr 6rs(ω)gsq , (35)

the so-called Dyson equation. From this propagator, one can
compute the one-body density matrix

ρpq = 〈9A
0 | a

†
qap |9

A
0 〉 =

∫

C+

dω

2π i
gpq(ω) , (36)

where C+ indicates an integration contour in the complex upper
half plane. Higher-body density matrices are connected to the
corresponding higher-body propagators in analogous fashion.
Using the density matrices, one can then evaluate any operator
expectation values of interest. For more details, we refer to the
contributions [10, 115] to the present volume, and the works
cited therein.

Current applications of SCGF techniques in nuclear physics
make use of the so-called Algebraic Diagrammatic Construction
(ADC) scheme, with increasing orders, denoted by ADC(n),
converging to an exact solution. For closed-shell nuclei,
calculations up to ADC(3) are be performed regularly, which
contain correlations that are roughly comparable to IMSRG(2)
with a perturbative 3p3h correction (see section 2.3.3 and
references [83, 86, 116]) and CCSD(T) (cf. section 2.3.4). Somà
and collaborators have extended the ADC scheme to open-
shell nuclei by using Gor’kov Green’s Functions with explicitly
broken particle number symmetry [117, 118]. Applications of
this framework have used a self-consistent second-order scheme,
denoted Gor’kov-ADC(2), and the extension to Gor’kov-ADC(3)
as well the integration of particle-number projection to restore
the broken number symmetry are in progress [80, 114].

While the computation of the Green’s Functions tends to be a
more involved task than solving the IMSRG flow equations or CC
amplitude equations, the propagator contains more information
from a single computation than these other methods. For
instance, one can immediately extract spectral information about
the neighboring nuclei and the response of the system [119,
120], which requires the application of additional techniques
in the IMSRG [83] and CC approaches [12, 121, 122], or,
indeed, the computation of the Green’s Function using similarity-
transformed operators. Furthermore, the kernels of the equations
of motion (34) are energy-dependent effective interactions that
govern the dynamics of (few-)nucleon-nucleus interactions. For
example, the one-nucleon self-energy in Equation (35) is an ab
initio version of an optical potential, as used in reaction theory
[123–125]. We will return to this discussion in section 4.5.

2.3.6. Configuration Interaction Approaches
No-core configuration interaction methods. The most
straightforward but also most computationally expensive
approach to solving the many-body Schrödinger equation is to
exactly diagonalize the Hamiltonian in a basis of many-body
states. In general, we refer to such approaches as No-Core
Configuration Interaction (NCCI). “No core” makes it explicitly
clear that all nucleons are treated as active degrees of freedom, in
contrast to the nuclear Shell model discussed below.

In light nuclei, the exact diagonalization can be directly
formulated in Jacobi coordinates, using translationally invariant
harmonic oscillator [126] or hyperspherical harmonic wave
functions [127, 128]. Since the construction of the basis states
themselves and the matrix representation of the Hamiltonian
becomes increasingly complicated and computationally
expensive as the particle number grows, one eventually has to
switch to Slater determinants in the laboratory system, using a
construction along the lines discussed in section 2.3.1.

A common choice for the single-particle basis in the
laboratory system are spherical harmonic oscillator (SHO) states,
because they allow an exact separation of center-of-mass and
intrinsic degrees of freedom provided one uses an energy-based
truncation for the model space [129, 130]. These choices define
what we specifically call the No-Core Shell Model (NCSM). A
disadvantage of using SHO orbitals is that they are not optimized
to the energy scales of specific nuclei, and they are poorly suited
for describing physical features like extended exponential wave
function tails. Other popular choices are Hartree-Fock single-
particle states, and perturbatively [131] or non-perturbatively
enhanced natural orbitals [132–134]. Model spaces built on
these bases no longer guarantee the separation of center-of-
mass and intrinsic coordinates, but fortunately, center-of-mass
contaminations either remain small automatically [135], or they
can be suppressed using techniques like the Lawson method
[136].
Importance truncation and symmetry adaptation. As indicated
above, themain issue with exact diagonalization approaches is the
exponential (or greater) growth of the Hilbert space dimension,
which is proportional to

(N
A

)

with single particle basis size N and
particle number A. A variety of strategies can be used to address
this often-quoted “explosion” of the basis size. One direction is to
avoid the construction of the full model space basis by applying
importance-based truncation or sampling methods, leading to
the Importance-TruncatedNCSM [9] orMonte-Carlo (No-Core)
CI approaches [137, 138].

Another important research program is the exploration of
many-body states that are constructed from the irreducible
representations (irreps) of the symplectic group Sp(3,R), which
describes an approximate emergent symmetry of finite nuclei
[139, 140]. An exact diagonalization in such a symmetry-adapted
basis will offer a much more efficient description of nuclear
states with intrinsic deformation than the conventional NCSM,
which would need to use massive model spaces with many-
particle-many-hole excitations. This reduction of the model
space dimensions also allows such symmetry-adapted NCSM
[139, 140] and NCCI approaches [141] to reach heavier nuclei
than the conventional versions.
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Interacting nuclear shell model with a core (valence CI). Instead
of treating all of the nucleons as active, one can also factorize
the nuclear wave function by introducing an inert core and only
treat the interactions of a smaller number of valence nucleons via
appropriately transformed interactions:

|9〉 = |9〉core ⊗ |9〉valence . (37)

This, of course, is the traditional nuclear Shell model approach.
Even with the substantial reduction of the single-particle basis
to a relatively small number of valence orbitals, the numerical
cost for an exact diagonalization quickly becomes unfeasible for
many medium-mass and heavy nuclei, especially if one needs
multi-shell valence-spaces to capture complex nuclear structure
features like coexisting intrinsic shapes.

In previous sections, we have discussed how a variety of many-
body methods can be used to derive valence-space interactions,
hence it is not a surprise that this is possible in NCCI
approaches as well. One strategy is to project solutions of no-
core calculations for the core and its neighboring nuclei onto a
valence-configuration space to extract the effective Hamiltonian.
The viability of this approach has been demonstrated in several
publications [142–145], although there are ambiguities in the
extraction of the valence-space Hamiltonian, and the initial
NCCI calculations that serve as input for the projection rapidly
become expensive.
Description of continuum effects and nuclear dynamics. An
important breakthrough in ab initio calculations for light nuclei
has been the merging of the NCSM with resonating group
method (RGM) techniques [130, 146]. This makes it possible
to describe clustered states as well as reactions between light
projectile(s) and targets. In the original NCSM/RGM approach,
compact clusters of nucleons are described by NCSM states,
which are then used to construct a basis of configurations |χi〉

that place such clusters at different relative distances. In this basis,
one can then solve the generalized eigenvalue problem, known as
the Griffin-Hill-Wheeler equation [147] in the RGM context:

H |9〉 = EN |9〉 , (38)

whereH andN are the so-called Hamiltonian and norm kernels.
The latter appears because the chosen basis configurations are
not orthogonal in general. The dimension of Equation (38)
is typically small, certainly compared to the NCSM model
space, but the computation of the kernels is computationally
expensive since it relies on the construction of up to three-body
transition density matrices. In recent years, the NCSM/RGM has
been extended to the NCSM with Continuum (NCSMC), which
accounts for the coupling between the NCSM and RGM sectors
of the many-body basis [130]. It requires solving the generalized
eigenvalue problem

(

h h̄

h̄ H

) (

8

χ

)

= E

(

1 n̄
n̄ N

) (

8

χ

)

, (39)

where h and1 are theHamiltonian and norm kernel in theNCSM
sector (the latter being diagonal), H and N the corresponding

kernels in the RGM sector (cf. Equation 38), and h̄ and n̄ encode
the coupling between the sectors of the basis.

Alternative approaches to the description of continuum effects
in the NCSM are the Single-State HORSE (Harmonic Oscillator
Representation of Scattering Equations) method [148–150], for
which the nomen is omen, as well as the No-Core Gamow
Shell Model (GSM), a no-core CI approach that constructs
Slater determinants from a single-particle Berggren basis [151]
consisting of bound, resonant and scattering states [152–155].

2.3.7. Quantum Monte Carlo
The most commonly used Quantum Monte Carlo (QMC)
techniques in nuclear physics make use of many-body wave
functions in coordinate space representation [156–159]. As such,
they are well-suited for the description of nuclear states with
complex intrinsic structures, and they can readily use interactions
with a high momentum cutoff, as opposed to the configuration
space methods which would exhibit poor convergence in such
cases. This allows QMC calculations to explore physics across
the interfaces of the hierarchy of EFTs for the strong interaction
(cf. sections 2.1 and 4.4), e.g., for processes that explore energies
approaching the breakdown scale of chiral EFT [160–163].

A typical ansatz for a QMC trial state is

|8T〉 ≡ F(a) |8(b)〉 , (40)

where F(a) is an operator that explicitly imprints correlations
on the mean-field like state |8(b)〉, and a, b are vectors of
tunable parameters. The first step of most QMC calculations is
a variational minimization of the energy in the trial state ,

min
a,b

〈8T |H |8T〉

〈8T |8T〉
≥ E0 , (41)

followed by an imaginary-time evolution to project out the true
ground state in a quasi-exact fashion:

|90〉 ∝ lim
τ→∞

e−(H−ET )τ |8T〉 . (42)

This projection can be implemented using Monte Carlo
techniques in a variety of ways, which gives rise to different
approaches like Green’s Function Monte Carlo (GFMC) or
Auxiliary-Field Diffusion Monte Carlo (AFDMC) [156, 158].

A major challenge in QMC calculations is that most
commonly used algorithms suffer from some form of sign
problem [156, 158]. Many quantities of interest like the wave
functions or local operator expectation values in these wave
functions are not positive definite across their entire domain,
which means that they cannot be immediately interpreted as
probability distributions that the algorithms sample. This is one
of the main reasons why QMC methods can only be used with
Hamiltonians that are either completely local, or have a non-
locality that is at most quadratic in the momenta, e.g., p2 or l2.

While QMC applications in ab initio nuclear structure have
been focused on coordinate space, there are a wide variety of
approaches that merge QMC techniques with the configuration
space approaches discussed in previous sections. Examples

Frontiers in Physics | www.frontiersin.org 11 October 2020 | Volume 8 | Article 379

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Hergert Ab initio Nuclear Many-Body Theory

include sampling the intermediate-state summations in MBPT
[164], diagrammatic expansions [165–167], or the coefficients of
correlated CC [168] or (No-Core) CI wave functions [137, 138,
169–171].

2.3.8. Lattice Effective Field Theory
Lattice methods are nowadays widely used to simulate the
dynamics of non-perturbative field theories on finite space-
time lattices. The most prominent example is Lattice QCD,
but implementations of various Effective Field Theories
on the Lattice have been developed and applied with
impressive outcomes in the past two decades—see, for example,
references [172–175] and references therein, which also provide
pedagogical introductions to Lattice EFT for nuclear systems.

Lattice EFT simulations are built around the partition
function, which is defined for a pure state |9〉 as

Z(τ ) = 〈9(τ = 0)| exp (−Hτ) |9(τ = 0)〉 . (43)

Here, H is an EFT Hamiltonian, typically truncated at a given
order of the EFT’s power counting scheme. In practice, the
partition function is evaluated as a path integral in which field
configurations are sampled using Monte Carlo techniques. At
large τ , one can extract information about the ground state and
low-lying excited states of the system directly from Z (cf. section
2.3.7), and general expectation values can be evaluated using

〈O〉τ =
1

Z(τ )
〈90| exp(−Hτ/2)O exp(−Hτ/2) |90〉 . (44)

The use of discretized spatial lattices makes Lattice EFT
particularly suited for the description of nuclear states with
complex geometries like cluster structures [176–178]. Depending
on the size of the lattices, it will also typically require less
computational effort than the imaginary-time evolution of states
that are formulated in continuum coordinates, as in AFDMC or
GFMC (see section 2.3.7). Moreover, the development of the so-
called adiabatic projection method (APM) [179, 180] in recent
years hasmade it possible to compute scattering cross sections for
reactions of (light) clusters on the lattice. Conceptually, the APM
is reminiscent of the resonating-group method used to describe
reactions in the NCSMC framework discussed in section 2.3.6.

Of course, Lattice EFT is not free of disadvantages, which
are usually caused by the discretization of space(time). The
finite size and lattice spacing are related to infrared (long-range,
low-momentum) and ultraviolet (short-range, high-momentum)
cutoffs of a calculation, which need to be carefully considered.
Since the recognition of cutoff scales is an inherent aspect of
EFTs, one can systematically correct for these effects [181, 182].
The discrete lattice also breaks continuous spatial symmetries
that may need to be restored approximately or exactly before
comparisons with experimental data are made [172, 182].

3. THE PAST IS PROLOGUE:
ACHIEVEMENTS IN THE LAST DECADE

In this section, I will discuss selected achievements of the ab
initio nuclear many-body community in the past decade, and

the issues that were encountered in the process. As stated in the
introduction, this selection is subjective, and giving full justice
to the breadth of research accomplishments is beyond the scope
of this work. I hope that the present discussion will serve as an
invitation for further exploration, for which the cited literature
may serve as a useful starting point.

3.1. Benchmarking Nuclear Forces
One of the biggest issues in nuclear theory was the lack
of comparability between different approaches for describing
the structure of medium-mass or heavy nuclei. These nuclei
were well in reach of the Shell Model and nuclear Density
Functional Theory (DFT), but whenever issues emerged, it was
unclear whether they resulted from approximations in the many-
body method, or deficiencies in the effective interactions, i.e.,
the valence-space Hamiltonians or energy density functionals
(EDF). Moreover, one cannot simply perform a valence CI
calculation with an EDF, or a DFT calculation with a Shell Model
interaction, because the interactions are tailored to their specific
many-body method.

The development of the RG/EFT and many-body methods
discussed in section 2 has opened up a new era for benchmarking
the same nuclear interactions across multiple approaches, and on
top of that, these methods provide a systematic framework for
analyzing, and eventually quantifying, the reasons for differences
between the obtained results.

One of the earliest testing grounds for ab initio calculations of
medium-mass nuclei was the oxygen isotopic chain, which was
accessible to all of the approaches that emerged at the beginning
of the past decade. Figure 5 shows the ground-state energies of
even oxygen isotopes for the same chiral NN+3N interaction,
obtained with several of the configuration space approaches
introduced in section 2.3. In addition, results for applying various
types of MBPT to the same interaction and nuclei are presented
in reference [69]—I only refrained from including them here
to avoid overloading the figure. As we can see, the ground-
state energies obtained from the different approaches are in
good agreement with each other and with experiment. Since
our results include quasi-exact IT-NCSM values, the deviation
of the other methods’ energies from these values provide us
with an estimate of the theoretical uncertainties due to any
employed truncations, which is on the order of 1–2%. As we
can see from Figure 5, essentially all of the used many-body
methods place the drip line in the oxygen isotopic chain at 24O,
although the signal is exaggerated. Continuum effects that have
been omitted in these calculations would lower the energy of the
26O resonance, which is experimentally constrained to be a mere
18(7) keV above the two-neutron threshold [185], and produce a
very flat trend in the energies toward 28O. Similar features were
found in calculations for other isotopic chains and other chiral
interactions [21, 114, 118, 186]. The 16O ground state energies
obtained for the employed chiral NN+3N Hamiltonian are also
compatible with a Lattice EFT result that was obtained at a similar
resolution scale [177].

This last comparison shows that some obstacles to the ideal
cross-validation scenario still remain. Since coordinate-space
approaches like Lattice EFT or QMC are truly complementary
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FIGURE 5 | Ground-state energies of the oxygen isotopes for various many-body approaches, using the chiral NN+3N(400) interaction at λ = 1.88 fm−1 [183]. Details

on the Lattice EFT calculation can be found in reference [177]. Gray bars indicate experimental data [184].

to configuration-space methods, it would be highly desirable
to test the same chiral NN+3N Hamiltonians in both types of
calculations. However, the Hamiltonians used in configuration
space are typically given in terms of harmonic oscillator matrix
elements (especially if SRG evolved) instead of the coordinate-
space operators required by Lattice EFT or QMC calculations.
Furthermore, Lattice EFT and QMC cannot handle all possible
types of non-locality in the Hamiltonian (cf. section 2.3.7),
including the forms generated by the non-local regulators that
are favored for configuration-space Hamiltonians. Conversely,
local chiral interactions that have been constructed explicitly for
QMC applications [4, 158, 187–190] exhibit slow model-space
convergence in configuration-space calculations because they still
tend to require a significant repulsive core at short distance to
describe nucleon-nucleon scattering data, albeit a far weaker one
than interactions like Argonne V18 [191].

3.2. Extending the Reach of ab initio Theory
The reach of ab initio many-body theory has increased
dramatically over the past decade. Figure 1 illustrates this
growing coverage of the nuclear chart, but it tells only part of
the story. The expansion has happened in many “dimensions”
besides the mass number A, namely by pushing toward exotic
nuclei via improved treatments of the continuum degrees of
freedom, filling in gaps in the coverage that are occupied by
doubly open-shell nuclei with strong intrinsic deformation, and
expanding the types of observables that can be computed from
first principles. Recalling section 3.1, the ongoing push against
the limitations of our many-body approaches will continue to
grow the opportunities for benchmarking current- and next-
generation chiral Hamiltonians.

3.2.1. Pushing the Mass Boundaries
First calculations for selected nuclei and semi-magic isotopic
chains up to tin were already published in the first half of the
last decade [19, 21, 23]. For the most part, they were using a

family of chiral NN+3N interactions that gave a good description
of the oxygen ground-state energies (cf. Figure 5) as well as
the spectroscopy of the lower sd-shell region [24, 26]. However,
the same interactions underpredict nuclear charge radii [192],
and start to overbind as we approached the calcium chain
(cf. Figure 7), eventually leading to an overbinding of 1 MeV per
nucleon in tin. While model-space convergence in CC, IMSRG
and SCGF calculations suggested that calculations for heavier
nuclei would have been technically possible, it made little sense
to pursue them.

The growing number of results for medium-mass nuclei and
the problems they revealed motivated a new wave of efforts
to refine chiral interactions. One direction of research aimed
to achieve a simultaneous description of nuclear energies and
radii up to 48Ca by including selected many-body data in the
optimization protocol of the chiral LECs. This work resulted
in the so-called NNLOsat interaction [194]. While NNLOsat

definitely improved radii [195], its model-space convergence was
found to become problematically slow already in lower pf -shell
nuclei [114, 196, 197].

Simultaneously with the efforts to develop new interactions,
attention also turned toward an older, less consistently
constructed family of chiral NN+3N interactions that exhibited
reasonable saturation properties in nuclear matter calculations
[198, 199]. These forces are referred to as EMλ/3, where λ

indicates the resolution scale of the NN interaction, the SRG-
evolved N3LO potential of Entem and Machleidt [200], and
3 is the cutoff of an NNLO three-nucleon interaction whose
low-energy constants have been adjusted to fit the triton binding
energy and 4He charge radius [198, 199]. In CC calculations for
the nickel isotopes, Hagen et al. demonstrated that the EM1.8/2.0
interaction, in particular, allowed a good description of the
energies of nuclei in the vicinity of 78Ni [196]. As shown in
Figure 6, these findings have been reinforced by subsequent
VS-IMSRG calculations, as well as the experimental observation
of the first excited 2+ state in this nucleus [201].

Frontiers in Physics | www.frontiersin.org 13 October 2020 | Volume 8 | Article 379

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Hergert Ab initio Nuclear Many-Body Theory

FIGURE 6 | Energies of the first excited 2+ states from VS-IMSRG [201] and

Equation-of-Motion CC [196] calculations for several chiral two- plus

three-nucleon interactions. Experimental values [201, 202] are indicated as

black bars. Data courtesy of J. D. Holt, J. Menéndez, and G. Hagen.

Since this initial application in medium-mass nuclei,
the EMλ/3 family has seen widespread use in ab initio
calculations due to its empirical quality, although the
Hamiltonian’s theoretical uncertainties are less well-defined
than for interactions that obey the chiral power counting more
rigorously. Indeed the EM1.8/2.0 interaction was used in VS-
IMSRG calculations to produce what is to my knowledge the first
attempt at producing an ab initio mass table for nuclei up to the
iron isotopes [186]. For selected nuclei up to the tin region, it also
yields converged energies for ground and low-lying states that
are in good agreement with experimental data [203, 204]. It also
yields slightly larger radii than previous interactions, although
the underprediction is not eliminated entirely (see references
[195, 203] and section 3.2.3).

Multiple applications of the EMλ/3 Hamiltonians in support
of spectroscopy experiments have been published in recent
years (see, e.g., [197, 205–208]), and additional studies are
underway, including an effort to better understand what makes
the EM1.8/2.0 Hamiltonian so successful. Furthermore, a new
generation of chiral NN+3N interactions is now available for
applications in medium-mass and heavy nuclei [46, 114, 209–
211].

3.2.2. Toward the Drip Lines
Neutron-rich nuclei are excellent laboratories for
disentangling the interplay of nuclear interactions, many-
body correlations and the continuum. Thus, data from the
experimental push toward the drip line can offer important
constraints for the refinement of chiral interactions if
the many-body truncations and continuum effects are
under control.

In practice, ab initio results for observables like the absolute
energies of states still exhibit significant scale and scheme
dependence due to truncations that are made in the EFT,

the potential implementation of SRG evolutions, and the
many-body methods. Since such variations tend to be
systematic within families of interactions (and sometimes
even across multiple families), differential quantities like
separation and excitation energies or transition matrix elements
often exhibit a weaker scale and scheme dependence—
note, for example, the small systematic variation of the
first excited 2+ states of the neutron-rich nickel isotopes
for EMλ/3 interactions. This makes energy differences
an ideal observable for confronting ab initio results with
experimental data.

Let us consider two-neutron separation energies as a concrete
example. Sudden drops in these observables are a signal of
(sub)shell closures (albeit not universally [195]) and in the
neutron-rich domain, they are important indicators for the
proximity of the drip line. Figure 7 shows MR-IMSRG ground-
state and two-neutron separation energies of the calcium
isotopes, obtained with the NN+3N(400) interaction used in
Figure 5, as well as the NNLOsat and EM1.8/2.0 interactions
briefly discussed in the previous section.We note the overbinding
produced by NN+3N(400) and the baffling accuracy of the
EM1.8/2.0 results, given the approximations that went into
the construction of this force, as well as the MR-IMSRG
truncation. Common to all three interactions is the emergence
of a very flat trend in the ground-state and separation
energies in neutron-rich calcium isotopes, which will likely be
further enhanced by the inclusion of continuum effects, and
extended beyond the shown mass range. Similar flat trends
emerge in many isotopic chains, as shown both in ab initio
surveys based on chiral interactions [10, 114, 186] as well
as a sophisticated Bayesian analysis of empirical EDF models
[212]. Naturally, this will make the precise determination
of the neutron drip line in the medium-mass region a
challenging task, but also suggests that interesting features
like alternating patterns of unbound odd nuclei and weakly-
bound even nuclei with multi-neutron halos could emerge.
This is an exciting prospect for the experimental programs at
rare-isotope facilities.

With the exception of the NCSMC and HORSE methods
discussed in section 2.3.6, the inclusion of continuum degrees
in configuration-space techniques has been focused on the
use of the Berggren basis [151]. While such calculations
are challenging due to the significantly increased single-
particle basis size and the difficulties of handling the resulting
complex symmetric Hamiltonians, applications in CC (see
references [12, 213] and references therein), both valence
and No-Core Gamow Shell Model [153–155, 214, 215] and
IMSRG [216] calculations have been published. Common to
all these approaches is that a configuration space interaction
that is given in terms of SHO matrix elements is expanded
on a basis containing SHO and Berggren states, hence it is
still an open question how a direct implementation of the
interactions in a basis with continuum degrees of freedom
might modify existing results. It is worth noting that such
a construction has been achieved for phenomenological GSM
interactions that have been tuned for light nuclei [217–
222].
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FIGURE 7 | Ground-state and two-neutron separation energies for several chiral NN+3N interactions from MR-IMSRG(2) calculations. Experimental data are indicated

by black bars [184, 193].

FIGURE 8 | NCSMC spectrum of 11Be with respect to the n+10 Be threshold. Dashed black lines indicate the energies of the 10Be states. Light boxes indicate

resonance widths. See reference [223] for details. Figure reprinted with permission from the American Physical Society.

In light nuclei, the NCSMC has been applied with impressive
success to describe a variety of exotic nuclei with up to
three-cluster structures. For example, Calci et al. [223] carried
out NCSMC calculations for 11Be with several chiral NN+3N
interactions to investigate the parity inversion of the ground
and first-excited states in this nucleus from first principles.
The authors found that the coupling between the NCSM and
RGM sectors of the generalized eigenvalue has strong effects,
but that among the tested interactions, only NNLOsat can
produce the experimentally observed ordering of the states (see
Figure 8). However, it still underpredicts the splitting of these
levels and as a result, overestimates the cross section for the
photodisintegration 11Be(γ , n)10Be. Additional applications of
the NCSMC for exotic nuclei can be found in the review [130]
and references therein, as well as the more recent works [224–
226].

3.2.3. Accessing More Observables
The capabilities of ab initio approaches have also significantly
expanded when it comes to the evaluation of observables other
than the energies.
Nuclear radii. Figure 9 shows MR-IMSRG results for the charge
radii of calcium isotopes. The left panel illustrates the reasonable
reproduction of the 40Ca and 48Ca charge radii that can be
obtained for NNLOsat. The MR-IMSRG(2) results are slightly
smaller than the experimental data due to differences in the
truncations from the CCSD charge radius calculations that were
used in the NNLOsat optimization protocol [194]. Note the
steep increase in the experimental charge radii beyond 48Ca:
At the time of the measurement, NNLOsat was the only chiral
NN+3N interaction exhibiting this feature, although other more
recent interactions can replicate this trend as well [10, 114]. Also
note that none of the calculations are able to reproduce the
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inverted arc of the charge radii between 40Ca and 48Ca. In a CI
picture, it is caused by strong mixing with 4p4h excitations into
the pf -shell [229]. Since the MR-IMSRG(2) calculations shown
here included only up to (generalized) 2p2h excitations and
used particle-number projected Hartree-Fock Bogoliubov vacua
as reference states that do not contain collective correlations
(cf. section 2.3.3), it is not surprising that the inverted arc
cannot be reproduced. We will return to this issue of missing
collectivity later.

While the EMλ/3 interactions underpredict the absolute
charge radii, they fare quite well in the description of radius
differences, as suggested in the previous section. Figure 9B

is adapted from a recent study that suggests a correlation
between the charge radius difference of mirror nuclei, 1Rch,
and the slope of the symmetry energy in the nuclear
matter equation of state [228]. We see that the MR-IMSRG
results for 1Rch are actually compatible with results from
a multitude of Skyrme EDFs, and the value for the magic
EM1.8/2.0 interaction falls into the uncertainty band of the
experimental result.
Electromagnetic transitions. Since the second half of the past
decade, ab initio calculations for transitions in medium-mass
nuclei have become more frequent, owing to the appropriate
extensions of the IMSRG, CC and SCGF methods [205, 230,
231]. While results for transitions that are dominated by a
few nucleons, e.g., M1 transitions [230] or β decays (see
reference [232] and the discussion below) can be quite good,
the description of collective transitions is hampered by inherent
truncations of these many-body methods, which are better suited
for dynamical, few-particle correlations (see sections 2.3.3 and
2.3.4). Results from the SA-NCSM [139, 140] and the IM-
GCM discussed in section 2.3.3 show that the modern chiral
interactions themselves adequately support the emergence of
nuclear collectivity.

Consider for example Figure 10, which shows VS-IMSRG(2)
results for the quadrupole transition from the first excited 2+

state to the ground state in 14C, 22O and 32S [230]. The picture
is fairly consistent for all four chiral NN+3N interactions that
were used in the study: The 2+ energies are described quite well,
but energies are not very sensitive to the details of the nuclear
wave functions. In 14C, the E2 transition is weakly collective, so
the E2 matrix element is reasonably reproduced, while the matrix
element for the collective transition in 32S is underpredicted by
25–50%. The NN+3N(400) interaction gives a particularly poor
result, but this is also related to the significant underestimation
of the point-proton radius we obtain for this Hamiltonian, as
discussed earlier.

The result for 22Odeserves special attention. The E2 transition
matrix element is only a third of the experimental value, although
the transition is only weakly collective. However, 22O only has
neutrons in an sd valence space, so the E2 matrix element would
vanish in a conventional Shell Model calculation unless the
neutrons have an effective charge. Such effective charges must
be introduced by hand and fit to data in phenomenological Shell
Model calculations. Here, we see that the VS-IMSRG decoupling
naturally induces a non-vanishing quadrupole moment through
an effective neutron charge in the one-body transition operator

as well as an induced two-body contribution (see reference [230],
and reference [231] for an analogous effort in SCGF theory). It is
likely that the E2 strength could be improved by performing the
VS-IMSRG calculation in a psd valence space, so that the proton
dynamics is treated explicitly instead of implicitly by valence-
space decoupling. Until recently, we were unable to perform
such a multi-shell decoupling because of the IMSRG version of
the intruder-state problem, but a promising workaround was
introduced in reference [28].
Gamow-Teller transitions. In recent years, there have been
concerted efforts to understand the mechanisms behind
the empirically observed quenching of Gamow-Teller (GT)
transitions in medium-mass nuclei, in part due to its relevance
to neutrinoless double-beta decay searches (see below). In
reference [232], the authors show that this issue is largely
resolved by properly accounting for the scale and scheme
dependence of configuration-space calculations. By dialing the
resolution scale to typical values favored by approaches like
NCSM, CC, and VS-IMSRG, correlations are shifted from the
wave functions into induced two- and higher-body contributions
to the renormalized transition operator, just as in the quadrupole
case discussed above.

The transition operator, including two-body currents, is
consistently evolved to lower resolution scale alongside the
nuclear interactions, keeping the induced contributions. The
transition matrix elements of the evolved operator are then
computed with the NCSM in light nuclei, and VS-IMSRG in sd-
and pf -shell nuclei, leading to agreement with experimental GT
strengths within a few %. In contrast, the bare GT operator must
be quenched by 20–25% via the introduction of an effective axial
coupling, geffA < gA, to yield agreement with experimental beta
decay rates.

The GT transitions in light nuclei have also been evaluated
in the GFMC, most recently with consistently constructed local
chiral interactions and currents [234, 235]. Interestingly, the
inclusion of two-body currents seems to consistently enhance the
GT matrix elements, while it tends to quench the matrix element
in NCSM calculations. Since this is almost certainly related to
the differences in the resolution scale and calculation scheme,
the disentanglement of these observables might yield further
insights into the interplay of wave function correlations and the
renormalization of the transition operators.
Neutrinoless double beta decay. Due to the high impact the
observation of neutrinoless double beta decay (or lack thereof)
would have on particle physics and cosmology, the computation
of nuclear matrix elements (NMEs) for neutrinoless double beta
decay is a high priority for nuclear structure theory. Precise
knowledge of the NMEs for various candidate nuclei is required
to extract key observables like the absolute neutrino mass scale
from the measured lifetimes (or at least, any new bounds that
would be provided by experiment). Most calculations of the
NME to date were subject to the lack of comparability between
phenomenological nuclear structure results that was discussed in
section 3.1, hence a new generation of ab initio calculations with
quantified uncertainties is required.

A major step in that direction was the first calculation of the
NME for the decay 48Ca →48 Ti based on chiral interactions
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A B

FIGURE 9 | (A) Calcium charge radii from MR-IMSRG(2) calculations with NNLOsat The shaded area indicates uncertainties from basis convergence. Black bars and

orange circles indicate experimental data [195, 227]. (B) Mirror charge radius difference of 36Ca and 36S vs. the slope of the symmetry energy, L, at nuclear saturation,

for the EMλ/3 interactions (symbols as indicated in the legend), compared to Skyrme functionals (solid circles) and Relativistic Mean Field models (crosses). The band

indicates the experimental result from the BECOLA facility at NSCL. See reference [228] for details.

FIGURE 10 | Energies of the first excited 2+ state, proton mean square radius and quadrupole transition matrix elements for selected nuclei, based on VS-IMSRG(2)

calculations with multiple chiral NN+3N interactions. See references [76] and [230] for more details. Experimental values (with uncertainties indicated by bands) are

taken from [227, 233]. Figure courtesy of R. Stroberg.

[29]. The IM-GCM approach discussed in section 2.3.3 was used
to describe the structure of the intrinsically deformed daughter
nucleus 48Ti, achieving a satisfactory reproduction of the low-
lying states and their quadrupole transitions (see Figure 11).
Since the initial publication (blue spectra in Figure 11A),
the description of the excited states has been improved

further through the admixing of cranked configurations (red
spectra), without affecting the NME (Figure 11B). Work on
quantifying the uncertainties due to the many-body method,
the Hamiltonian, and the transition operator is underway, in
preparation for the computation of the NMEs of more realistic
candidate nuclei like 76Ge and 136Xe.
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A B

FIGURE 11 | IM-GCM description of the neutrinoless double beta decay 48Ca →48 Ti, using EMλ/3 interactions: Low-lying spectrum of 48Ti and its compression

through the admixing of cranked configurations (A) and the nuclear matrix element vs. B(E2) transition probability (B). See text and reference [29] for details. (A)

courtesy of J. M. Yao, (B) reprinted with permission from the American Physical Society.

3.2.4. Response and Scattering
From the computation of transitions between low-lying
levels, it is only a small step to the computation of
nuclear response functions and cross sections, although the
implementation can be challenging and the applications are
often computationally expensive.
Nuclear response functions. In light nuclei, GFMC is a
powerful yet numerically heavy tool for computing exact nuclear
response functions (see, e.g., references [236, 237]). In medium-
mass nuclei, applications of SCGF and CC techniques to the
computation of the nuclear response have been published in
recent years. As mentioned in section 2.3.5, the Green’s functions
computed in the standard or Gor’kov ADC Green’s function
schemes inherently contain information about the nuclear
response that has been used to study both electromagnetic and
weak processes of medium-mass nuclei [119, 120, 238–240].

In the Coupled Cluster framework, response functions have
been computed by merging CC with up to Triples excitations
with the Lorentz Integral Transformation (LIT) technique [241–
245]. Immediately after its inception, this approach was used
to for the first ab initio calculations of dipole response and
the related photodisassociation cross section of medium-mass
closed-shell nuclei [241, 242]. More recently, it was used to
compute the electric dipole polarizability αD of nuclei like 48Ca
[243, 244, 246] and 68Ni [247]. Together with measurements
of the charge radius, this quantity can be used to constrain ab

initio calculations that will in turn allow the theoretical extraction
of the neutron point radius as well as the thickness of the
neutron skin.

An important application for nuclear response calculations
is to map out the neutrino response of 40Ar, the primary
target material in detectors for the short-baseline [248] and
long-baseline neutrino experiments, like the Deep Underground
Neutrino Experiment (DUNE) Far Detector [249, 250]. At low
energies, the cross section for coherent neutrino elastic scattering
is essentially determined by the weak form factor of 40Ar, which

has recently been computed using CC techniques [251]. This
work is complementary to SCGF calculations of the neutrino
response in the region of the quasi-elastic peak by Barbieri
et al. [238].
Nuclear reactions. As discussed in section 2.3, there has been
enormous progress in the development of unified treatments of
ab initio nuclear structure and reactions. Here, I want to highlight
two among a bevy of impressive results. Figure 12A shows S−
and D−wave phase shifts for α − α scattering, computed order
by order in Lattice EFT [179, 180]. These calculations are made
possible by the lattice’s capability to describe clustered states (also
see references [176–178]), as well the development of the APM
and associated algorithms. The results for the phase shifts show
the desired order-by-order improvement, and the inclusion of
higher-order terms of the chiral expansion is expected to improve
agreement with experimental data. The near identical NLO and
NNLO phase shifts in the S−wave appear to be the result of
an accidental cancellation that is not occurring in the D−wave
phase shifts.

In reference [252], the authors studied deuterium-tritium (D-
T) fusion using the NCSMC. One of the main results of this
work is shown in Figure 12B, which compares the NCSMC D–T
reaction rates for polarized and unpolarized fuels to each other, as
well as rates obtained with several widely used parameterizations
of the D–T fusion cross section. The NCSMC calculations
indicate that for an experimentally realizable polarized fuel with
aligned spins, a reaction rate of the same magnitude as for
unpolarized fuel can be achieved at about half the temperature.
Naturally, this suggests that polarized D-T fuels will allow a more
efficient power generation in thermonuclear reactors.

3.3. Emergence of Empirical Nuclear
Structure Models From ab initio

Calculations
The progress in ab initio calculations over the past decade has not
only led to impressive results for nuclear observables, but also
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FIGURE 12 | Ab initio calculations of nuclear reactions. (A) S (δ0) and D-wave phase shifts (δ2) for α-α scattering at various orders in Lattice EFT. For details, see

references [179, 180]. Figure courtesy of S. Elhatisari. (B) NCSMC results for the deuterium-tritium (D–T) fusion cross section (top) and reaction rate (bottom). The

figure compares the rates for unpolarized and polarized fuel, as well as rates obtained from widely adopted parametrization of the fusion cross section (see

reference [252] for details). The arrows are included to the guide the reader’s eye (see text). Figure reprinted from Hupin et al. [252] under a CC BY 4.0 license.

revealed the long-surmised underpinnings of empirical models
of nuclear structure. In many cases, the ideas that led to the
formulation of such models were shown to be correct, but they
could not be verified at the time because RG and EFT techniques
or sufficient computing power for a more thorough exploration
were not available.
The Nuclear Shell Model. The first prominent example I want
to discuss is the nuclear Shell Model and some of the “folklore”
surrounding it. We can immediately make the observation
that the Shell model picture is inherently a low-momentum
description of nuclear structure. It is based on the assumption
that nucleons are able to move (almost) independently in a mean
field potential, and that nuclear spectra can be explained by
the mixing of a few valence configurations above an inert core
via the residual interaction. As we know now, the existence of
a bound mean-field solution and a weak, possibly perturbative

residual interaction relies on the decoupling of low and high
momenta in the nuclear Hamiltonian [1, 6, 253], e.g., by an SRG
transformation. Historical approaches to exploit this connection
to construct the Shell model from realistic nuclear forces [254–
256] failed in part because the decoupling of the momentum
scales via Brueckner’s G−matrix formalism [65–67] was not as
good as believed [1].

In addition to the momentum-space decoupling, one must
also decouple the valence space configurations from the
excluded space. This can be achieved using a variety of
techniques (cf. sections 2.3.3–2.3.6), and either by performing
transformations in sequence, or designing a single procedure that
achieves both types of decoupling simultaneously. In practice,
the former strategy tends to be more efficient and less prone
to truncation errors—an example is the VS-IMSRG decoupling
of Hamiltonians that have been evolved to a low resolution
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scale by means of a prior SRG evolution (see sections 2.2 and
2.3.3, as well as reference [76]). An added benefit of using low-
momentum interactions is that the Shell Model wave functions
will qualitatively resemble those obtained by a no-core method
using the same Hamiltonian without valence decoupling. This
facilitates qualitative comparisons and allow us to apply the same
intuitive picture. For quantitative comparisons, the effects of all
unitary transformations must be carefully taken into account
[257].

Figure 13 illustrates the effect of the discussed
transformations via the deviations between the computed
and experimental energies of close to 400 levels in the sd-shell.
Since the EM1.8/2.0 interaction used in these calculations has
a low resolution scale, simply using the valence-space matrix
elements of the input Hamiltonian without any further valence-
space decoupling yields a root-mean-square (rms) deviation of
“only” about 1.7 MeV, which is not outright disastrous. When
we apply the VS-IMRSG to decouple the valence space, the newly
evolved interaction yields a much improved rms deviation of
∼ 650 keV, which is better than for some of the older sd-shell
interactions, albeit not as good as the USDB Hamiltonian,
which is shown for comparison [258, 259]. This is not really
surprising: USDB essentially represents the best possible fit to
experimental data under the model assumptions, i.e., the choice
of a pure sd-shell valence space, the restriction to a two-body
Hamiltonian, the omission of isospin-breaking effects from
the Coulomb interaction and the nuclear interactions, and
the empirical A-dependence multiplying the two-body matrix
elements (TBMEs). The accuracy of the VS-IMSRG results,
on the other hand, is affected by possible deficiencies in the
input Hamiltonian and the use of the VS-IMSRG(2) truncation.
Naturally, both of these aspects will be improved systematically
in future calculations.

Phenomenological adjustments of effective Shell Model
interactions like the A-dependent scaling factors in the USD
Hamiltonians or Zuker’s monopole shift [260] are typically
attributed to the changes in the nuclear mean field away from the
core, as well as missing three-body interactions. In reference [76],
the VS-IMSRG is used to demonstrate that this is indeed the case.
As described in section 2.3.3, upon normal ordering, the three-
body force gives contributions to operators of equal and lower
particle rank, which in the Shell Model case amounts to the core
energy, single-particle energy, and two-bodymatrix elements. All
of these contributions become A-dependent in the VS-IMSRG,
but one can shift the A-dependent parts completely into the
TBMEs, like in phenomenological interactions, without changing
the Hamiltonian matrix in the many-body Hilbert space or
its eigenvalues.

Procedures like the VS-IMSRG decoupling also let us track
in detail how operators besides the nuclear interactions evolve
when they are subject to the valence-decoupling transformation.
Recall from the discussion in section 3.2.3 that this can
even quantitatively explain the quenching of the Gamow-Teller
strength in phenomenological Shell Model calculations, provided
two-body current contributions to the initial transition operator
are taken into account as well. For electromagnetic transitions,
the renormalization of the one-body transition operator and

the appearance of induced terms generate at least some part
of the usual phenomenological effective charges, but a more
complete treatment of nuclear collectivity (cf. section 2.3.3) as
well the inclusion of current contributions to these operators are
developments that need to be undertaken in the coming years.
Emergence of collectivity. Both NCCI and VS-IMSRG
calculations with chiral NN+3N interactions have demonstrated
that these interactions do indeed produce the telltale features of
collective behavior in nuclear spectra [26, 141, 213, 261, 262].
Upon a bit of reflection, it is not surprising that reasonable
results on rotational bands, for instance, should be found in these
approaches: While they rely on particle-hole type expansions,
the exact diagonalization is done in a complete model space of
up to AvhAvp excitations, where Av is the number of valence
nucleons. In contrast, equation-of-motion methods that typically
employ 1p1h or 2p2h truncations struggle with the description
of collectivity in low-lying states [83, 122, 204], but they do work
reasonably well for giant resonances [241, 242].

As argued in sections 2.3.3 and 2.3.6, bases built on particle-
hole type expansions are not ideally suited to the description
of collective correlations. The SA-NCSM [139] instead uses
irreducible representations of SU(3) or Sp(3, ), the dynamical
symmetry groups of collective models [263], to achieve a much
more efficient description of collective behavior in nuclei. This
is illustrated for the case of 20Ne in Figure 14. The SA-NCSM
calculations [140] based on the two-nucleon NNLOopt potential
[264] describe the ground-state rotational band extremely well,
all the way to the J = 8+ state. It is dominated by a single SU(3)
irrep, associated with the axially elongated shape of the computed
intrinsic density profile that is also shown in the figure.

4. THE FUTURE TO BE WRITTEN: A LOOK
AT THE CHALLENGES AHEAD

4.1. Rethinking the Many-Body Expansion
A substantial part of the appeal of methods like CC, IMSRG and
SCGF is their polynomial scaling. For the purposes of uncertainty
quantification (UQ), we need to be able to evaluate at least two
consecutive truncation levels to assess the convergence of the
many-body expansion in nuclei for which exact calculations are
not feasible. Efforts in that direction have been in progress for
some time, and while somemethods are at a more advanced stage
than others, the improved truncations should be available for
regular use within the next couple of years [10, 12, 86, 100, 116,
244, 265]. In part, this is owing to the development of computer
tools that automate tasks like diagrammatic evaluation or angular
momentum coupling [266, 267]. The computational scaling of
these approaches will be of order O(N8) or O(N9), which makes
applications a task for leadership-class computing resources for
the foreseeable future. It is clear that it will not be feasible to just
push the calculations further, since we would then face a (naive)
O(N12) scaling.

Applications where we would expect to need high-order
truncations involve nuclear states with strong collective
correlations, provided we work from a spherical reference
state. As explained in section 2.3, this issue can likely be
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A B C

FIGURE 13 | Deviations between theoretical and experimental excitation energies of 391 sd-shell states, for (A) the EM1.8/2.0 interaction without valence

decoupling, (B) the same interaction transformed with VS-IMSRG, and (C) the USDB interaction [258]. The points correspond to the respective root-mean-square

deviations for each interaction. Figure courtesy of R. Stroberg.

A B

FIGURE 14 | SA-NCSM results for 20Ne in an SU(3)-adapted basis, using the two-nucleon interaction [264]. (A) Excitation energies (horizontal axis) of the

ground-state rotational band (Jπ = 0+ through 8+) and 0+ states, and the dominant shape in each state (vertical axis), indicated using the ab initio one-body density

profiles in the intrinsic (body-fixed) frame. (B) Distribution of the equilibrium shapes that contribute to the ground state and first excited 2+ state, indicated by the

average deformation parameters (β, γ ). See reference [140] for additional details. Figure reprinted with permission from the American Physical Society.

addressed either by using mean-field reference states with
spontaneously broken symmetries (cf. section 2.3.4) or using
correlated reference states in the first place (cf. section 2.3.3),
and the first applications of the IM-GCM give credence to that
idea. Moreover, there is first evidence that the CC and IMSRG

truncations converge much more rapidly for observables that
are sensitive to collectivity [268], i.e., the current state-of-the-art
truncations may be sufficiently precise.

The IMSRG framework also offers perspectives for the
construction of further IMSRG hybrid methods (cf. section
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2.3.3). Based on the successes of both the IM-NCSM and
IM-GCM it would be worthwhile to use IMSRG-evolved
Hamiltonians in the SA-NCSM or techniques like the Density
Matrix Renormalization Group, which is also capable of
efficiently describing strong collective correlations under certain
conditions [269, 270].

4.2. Leveraging Computational and
Algorithmic Advances
The progress in ab initio many-body calculations is not simply
due to the availability of increasingly powerful computational
resources, but also due to dedicated collaborations with
computer scientists to ensure that the available high-performance
computers are used efficiently. Such collaborations will only
grow more important as hardware architectures change rapidly
and a growing demand for computing time requires users
to demonstrate sufficient efficiency to be granted access
to supercomputers.

Measures to boost the numerical efficiency can also be taken at
the many-body theory level. Efficient calculations rely on finding
optimal representations of the relevant physical information
that is encoded in the Hamiltonian. Algorithmic gains are
possible whenever there is a mismatch, either because we made
convenient choices, e.g., by expanding many-body states in terms
of simple Slater determinants, or because we were not able
to recognize simplifications beforehand, e.g., due to hidden or
dynamical symmetries.

The SRG has played a key role in addressing the first
points at the level of the nuclear interaction over the past
two decades, and SRG and IMSRG can be applied in novel
ways to explore dynamical symmetries [55]. In the construction
of a configuration space, the selection of the single-particle
basis leaves room for optimization. Indeed, the natural orbitals
introduced in reference [131] lead to faster model-space
convergence in NCSM and CC calculations, implying a more
compact Hamiltonian matrix in natural orbital representation.
The efficiency of this representation can be leveraged further
by making robust importance truncations based on analytical
measures, e.g., in MBPT, CC, or IT-NCSM [9, 271].

The aforementioned steps make use of prior theoretical
knowledge, e.g., to identify desired decoupling patterns in
interactions, or define analytical measures for the importance
of basis states. If such knowledge is not available, or we
want to avoid bias, we can leverage a myriad of Principal
Component Analysis (PCA) methods to factorize interactions
or intermediate quantities in many-body calculations [271, 272].
This can potentially even give us control over the computational
scaling of nuclear many-body methods (see, e.g., [273–277]).

A very noteworthy development with origins in nuclear
physics is Eigenvector Continuation (EVC) [278, 279], a method
for learning manifolds of eigenvector trajectories of parameter-
dependent Hamiltonians. The method has been employed in
several contexts, e.g., to stabilize high-order MBPT expansions
[81] and to construct emulators for nuclear few- and many-body
calculations [280, 281]. As an example, Figure 15 shows a global
sensitivity analysis of CC results for 16O under variations of the

chiral LECs [281]. Eigenvector continuation was used to learn
representations of the CCSD Hamiltonian and charge radius
operators in a 64-dimensional subspace of the space of CCSD
ground-state wave functions for interactions with 16 varying
LECs. The subspace-projected Hamiltonian was then sampled
more than amillion times on laptop, while full CCSD calculations
of the same ensemble would be completely unfeasible. The
successful applications of EVC suggest that the method should be
further explored as a tool for improvement, emulation and UQ in
other many-body methods in the (near) future.

4.3. Uncertainty Quantification
In typical nuclear many-body calculations as discussed in
sections 2 and 3 the main sources of theoretical uncertainties
are the EFT truncation of the observables and the many-body
wave function, either due to many-body expansion and/or model
space truncations in configuration space approaches, lattice
discretization effects in Lattice EFT, or the specific form of the
wave function ansatz in QMC. If an SRG evolution is applied,
there is an additional uncertainty associated with the truncation
of induced operators (see section 2.2).

The application of Bayesian methods has led to enormous
progress in the quantification of the EFT uncertainties [34–
36, 282–285], and it would be highly desirable to apply the
same approach to the many-body uncertainties as well. The
most challenging amongst these are the truncation of the many-
body expansion in methods like CC, IMSRG or SCGF, and the
truncation of the free-space SRG flow of observables. In contrast,
the infrared effects of finite-basis size truncations in HO bases—
or general orbitals that are at some point expanded in an HO
basis—are well-understood for the energy and other observables,
and they can be systematically corrected for [286–290]. The
situation is less clear for ultraviolet basis-size errors [291], but
this error can be suppressed by working at appropriate values of
the HO frequency.

An ideal uncertainty analysis would combine the exploration
of EFT and many-body uncertainties for nuclear observables
of interest, using EC or Machine Learning (ML) to construct
emulators that allow an efficient sampling of the parameter space.
In such an effort, the generation of sufficient training data poses
a significant challenge, because it would require calculations at
several truncation levels (see section 4.1). A possible strategy for
mitigating this issue is to combine non-perturbative methods
with cheaper high-order MBPT in Bayesian mixed models (see
references [212, 292, 293] for applications in nuclear physics).
The successful application of factorizationmethods to the nuclear
many-body problem could likely resolve the issue once and for all
by reducing the computational scaling of high-order truncations,
at the cost of introducing an additional uncertainty from the
factorization procedure.

On the road toward the destination represented by such
a “complete” UQ framework, the intermediate milestones will
already provide valuable insights into open issues in the EFTs of
the strong interactions, and enable the design of better protocols
for constraining and refining EFT-based interactions and
operators (see, e.g., references [294, 295] and references therein).
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A

B

FIGURE 15 | Sensitivity analysis using subspace-projected CC (SPCC) method [281]. (A) illustrates the capability of the SPCC Hamiltonian constructed from 3 to 5

sample points to predict full CCSD ground-state energies and charge radii for 16O over a wide range of values of the chiral LEC C1S0
. (B) Shows the global sensitivity

of the 16O ground-state energy and charge radius to chiral LECs, determined by evaluating over 1,000,000 quasi-MC samples from a 64-dimensional SPCC

Hamiltonian. Vertical bars indicate 95% confidence intervals. For details, see reference [281]. Figure reprinted with permission from the American Physical Society.

4.4. Strengthening and Employing the
Hierarchy of Strong Interaction EFTs
Strong interaction physics is a multi-scale problem, and there are
good reasons for making better use of the hierarchy of Effective
(Field) Theories at our disposal. At the top level, we have QCD,
followed by EFTs involving hyperons that can be eliminated
progressively until we arrive at the “traditional” pionful and
pionless chiral EFTs (see references [296, 297] and references
therein). At even lower scales, one can formulate an EFT for
nuclear halos (or clusters) [297] and make the connection to
nuclear DFT and collective models, which can be understood as
EFTs as well [298–305].

At least in principle, the different levels of this hierarchy can
be connected either by computing observables with different
theories and matching the LECs, or using RG flows to track
in detail how the theories evolve from one into another.
While matching procedures have been applied successfully to
modern EFts in nuclear physics [306–311] as well as efforts
to match more traditional models of nuclear structure to ab
initio calculations [312–314], making the connection through
RG methods is a more daunting task. While I must admit
to bias in this regard, I still consider this an effort worth
undertaking. The success of SRG techniques in nuclear physics
demonstrate how these methods reveal the most effective degrees
of freedom even in situations were the separation of scales is
not perfectly clear. Moreover, RGs would also reveal unexpected
features of the power counting schemes, like the enhancement or
inadvertent omission of certain operators (see reference [51] and
references therein).

Tackling power counting issues. Throughout this work, I have
alluded to shortcomings and issues of the current generation
of chiral interactions, like the struggle to achieve a good
simultaneous description of nuclear binding energies and radii
(see section 3.1). Recent efforts to construct new, accurate
chiral interactions have revealed that this issue is connected to
the use of local or non-local regulators, with the latter being
favored for better descriptions [114, 209]. In another exploration
of non-locally regularized chiral forces [210, 211], a tension
between the simultaneous description of nuclear matter and
finite was observed in the attempts to fit the chiral LECs. In
QMC calculations, it was demonstrated that the use of local
regulators breaks the equivalence of parameterizations of the
interaction that are connected by Fierz identities, in certain
cases with disastrous consequences [188]. Meanwhile, Epelbaum
et al. have proposed the use of a more nuanced semilocal
regularization scheme that applies local regulators to the long-
range pion exchange and non-local regulators to the short-range
contact terms [3, 46]. While physical arguments can be made in
favor of different regularization schemes, perhaps especially the
semilocal one, the significant scheme dependence is at odds with
the principles of EFT, which would predict regulator artifacts to
be pushed beyond the order at which one currently works.

It has also been suggested that the scales of the chiral
EFT interaction and the inherent scales of the many-body
configuration space (e.g., IR and UV cutoffs inherited from a HO
basis, see section 4.3) or coordinate space wave functions should
not be treated independently, and that by doing so, currentmany-
body approaches might at least contribute to power counting
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issues. There have been a few efforts to explore this problem, but
more work is clearly required [315–320].
Application needs. Aside from the formal need to make progress
on the power counting issue, there are also concrete application
needs that call for a tighter coupling between QCD and the
nuclear EFTs. For example, the chiral EFT transition operator
for neutrinoless double-beta decay (see section 3.2.3) contains
counter terms whose LECs can only be determined from Lattice
QCD [321–324].

The dawning of a new age in our understanding of neutron
stars, heralded by the detection of gravitational waves from
the neutron-star merger GW170817, has taken the demand for
accurate neutron and nuclear matter equations of state to a new
level (see, e.g., reference [159] and references therein). While
ab initio calculations of infinite matter up to the saturation
region based on chiral interactions are reasonably well-controlled
[159, 190, 285, 325], the supranuclear densities probed in merger
events are beyond the range of validity of regular pionful
chiral EFT. To increase its validity, hyperons must be taken
into account as dynamical degrees of freedom (see [296] and
references therein), and the entire set of nuclear and hyperon
LECs must be readjusted at the increased breakdown scale. For
the NN sector, this is unproblematic due to the plethora of
available scattering data. Since no direct experiments on three-
neutron or three-proton systems are feasible, the only available
experimental constraints come from finite nuclei, which implies
that the corresponding channels of the 3N interaction are only
constrained at sub-saturation densities. The world database of
hyperon-nucleon scattering data is also quite limited. Thus, a
high-precision interaction for describing the equation of state
at high density can only be constructed with the help of Lattice
QCD constraints on the 3N and hypernucleon LECs.

4.5. Interfacing With Reaction Theory
The final important research direction for the coming decade I
want to discuss here are efforts to interface the advanced ab initio
nuclear structure methods at our disposal with reaction theory
[326].

As discussed in sections 2.3.6 and 3.2.4, the NCSMC has been
applied with great success to the reactions of light nuclei at low
energies, but its computational complexity makes this approach
unfeasible for nuclei beyond A ≈ 10 − 20. Work has begun
on a similar approach that combines SA-NCSM with the RGM,
leveraging the efficiency of the symmetry-adapted basis to reach
medium-mass nuclei [327] (cf. sections 2.3.6 and 3.3). Since the
RGM is just a special case of a Generator Coordinate Method,
the IM-GCM discussed in sections 2.3.3 and 3.2.3 is a promising
candidate for extending this type of reaction calculations to even
heavier nuclei.

Methods that are similar in spirit to these combinations of
structure approaches with the RGM are the APM, which can
provide an interface between structure and scattering in Lattice
EFT (cf. sections 2.3.8 and 3.2.4), as well as the GSM Coupled
Channel (GSM-CC) approach, which was developed to describe
reactions between light projectiles and targets that are treated in
the GSM with a core [221, 328, 329]. Thus far, applications of the
GSM-CC have been based on phenomenological valence-space

interactions, but new efforts are underway to directly construct
suitable Hamiltonians based on EFT principles [220, 330], or
derive the effective interactions from chiral forces with the
techniques discussed in section 2.3 (see [214, 215]). Of course,
the GSM-CC ideas could also be applied to the No-Core GSM
[153, 155, 218], although the computational complexity would
limit such an approach to light nuclei.

A complementary strategy for bridging nuclear structure and
reactions for medium-mass nuclei is the construction of optical
potentials for use in traditional reaction calculations. In SCGF
theory, the optical potential for elastic nucleon-nucleus scattering
is given by the one-body self energy, which is obtained as a
byproduct of a nuclear structure calculation, and can be used
with little effort in reaction codes [125]. Similarly, Rotureau
et al. constructed optical potentials by extracting the self-energy
from the Coupled Cluster Green’s Function [123, 124, 331]. One
can roughly view this procedure as performing a GF calculation
with the similarity-transformed CCHamiltonian, which does not
require self-consistent iterations because of the CC decoupling
(cf. section 2.3.4). Optical potentials can also be constructed by
folding scattering T-matrices with ab initio density matrices.
This technique was applied for NCSM density matrices by
two collaborations in references [332, 333] and [334, 335],
respectively, and more applications are underway.

While the published results from the optical-potential
based approaches are promising, an important aspect of
these calculations must be checked carefully in the near
term: The optical potential depends on the resolution scale
of the used chiral interactions, and the calculation scheme,
which encompasses the truncations in the operators and
many-body method, as well as the choice of regulator in
the interaction [257, 336]. To produce scale- and scheme-
independent observables, these choices must be matched by
the reaction theory. Matching the resolution scales is probably
the easier of the two checks, but it will require the analysis
of free-space SRG transformations on the reaction theory side.
Once structure and theory are defined at a matching resolution
scale, any residual scheme dependence of the observables
will give rise to the remaining theoretical uncertainty of the
combined calculation.

5. EPILOGUE

Thus concludes our little excursion through the landscape of
state-of-the-art ab initio nuclear many-body theory, but of
course, the road goes ever on. I hope that this guided tour
has contributed to your appreciation of the immense progress
the community has made in the last 10 years, as well as the
challenges that we are facing on the next stage of the road.
None of the obstacles in our path are unsurmountable, and
while we chip away at them, results from ab initio calculations
can make meaningful contributions to the analysis and planning
of nuclear physics and fundamental symmetry experiments.
With new facilities launching in the next couple of years, the
fun will begin in earnest, so here’s looking forward to the
next decade!
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GLOSSARY

ADC Algebraic Diagrammatic Construction (for Self-Consistent Green’s

Functions)

AFDMC Auxiliary Field Diffusion Monte Carlo

APM Adiabatic Projection Method (in Lattice EFT)

BMBPT Bogoliubov Many-Body Perturbation Theory

CI Configuration Interaction

CC Coupled Cluster

CCSD Coupled Cluster with Singles and Doubles excitations

CCSDT Coupled Cluster with Singles, Doubles and Triples excitations

CCSD(T) Coupled Cluster with Singles, Doubles and perturbative Triples excitations

χEFT Chiral Effective Field Theory

DFT Density Functional Theory

EVC Eigenvector Continuation

EDF Energy Density Functional

EFT Effective Field Theory

GCM Generator Coordinate Method

GFMC Green’s Function Monte Carlo

GHW Griffin-Hill-Wheeler (equation)

HF Hartree-Fock

HFB Hartree-Fock-Bogoliubov

IM-GCM In-Medium Generator Coordinate Method (a combination of IMSRG and

GCM)

IM-NCSM In-Medium No-Core Shell Model (a combination of IMSRG and NCSM)

IMSRG In-Medium Similarity Renormalization Group

LEFT Lattice Effective Field Theory

LO Leading Order (Effective Field Theory)

MBPT Many-Body Perturbation Theory

MR-

IMSRG

Multi-Reference In-Medium Similarity Renormalization Group

NCCI No-Core Configuration Interaction

NCSM No-Core Shell Model

NCSMC No-Core Shell Model with Continuum

NLO Next-to-Leading Order (EFT)

NNLO Next-to-Next-to-Leading Order (EFT)

N3LO Next-to-Next-to-Next-to-Leading Order (EFT)

N4LO Next-to-Next-to-Next-to-Next-to-Leading Order (EFT)

QCD Quantum Chromodynamics

QMC Quantum Monte Carlo

RG Renormalization Group

RGM Resonating Group Method

SCGF Self-Consistent Green’s Functions

SRG Similarity Renormalization Group

TBME two-body matrix elements (typically in the discussion of Shell Model

interactions)

UCC Unitary Coupled Cluster

UMOA Unitary Model Operator Approach

UQ Uncertainty Quantification

VMC Variational Monte Carlo

VS-

IMSRG

Valence-Space In-Medium Similarity Renormalization Group
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