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In this article, we review the HAL QCD method to investigate baryon-baryon interactions,

such as nuclear forces in lattice QCD. We first explain our strategy in detail to investigate

baryon-baryon interactions by defining potentials in field theories, such as QCD. We

introduce the Nambu-Bethe-Salpeter (NBS) wave functions in QCD for two baryons

below the inelastic threshold. We then define the potential from NBS wave functions

in terms of the derivative expansion, which is shown to reproduce the scattering phase

shifts correctly below the inelastic threshold. Using this definition, we formulate a method

to extract the potential in lattice QCD. Secondly, we discuss pros and cons of the HAL

QCD method, by comparing it with the conventional method, where one directly extracts

the scattering phase shifts from the finite volume energies through the Lüscher’s formula.

We give several theoretical and numerical evidences that the conventional method

combined with the naive plateau fitting for the finite volume energies in the literature so

far fails to work on baryon-baryon interactions due to contaminations of elastic excited

states. On the other hand, we show that such a serious problem can be avoided in

the HAL QCD method by defining the potential in an energy-independent way. We also

discuss systematics of the HAL QCD method, in particular errors associated with a

truncation of the derivative expansion. Thirdly, we present several results obtained from

the HAL QCD method, which include (central) nuclear force, tensor force, spin-orbital

force, and three nucleon force. We finally show the latest results calculated at the nearly

physical pion mass, mπ ≃ 146 MeV, including hyperon forces which lead to form ��

and N� dibaryons.

Keywords: lattice QCD, nuclear forces, baryon-baryon interactions, dibaryons, equation of state, neutron stars

1. INTRODUCTION

How do nuclear many-body systems emerge from the fundamental degrees of freedom,
quarks and gluons? It has been a long-standing problem to establish a connection between
nuclear physics and the fundamental theory of strong interaction, quantum chromodynamics
(QCD). In particular, nuclear forces serve as one of the most basic constituents in
nuclear physics, which are yet to be understood from QCD. While so-called realistic
nuclear forces [1–3] have been established with a good precision, they are constructed
phenomenologically based on scattering data experimentally obtained. Recent development
in effective field theory (EFT) provides a more systematic approach for nuclear forces

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2020.00307
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2020.00307&domain=pdf&date_stamp=2020-08-14
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:saoki@yukawa.kyoto-u.ac.jp
https://doi.org/10.3389/fphy.2020.00307
https://www.frontiersin.org/articles/10.3389/fphy.2020.00307/full
http://loop.frontiersin.org/people/693479/overview


Aoki and Doi Lattice QCD and Baryon-Baryon Interactions

from a viewpoint of chiral symmetry in QCD [4–8], whose
unknown low-energy constants, however, cannot be determined
within its framework but are obtained only by the fit to
the experimental data. Under these circumstances, it is most
desirable to determine nuclear forces as well as general
baryon-baryon interactions from first-principles calculations
of QCD, the lattice QCD method. Once baryon forces are
extracted from QCD, we can solve finite nuclei, hypernuclei
and nuclear/hyperonic matter by employing various many-
body techniques developed in nuclear physics. The outcome is
expected to make a significant impact on our understanding of
nuclear astrophysical phenomena, such as supernovae, binary
neutron star merges and nucleosynthesis.

In this paper, we review the HAL QCD method to determine
baryon-baryon interactions in lattice QCD. In this method,
integral kernels, or so-called “potentials,” are first extracted
from lattice QCD, and physical observables, such as scattering
phase shifts and binding energies are calculated by solving the
Schrödinger equation with obtained potentials in the infinite
volume. We show that the notion of potential can be rigorously
introduced as a representation of the S-matrix in quantum
field theories as QCD. The essential point is that the potentials
are defined through the Nambu-Bethe-Salpeter (NBS) wave
functions, in which the information of phase shifts are encoded in
their asymptotic behaviors. We employ a non-local and energy-
independent potential where the non-locality is defined through
the derivative expansion. In particular, energy-independence of
the potential is useful since one can extract the potential from
the ground state as well as elastic excited states simultaneously.
This enables us to avoid the notorious signal-to-noise issue
for multi-baryon systems in lattice QCD (or the ground state
saturation problem), and to make a reliable determination of
baryon-baryon interactions.

In lattice QCD, there also exists a conventional method, in
which phase shifts are obtained from finite volume energies
through the Lüscher’s formula. For meson-meson systems,
a number of works have been performed based on the
Lüscher’s formula [9], where finite volume energies are extracted
utilizing the variational method [10]. The Lüscher’s formula
has been generalized for various systems, such as boosted
systems [11], arbitrary spin/partial waves [12, 13], and three-
particle systems [14, 15]. While theoretical bases are well-
established for both conventional method and HAL QCD
method, numerical results for baryon-baryon systems at heavy
pion masses have shown inconsistencies with each other. In this
paper, we make a detailed comparison between two methods,
scrutinizing possible sources of systematic errors. In particular,
we examine whether the systematic errors associated with excited
state contaminations are controlled or not in the procedure of
the conventional method in the literature (“the direct method”),
namely, simple plateau fitting for the ground state at early
Euclidean times. We also examine systematic errors in the HAL
QCDmethod, in particular, the truncation error of the derivative
expansion. We show theoretical and numerical evidences that
the inconsistency between two methods originates from excited
state contaminations in the direct method. We also demonstrate
that the inconsistency can be actually resolved if and only if finite

energy spectra are properly obtained with an improved method
rather than the naive plateau fitting in the conventional method.

After establishing the reliability of the HAL QCD method,
we present the numerical results of nuclear forces from the
HAL QCD method at various lattice QCD setups. The results
at heavy pion masses for central and tensor forces are shown
and their quark mass dependence as well as physical implications
are discussed. The calculations of spin-orbit forces and three-
nucleon forces are also given. Once nuclear forces are obtained,
one can solve nuclear many-body systems with the obtained
potentials. We study finite nuclei, nuclear equation of state and
structure of neutron stars based on lattice nuclear forces at heavy
pion masses. Finally, the latest results of nuclear forces near the
physical pionmass are presented, as well as hyperon forces, which
are shown to generate�� and N� dibaryons.

This paper is organized as follows. In section 2, we discuss
methods to study baryon-baryon interactions from lattice QCD.
After briefly introducing the conventional method and its actual
practice, called the “direct method,” we describe the detailed
theoretical formulation as well as its practical demonstration
for the newly developed method, the HAL QCD method. In
section 3, we discuss pros and cons of these two methods, and
compare the numerical results at heavy pion masses. We present
evidences that the results from the direct method suffer from
uncontrolled systematic errors associated with the excited state
contaminations. In section 4, we summarize results on nuclear
potentials in the HAL QCD method. After reviewing the results
obtained at heavy pion masses for central and tensor forces in
the parity-even channel as well as spin-orbit forces and three-
nucleon forces, we present nuclear many-body calculations based
on lattice nuclear forces for double-magic nuclei, equation of
state and the structure of neutron stars. Latest results for nuclear
forces near the physical pion mass are also given. In section 5, we
present hyperon forces near the physical pion mass, which lead
to �� and N� dibaryons. Section 6 is devoted to the summary
and concluding remarks.

2. TWO BARYON SYSTEMS IN LATTICE
QCD

In lattice QCD, the 2-pt function for a hadron H, created by O†
H

and annihilated by OH , is expressed as

〈0|OH(Ep, t)O†
H(Ep, 0)|0〉 =

∞
∑

n=0

Zn(Ep)e−En(Ep)t + · · · ,

Zn(Ep) = |〈0|OH(Ep, 0)|n,En(Ep)〉|2, (1)

where |n,En(Ep)〉 is the n-th one-particle state with a mass mn, a
momentum Ep and an energy En(Ep) =

√

m2
n + Ep2, and ellipses

represent contributions from multi particle states. We here
assumem0 < mn>0, so thatm0 is the hadronmass for the ground
state, which can be extracted from the asymptotic behavior of the
2-pt function in the large t as

〈0|OH(Ep, t)O†
H(Ep, 0)|0〉 ≃ Z0(Ep)e−E0(Ep)t + O

(

e−En>0(Ep)t
)

,

t → ∞, (2)
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where finite volume artifact is exponentially suppressed and can
be eliminated by an infinite volume extrapolation.

So far, this method in lattice QCD (and the extension to
lattice QCD + QED) has successfully reproduced light hadron
spectra [16] including the proton–neutron mass splitting [17]. A
simple application of the method, however, does not work well
for an investigation of hadron interactions. For example, the 2-pt
function of two baryons in the center of mass system behaves in
the large t as

〈0|OBB(E0, t)OBB(E0, 0)†|0〉 ≃ ZBBe
−EBBt + · · · , (3)

where we obtain the lowest energy EBB. In the infinite volume
limit, EBB behaves as EBB = 2mB or EBB = 2mB − 1E
depending on an absence or presence of bound state. Here mB

is the corresponding baryon mass and 1E > 0 is the binding
energy of the lowest bound state. Only the binding energy of the
bound state can be extracted by this simple method and thus
more sophisticated methods are required. Currently there are
two methods to investigate hadron interactions in lattice QCD,
the direct method (or finite volume method) and the HAL QCD
method, which are explained in this section.

2.1. Direct Method
The method most widely used to investigate hadron interactions
in lattice QCD is to extract scattering phase shifts from energy
eigenvalues in 3-dimensional finite boxes through the Lüscher’s
finite volume formula [18]. For example, in the case of the S-wave
scattering phase shift, δ0(k), the formula reads

k cot δ0(k) =
1

πL

∑

En∈Z3

1

En2 − q2
, q = kL

2π
, (4)

where k is determined through EBB(L) = 2
√

k2 +m2
B with

EBB(L) being the energy of the two baryon measured in lattice
QCD on a finite box with the spatial extension L as in
Equation (3). We here neglect the partial wave mixing in the
cubic group and spin degrees of freedom, for simplicity. Only the
discrete sets of point (k2, k cot δ0(k)), which satisfies Equation (4),
are realized on a given volume L3. Thus, the scattering phase
shift δ0(k) at the corresponding k can be extracted in lattice
QCD, simply by measuring the finite volume energy, EBB(L).
Note that the formula assumes that the hadron interaction is
accommodated within the lattice box and is not distorted by
the finite volume artifact, which condition should be examined
numerically to be satisfied in actual calculations.

In Figure 1, we illustrate how scattering phase shifts and the
bound state energy can be extracted by this method in the case
of the NN scatterings. In the figure, the red solid line represents
the effective range expansion (ERE) for k cot δ0(k)/mπ at the
Next-to-Leading order (NLO) as

k

mπ
cot δ0(k) = 1

a0mπ
+ r0mπ

2

k2

m2
π

(5)

where the scattering length a0 and the effective range r0 are taken
to be a0mπ = 16.8, r0mπ = 1.9 for NN(1S0) (Left) or a0mπ =

−3.8, r0mπ = 1.3 for NN(3S1) (Right) with mπ = 140 MeV,
while colored dashed lines represent the Lüscher’s finite volume
formula, Equation (4) on L = 10, 12, 14, 18 fm. Discrete points
which satisfy both the Lüscher’s finite volume formula and the
ERE are realized on each volume, as shown by the open squares,
up/down triangles and diamonds.

A distribution of the allowed k2 for k2 > 0 becomes denser
as the volume increases, so as to be continuous in the infinite
volume limit, while a sequence of discrete points for k2 < 0 leads
to an accumulation point, which corresponds to the scattering
state at k2 = 0 in the left figure or the bound state pole, denoted
by the black solid circle in the right figure. It is noted here that
the bound state pole appears as the intersection between the ERE
and the bound state condition, −

√

−(k/mπ )2 (black solid line).
To see this, we first write

k cot δ0(k) = ik · S(k)+ 1

S(k)− 1
, S(k) = e2iδ0(k), (6)

where S(k) is the S-matrix for the NN elastic scattering. The
bound state energy κb can be extracted from the pole of this
S-matrix as

S(k ∼ iκb) ≃
−iβ2

b

k− iκb
, (7)

where β2
b
is real and positive for physical poles [20]. Thus at

k2 ≃ −κ2
b
, we have

k cot δ0(k)
∣
∣
k=iκb

= −κb = −
√

−k2
∣
∣
∣
k=iκb

, (8)

which means that the binding momentum k = iκb is given by an
intersection between k cot δ0(k) and−

√
−k2. Moreover, since

d

dk2

[

k cot δ0(k)− (−
√

−k2)
]
∣
∣
∣
∣
k2=−κ2

b

= − 1

β2
b

< 0, (9)

the slope of k cot δ0(k) must be smaller than that of −
√
−k2 as a

function of k2 at the bound state pole, as in the case of Figure 1
(right). The finite volume analysis thus provides not only an
infinite volume extrapolation of the binding energy but also a
novel way to examine the normality of the result in the direct
method [19].

2.2. HAL QCD Method
2.2.1. Formulation
The HAL QCD method, another method to investigate hadron
interactions in lattice QCD, employs the equal time Nambu-
Bethe-Salpeter (NBS) wave function, defined by

φk(r)e
−Wkt ≡ 〈0|N(x+ r, t)N(x, t)|NN,Wk〉, (10)

where |NN,Wk〉 is the NN eigenstate in QCD with the center

of mass energy Wk = 2
√

k2 +m2
N and the nucleon mass mN ,

and N(x, t) is a nucleon (annihilation) operator, made of quarks.
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FIGURE 1 | A determination of k cot δ0(k)/mπ from energies of the two nucleon state in the finite volume. Taken from Iritani et al. [19].

Other quantum numbers, such as spin/isospin of two nucleons
are suppressed for simplicity. We mainly use

Nα(x) = εabc
(

ua T(x)Cγ5d
b(x)

)

qcα(x), x ≡ (x, t), (11)

where C = γ2γ4 is the charge conjugation matrix, q = u(d)
for proton (neutron). Other choices, such as smeared quarks are
possible here, and such arbitrariness is considered to be a choice
of the scheme for the definition of the NBS wave function or
the potential (see [21] for such an example). Throughout this
paper, we consider the NN elastic scattering, so that Wk <

Wth ≡ 2mN + mπ , where mπ is the pion mass. Note that this
condition is also necessary for the finite volume method in the
previous subsection.

Since interactions among hadrons are all short-ranged in
QCD, there exists some length scale R, beyond which (i.e.,
r ≡ |r| > R) the NBS wave function satisfies the Helmholtz
equation as

(k2 + ∇2)φk(r) ≃ 0, k = |k|. (12)

Furthermore, it behaves for large r > R as

φk(r) ≃
∑

l,m

Zl,m
sin(kr − lπ/2+ δl(k))

kr
Ylm(�r), (13)

where Ylm is the spherical harmonic function for the solid angle
�r of r, and we ignore spins of nucleon for simplicity1. Here
it is important to note that the NBS wave function contains
information of the phase δl(k) of the S-matrix for the orbital
angular momentum l, which is a consequence of the unitarity of
the S-matrix in QCD [24, 25].

1The formula becomes more complicated if the nucleon spins are

considered [22, 23].

In the HAL QCD method, the non-local but energy-
independent potential is defined from the NBS wave function
through the following equation,

(Ek −H0)φk(r) =
∫

d3 r′U(r, r′)φk(r′), Ek =
k2

2m
,

H0 = −∇2

2m
, m = mN

2
, (14)

forWk < Wth, and Equation (12) implies U(r, r′) = 0 for r > R.
While an existence of U(r, r′) has been shown in Ishii et al. [26]
and Aoki et al. [23, 27], the non-local potential which satisfies
Equation (14) is not unique. Thus we have to define the potential
uniquely, by specifying how to extract it. For this purpose, we
introduce the derivative expansion,U(r, r′) = V(r,∇)δ(3)(r−r′),
whose lowest few orders for the NN with a given isospin channel
are written as

V(r,∇) = V0(r)+ Vσ (r)(σ1 · σ2)+ VT(r)S12
︸ ︷︷ ︸

LO

+VLS(r)L · S
︸ ︷︷ ︸

NLO

+O(∇2), (15)

where V0(r) is the central potential, Vσ (r) is the spin dependent
potential with σi being the Pauli matrix acting on the spinor index
of the i-th nucleon, VT(r) is the tensor potential with the tensor
operator S12 = 3(r̂·σ1)(r̂·σ2)−(σ1·σ2) (r̂ ≡ r/r), andVLS(r) is the
spin-orbit (LS) potential with the angular momentum L = r× p

and the total spin S = (σ1 + σ2)/2. It is noted that an expansion
of the non-local potential is not unique. For example, we may
improve the convergence of the expansion by modifying the ∇
operator [28].

Once we obtain the approximated potential at lowest few
orders, we can calculate the scattering phase shifts or the binding
energies of possible bound states by solving the Schrödinger
equation with this potential in the infinite volume. As is the case

Frontiers in Physics | www.frontiersin.org 4 August 2020 | Volume 8 | Article 307

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Aoki and Doi Lattice QCD and Baryon-Baryon Interactions

for the finite volume method, it is necessary that the potential
is not distorted by the finite volume artifact, but this can be
checked easily since the potential itself is explicitly obtained.
We can also check how good the approximated potential is,
by increasing the order of the expansion. Needless to say, the
approximated potential depends on momenta of input wave
functions. As pointed out in Aoki et al. [29], these dependences
of the approximated potentials have been misidentified with
those of the non-local potential in the literature [30]. In
the next subsection, we will explicitly demonstrate how this
procedure works.

2.2.2. Demonstration
In order to see how the scattering phase shifts can be obtained by
the HAL QCD method, we consider the quantum mechanics for
a spinless system with a separable potential, defined by

U(r, r′) = ωv(r)v(r′), v(r) ≡ e−µr . (16)

The S-wave solution of the Schrödinger equation with this
potential is given exactly by

φ0k (r)

= eiδ0(k)

kr

[

sin{kr + δ0(k)} − sin δ0(k)e
−µr

(

1+ r(µ2 + k2)

2µ

)]

,

(17)

where

k cot δ0(k) = − 1

4µ2

[

2µ(µ2 − k2)− 3µ2 + k2

4µ3
(µ2 + k2)2

+ (µ2 + k2)4

8πmω

]

, (18)

which is the 4-th order polynomials in k2. In order to make
the scattering phase shift a more complicated function of k2, we
artificially modify the wave function from φ0

k
(r) to φk(r) which is

defined by

φk(r) =







φ0
k
(r) (r ≤ R)

C(k)
eiδR(k)

kr
sin{kr + δR(k)} (r > R),

(19)

where R is an infrared cutoff, and it is understood that the
potential is modified accordingly. The continuity of φk(r) and
φ′
k
(r) at r = R gives

k cot δR(k) = k
Y cot(kR)+ X

X cot(kR)− Y
, X = φ0k (R),

Y = d

dr
[rφ0k (r)]

∣
∣
∣
∣
r=R

, (20)

as well as C(k) = X/ sin(kR+ δR(k)). Hereafter, we study how the
scattering phase shifts are obtained in the HAL QCD method.

The derivative expansion for the S-wave scatterings leads to

V(r,∇) = V0(r)+ V1(r)∇2 + O(∇2), (21)

and we consider to determine the potential in each order
from φk(r).

The leading order (LO) potential is given by

VLO(r,∇) = VLO
0 (r; k) = (Ek −H0)φk(r)

φk(r)
, (22)

while the next-to-leading order (NLO) potential is extracted as

VNLO(r,∇) = VNLO
0 (r; k1, k2)+ VNLO

1 (r; k1, k2)∇2, (23)

where

(

VNLO
0 (r; k1, k2)

VNLO
1 (r; k1, k2)

)

= 1

D(r; k1, k2)

(

2m
[

VLO
0 (r; k2)Ek1 − VLO

0 (r; k1)Ek2
]

VLO
0 (r; k2)− VLO

0 (r; k1)

)

,

D(r; k1, k2) = 2m
[

VLO
0 (r; k2)− VLO

0 (r; k1)− (Ek2 − Ek1 )
]

.

(24)

Note that the potential in each order in the derivative expansion
{V0(r),V1(r), · · · } are defined to be k-independent, while the
potentials approximately obtained in each LO/NLO analysis,
{VLO

0 (r; k)} and {VNLO
0 (r; k1, k2),VNLO

1 (r; k1, k2)}, have implicit
k-dependence due to the truncation error in the derivative
expansion [29].

We calculate S-wave scattering phase shifts corresponding to
these approximated potentials, and compare them with the exact
phase shifts, δR(k). Considering µ as a typical inelastic threshold
energy in this model, we take k = 0 and/or k = µ for the
following analysis. Figure 2 shows the S-wave scattering phase
shift δ(k) (Left) and k cot δ(k) (Right) as a function of k2, where
all (dimensionful) quantities are measured in units of µ. In this
example, we take ω = −0.017µ4,m = 3.30µ, and R = 2.5/µ. In
the figures, the exact phase shift δR(k)(Left) or k cot δR(k) (Right)
is given by the blue solid line, while the LO approximations at
k = 0 or k = µ are represented by orange and green solid lines,
respectively. As seen from the figures, the LO approximation
at k = 0 (orange), exact at k2 = 0 by construction, gives a
reasonable approximation at low energies (k2 ≃ 0) but deviates
from the exact one at high energies near k2 ≃ µ2. On the other
hand, the LO approximation at k = µ (green) becomes accurate
at higher energies near k2 ≃ µ2 but inaccurate at low energies
near k2 ≃ 0. Combining two NBS wave functions, φk1=0(r) and
φk2=µ(r), one can determine the approximated potential at the

NLO, VNLO(r,∇), whose scattering phase shifts are represented
by the red solid lines in the figures. The phase shifts at the NLO
(red lines) gives reasonable approximations of the exact results
(blue solid lines) in the whole range (0 ≤ k2 ≤ µ2), as they are
exact at k2 = 0 and k2 = µ2 by construction. If we increase
the order of the expansion more and more, the approximation
becomes better and better2.

Using this model, let us compare the direct method and the
HAL QCD method. At the LO, the direct method gives either

2A similar attempt to represent an arbitrary potential in terms of a separable

potential is given in Ernst et al. [31, 32].
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FIGURE 2 | The scattering phase shifts δ(k) and k cot δ(k) as a function of k2. See the main text for more details.

FIGURE 3 | The NBS wave function for NN(1S0) at Ek ≃ 0 MeV with the PBC (left) and at Ek ≃ 45 MeV with the APBC (right). Both are normalized to unity at r = 1 fm.

Taken from Murano et al. [33].

k cot δ(k) at k2 = 0 or k2 = µ2 without any information about
the effective range, which only gives the LO ERE (an orange
dashed line or a green dashed line in the right figure). Thus the
LO potentials approximate the exact k cot δ(k) much better (the
orange solid line or the green solid line). In the direct method,
the ERE at NLO is obtained by combining the data at k2 = 0 and
k2 = µ2 as

k cot δ(k) = 1

a0
+ reff

2
k2,

1

a0
= lim

k→0
k cot δ(k),

reff

2
= cot δ(µ)

µ
− 1

µ2a0
, (25)

which is given by a red dashed line in the right figure. By
comparing the HAL QCD method with potentials at NLO (the
red solid line) and the direct method with NLO ERE (the red

dashed line), the former leads to a better approximation of the
exact result than the latter, since higher order effects in ERE
in terms of k2 are included in the former. Note, however, that
sufficiently precise data in the direct method can also evaluate
higher order ERE terms than NLO, in principle.

2.2.3. Dependence of the LO NN Potential on Energy

and Partial Waves
In this subsection, we consider effects of higher order terms in
the derivative expansion for the NN in QCD.

Figure 3 shows three dimensional plots of the NBS wave
functions φk(x, y, z = 0) for NN(1S0) with the periodic boundary
condition (PBC) at Ek ≃ 0 MeV (Left) and with the anti-
periodic boundary condition (APBC) at Ek ≃ 45 MeV (Right),
in quenched lattice QCD at a ≃ 0.137 fm on L ≃ 4.4 fm with
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FIGURE 4 | (Left) The LO potential for NN(1S0 ) as a function of r at Ek ≃ 45 MeV (red solid circles) and at Ek ≃ 0 MeV (blue open circles). (Right) The LO potential as a

function of r at Ek ≃ 45 MeV for NN(1S0 ) (red open circles) and for NN(1D2) (cyan solid circles). Taken from Murano et al. [33].

mπ ≃ 530 MeV [33]. As seen from the figure, two NBS wave
functions look very different from each other. In particular, the
right one vanishes on the boundary due to the APBC constraint.

Figure 4 (Left) compares the LO potentials for NN(1S0)
obtained from the corresponding NBS wave functions in
Figure 3. While the NBSwave functions at different energies have
different spatial structures, the potentials look very similar. This
suggests that the higher order terms in the derivative expansion
of the potential have negligible contributions at this energy
interval, 0 ≤ Ek ≤ 45 MeV.

Figure 4 (Right) compares the LO potential for NN(1S0) (red
open circles) with the one for NN(1D2) (cyan solid circles) at
Ek ≃ 45 MeV. Although statistical fluctuations are larger for
the latter, they look similar, suggesting that L2 dependence of
the potential is also small in this setup. If more accurate data
show a difference of potentials between NN(1S0) and NN(1D2),
one may determine the L2 dependent term of the potential in the
spin-singlet channel.

2.2.4. Time-Dependent HAL QCD Method
In order to extract the NBS wave functions on the finite volume
in lattice QCD, we consider the 4-pt function given by

FJ(r, t − t0) = 〈0|N(x+ r, t)N(x, t)J̄NN(t0)|0〉
=

∑

n

AJ
nφkn (r)e

−Wkn (t−t0) + · · · , (26)

where J̄NN(t0) is an operator which creates two nucleon states
at time t0, A

J
n ≡ 〈NN,Wkn |J̄NN(0)|0〉, and ellipses represent

inelastic contributions, which become negligible atWth(t− t0)≫
1. Like the direct method, one can extract the NBS wave function
for the ground state from the above 4-pt function as

FJ(r, t) ≃ A
J
0φk0 (r)e

−Wk0
t (27)

for (Wk1 − Wk0 )t ≫ 1, where Wk0 (Wk1 ) is the lowest (second-
lowest) energy on the finite volume. The LO potential from

the NBS wave function for the ground state is then extracted
from FJ(r, t) at large t. As will be discussed in the next section,
however, it is numerically very difficult to determine FJ(r, t)
for two nucleons at such large t due to the bad signal-to-noise
(S/N) ratio.

Fortunately, an alternative extraction is available for the HAL
QCD method [34]. Let us consider the ratio of 4-pt function to
the 2-pt function squared as

RJ(r, t) ≡ FJ(r, t)

GN(t)2
,

GN(t) =
∑

x

〈0|N(x, t)N(0, 0)|0〉 ≃ ZNe
−mN t + · · · , (28)

which behaves

RJ(r, t) =
∑

n

ÃJ
nφkn (r)e

−1Wkn t , ÃJ
n ≡ A

J
n

Z2
N

,

1Wk ≡ Wk − 2mN , (29)

for Wtht ≫ 1, where inelastic contributions can be neglected.
Noticing that

1Wk =
k2

mN
− (1Wk)

2

4mN
,

(
k2

mN
−H0

)

φk(r) = V(r,∇)φk(r), (30)

we obtain
{

−H0 −
∂

∂t
+ 1

4mN

∂2

∂t2

}

RJ(r, t) = V(r,∇)RJ(r, t). (31)

We can approximately extractV(r,∇) from RJ(r, t) for (different)
J’s, as long as t satisfies the condition thatWth t ≫ 1 (elastic state
saturation), which is much easier than to achieve (Wk1−Wk0 )t≫
1 (ground state saturation). We call this alternative extraction the
time-dependent HAL QCD method.
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3. A COMPARISON OF THE TWO
METHODS AT HEAVIER PION MASSES

It is interesting to ask whether the attractions of the nuclear
forces at low energies would become weaker or stronger if the
pion mass were larger than the value in Nature. In principle,
such a question can be answered by employing either the direct
method or the HAL QCD method in lattice QCD. There exists,
however, a qualitative discrepancy between the two methods
on the answer to this question. As summarized in Table 1, the
direct method tends to indicate that attractions between two
nucleons become stronger as the pionmass increases, so that both
deuteron and di-neutron form bound states, while the HALQCD
method suggests that the attractions become weaker and the
bound deuteron does not exist at heavier pion masses. Note that
the results from the direct method in the flavor SU(3) limit (Nf =
3 in the table), NPL2013/NPL2017, CalLat2017, and Mainz2018,
exhibit discrepancies with each other [19]. In addition, while both
methods lead to the bound H-dibaryon at heavier pion masses,
in particular, in the flavor SU(3) limit, the predicted binding
energies differ even within the direct method: NPL2013 [40] gives
75(5) MeV at mπ = 810 MeV, which is much larger than 19(10)
MeV at mπ = 960 MeV by Mainz2018 [43]. On the other hand,
HAL2012 [44] gives 38(5) MeV at mπ = 837 MeV from the
HAL QCD method. These deviations seem to be too large to be
explained by lattice artifacts.

In order to understand origins of these discrepancies, we
have performed extensive investigations, whose results have
been published in a series of papers [19, 46–48], which will be
explained in the following subsections.

3.1. Operator Dependence in the Direct
Method
In the direct method, reliable extractions of the two nucleon
ground state energies are crucially important. As long as (Wk1 −
Wk0 )t≫ 1, the two nucleon correlation function is dominated by
the ground state as

GNN(t) = 〈0|JNN(t)J̄′NN(0)|0〉 ≃ Z
J
k0
Z̄
J′
k0
e−Wk0

t ,

Z
J(J′)
k0

≡ 〈0|JNN(J′NN)|NN,Wk0〉, (32)

so that the extracted ground state energyWk0 depends neither the
source operator J̄′NN nor the sink operator JNN , while magnitudes
of contaminations from excited states are affected by the choices
of these operators. SinceWk1 −Wk0 ≃ (2π/L)2/mN on the finite
box with the spacial extension L, t≫4 fm is required, for example,
for L ≃ 4 fm and mN ≃ 2 GeV at heavier pion masses. Due to
the bad S/N ratio at such large t, however, authors in previous
literature extracted the ground state energies at much smaller t,
t ∼ 1 fm, by tuning the source operators J̄′NN in order to achieve

TABLE 1 | Summary of binding energies [MeV] for NN(1S0), NN(
3S1), and H-dibaryon in lattice QCD.

Collaboration References Nf mπ −1E(1S0) −1E(3S1) −1E(H)

The direct method

YKU2011 [35] 0 800 4.4 (1.2) 7.5 (1.0) —

YIKU2012 [36] 2+1 510 7.4 (1.4) 11.5 (1.3) —

NPL2015 [37] 2+1 450 12.5 (+3.0
−5.0) 14.4 (+3.2

−2.6) —

NPL2012 [38] 2+1 390 7.1 (9.0) 11 (13) 13.2 (4.4)

YIKU2015 [39] 2+1 300 8.5 (+1.7
−0.9) 14.5 (+2.5

−1.1) —

NPL2013 [40] 3 810 15.9 (3.8) 19.5 (4.8) 74.6 (4.7)

NPL2017 [41] 3 810 20.6 (+3.3
−2.9) 27.9 (+3.8

−2.7) —

CalLat2017 [42] 3 810 21.8 (+3.3
−5.8) 30.7 (+2.5

−3.0) —

3 8.35 (1.1)* 3.3 (+1.2
−0.9) —

Mainz2018 [43] 3† 960 0 — 19 (10)

2+1† 440 — — 18.8 (5.5)*

The HAL QCD method

IAH2007 [26] 0 530 0 0 —

AHI2009 [23] 0 380, 530, 730 0 0 —

HAL2012 [44] 3 1171 0 0 49.1(6.5)

3 1015 0 0 37.2(4.4)

3 837 0 0 37.8(5.2)

3 672 0 0 33.6(5.9)

3 469 0 0 26.0(6.5)

HAL2012a [34] 2+1 701 0 — —

HAL2013 [45] 2+1 411, 570, 701 0 — —

NPL2013, NPL2017, and CalLat2017 employed the same set of gauge configurations. CalLat2017 found two states in each channel. In Mainz2018, dynamical 2-flavor with quenched

strange quark configurations are employed and Nf in the table (with † symbol) denotes the information in the valence quark sector. All values of 1E correspond to those in the infinite

volume limit except ones with ∗, which are values on the finite volumes. The number 0 in 1E indicates the system is unbound in this channel.
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FIGURE 5 | (Left) The effective energy shift 1Eeff
NN (t) for NN(

1S0) from the wall source (red circles) and the smeared source (blue squares) on L = 48a ≃ 4.3 fm at

mπ = 0.51 GeV, mN = 1.32 GeV and m4 = 1.46 GeV [46]. (Right) The effective energy shift 1Eeff
44(t) for 44(

1S0) from the smeared source with different sink operators

on the same gauge configurations [46].

a plateau of the effective energy shift 1EeffNN(t) at such a small
t, where

1EeffNN(t) = −1

a
log

RNN(t + a)

RNN(t)
, RNN(t) ≡

GNN(t)

GN(t)2
, (33)

Unfortunately, such a naive plateau fitting at earlier t may not
be reliable due to contaminations from nearby excited states,
which may easily produce (incorrect) plateau-like behaviors in
effective energies. It was indeed demonstrated that plateau-like
behaviors in effective energy shifts at small t can depend not only
on the source operator but also on the sink operator: Plateaux
disagree between the wall source (red circle) and the smeared
source (blue square) in the left of Figure 5, while plateaux
depend on sink operators for the same smeared source in the
right figure.

In order to see how easily contaminations from elastic-excited
states can produce plateau-like behaviors at earlier t, let us
consider the effective energy shift from the mockup data for
RNN(t), given by

R
mockup
NN (t) = e−1ENN t

(

1+ b1e
−δEel.t + c0e

−δEinel.t) , (34)

where we take δEel. = 50 MeV for the typical lowest elastic
excitation energy on L ≃ 4 fm at mN ≃ 1.5 GeV, and δEinel. ≃
mπ ≃ 500 MeV for the lowest inelastic energy. Naively, it is
expected that the correct plateau at 1ENN for the ground state
appears at t≫1/δEel. ≃ 4 fm, which however is too large to
have good signals for two baryons, such as NN. By tuning the
source operator, one may reduce coefficients b1 and c0. Since
the NN operator does not strongly couple to NNπ state, we
expect small c0 and take c0 = 0.01. On the other hand, NN
operators easily couple to both ground and 1st elastic excited
states as they become almost identical to each other in the infinite
volume limit. We therefore take b1 = 0.01 (the highly tuned

operator), b1 = ±0.1 (the tuned ones) as well as b1 = 0.5
(the untuned one). Figure 6 (Left) shows 1EeffNN(t) for these 4
examples with c0 = 0.01, where random fluctuations and errors
whose magnitude increase exponentially in t are assigned to

R
mockup
NN (t). All examples show plateau-like behaviors at t ≃ 1

fm, but these four plateaux disagree with each other. As |b1|
increases, the deviation between the values of these “pseudo
plateaux” and the true value becomes larger. Contaminations
of the elastic excited states can easily produce the plateau-like
behavior at earlier t, and the t dependence of data alone cannot
tell us which plateau is correct, or in other words, cannot tell
which tuning is good.

Contaminations from inelastic states seem unimportant to
produce the plateau-like behavior, as shown in Figure 6 (Right),
where the effective energy shift for c0 = 0.01, 0.05, 0.1 with b1 =
−0.1 is plotted. All cases converge to almost the same pseudo
plateau, while a pseudo plateau starts at later t for larger c0. It is
noted that the multi-exponential fit does not work in this case at
t ≃ 1.0 fm, which is much smaller than the necessary t≫1/δEel..
The multi-exponential fit at such small t only separates the
pseudo plateau from the inelastic contributions but is difficult
to distinguish the ground state and the 1st excited state for the
elastic states.

3.2. Normality Check in the Direct Method
While the check through operator dependence is useful, it
requires extra calculations. We find that the finite volume
formula in Equation (4) provides a simpler test, which tells
us whether the ground state energies extracted by the plateau
fitting give a reasonable ERE or not without extra calculations.
We call this test a normality check [19]. Figure 7 (Left) shows
k cot δ0(k)/mπ in YIKU2012 [36] as a function of k2/m2

π for
NN(1S0), where the solid red line represents the NLO ERE fit
in Equation (5), and the light red bands shows statistical and
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FIGURE 6 | 1Eeff
NN (t)−1ENN from the mockup data R

mockup
NN (t) with fluctuations and errors as a function of t. (Left) b1 = 0.01,±0.1, 0.5 and c0 = 0.01. (Right)

c0 = 0.01, 0.05, 0.1 and b1 = −0.1.

FIGURE 7 | (Left) k cot δ0 (k)/mπ in YIKU2012 [36] for NN(1S0 ) as a function of (k/mπ )
2. The solid red line and light red band represent the ERE fit and the

corresponding error (statistical and systematic added in quadrature), respectively. The dashed lines are the finite volume formula for the corresponding volume. (Right)

k cot δ0(k)/mπ in NPL2015 [37] for NN(1S0) as a function of (k/mπ )
2. Two ERE fits are performed depending on the lattice data to be used for the fit. The red line with

the band represents the fit made by the authors in Iritani et al. [19], while the blue line with the band is plotted by the authors in Iritani et al. [19] using the fit result of

NPL2015. Both figures are taken from Iritani et al. [19].

systematic errors added in quadrature [19]. Contrary to a naive
expectation from non-singular ERE behaviors, data align almost
vertically, since 1ENN is almost independent of the volume.
In other words, according to the finite volume formula, the
claimed “binding energy” (open circle) is too shallow to have
such volume independent 1E. Not only the central value of the
NLO ERE fit gives singular parameters as ((a0mπ )

−1, r0mπ ) =
(5.27, 303.6) but also it violates the physical pole condition,
Equation (9), at the crossing point (open circle). The singular
and unphysical behaviors, in addition to the operator dependence

of these data, strongly indicate that the naive plateau fitting
employed in the direct method is unreliable. Another example
is shown in Figure 7 (Right) for NN(1S0) from NPL2015 [37].
In this case, two different NLO ERE fits (red line/band and blue
line/band) are performed depending on the lattice data to be
used for the fit. It turns out that two ERE are inconsistent with
each other, indicating that their lattice data themselves are “self-
inconsistent.” In addition, one of ERE (blue line/band) is found to
violate the physical pole condition, Equation (9), at the crossing
point (open circle). Similar symptoms are observed for all other
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FIGURE 8 | (Left) The LO potential, VLO
0 (r), for 44(1S0) from the wall source (red open circles) and the smeared source (blue open square). (Right) The second order

term, VN2LO
2 (r) (blue solid squares), in the N2LO potential VN2LO(r,∇) = VN2LO

0 (r)+ VN2LO
2 (r)∇2 for 44(1S0). Both are taken from Iritani et al. [47].

FIGURE 9 | (Left) k cot δ0 (k)/mπ as a function of (k/mπ )
2 at low energies, where δ0(k) is the scattering phase shift for 44(1S0), calculated from VN2LO(r,∇) (red solid

circles), VN2LO
0 (r) (blue solid squares) and V

LO(wall)
0 (r) (black open diamond). (Right) The corresponding δ0(k). Both are taken from Iritani et al. [47].

data in the direct method claiming the existence of NN bound
states at heavy quark masses [19]3.

3.3. The Source Dependence and the
Derivative Expansion in the HAL QCD
Method
The source operator dependence of the HAL QCD potential has
been investigated in Iritani et al. [47]. Figure 8 (Left) compares
the LO potentials, VLO

0 (r), for 44(1S0) between the wall source
(red open circles) and the smeared source (blue open squares).
We observe a small difference at short distances, from which one
can determine the N2LO potential, VN2LO(r,∇) = VN2LO

0 (r) +

3After these problems were pointed out in Iritani et al. [19], revised data of

NPL2013 have been presented inWagman et al. [41], whose EREs are still marginal

to satisfy/violate the physical pole condition.

VN2LO
2 (r)∇2. Note that the NLO term,VN2LO

1 (r)∇ = VN2LO
LS (r)L ·

S is absent in the 1S0 channel. Figure 8 (Right) shows VN2LO
2 (r),

which is non-zero only at r < 1.0 fm, where two LO potentials
differ. We then extract the scattering phase shifts, using this
N2LO potential.

The N2LO corrections turn out to be negligible at low
energies, as shown in Figure 9 (Left), where k cot δ0(k) is almost

identical between VN2LO(r,∇) (red solid circles) and VN2LO
0 (r)

(blue solid squares). Furthermore, even the LO analysis for the

wall source, V
LO(wall)
0 (r) (black open diamond), is sufficiently

good at low energies. As energy increases, the N2LO corrections
become visible as seen in Figure 9 (Right), where (k/mπ )

2 = 0.5
corresponds to 1E ≃ 90 MeV for the energy shift from the

threshold. It is noted that VN2LO
0 (r) (blue solid squares) gives

a little closer results to N2LO results (red solid circles) than

V
LO(wall)
0 (r) (black open diamond) does.
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FIGURE 10 | The reconstructed effective energy shift 1E
J

eff (t, t0 = 13a) for the wall source (red bands) and the smeared source (blue bands) on L = 48a, while the

effective energy shifts directly from RJ44(t) are shown for J = wall (red open circles) and J = smear (blue open squares). The black dashed lines are the energy shifts for

the ground state of H in the finite box. (Left) 0 ≤ t/a ≤ 24. (Right) 0 ≤ t/a ≤ 175. Taken from Iritani et al. [48].

3.4. Understanding Pseudo Plateaux
In this subsection, we explain why the wall source and the
smeared source give inconsistent plateau behaviors, in the case
of44 correlation functions as an example.

To this end, we consider the HamiltonianH = H0+V
LO(wall)
0 ,

where we employ V
LO(wall)
0 (r), the LO potential from the wall

source, since it works rather well at low energies as shown in

the previous subsection. We first decompose RJ44(r, t) for J =
wall/smear in terms of finite volume eigenfunctions of H as

R
J
44(r, t) =

∑

n

aJn(t)9n(r)e
−1Ent ,

aJn(t) =
∑

r

9†
n(r)R

J
44(r, t)e

1Ent . (35)

where 9n(r) and 1En are normalized-eigenfunction and

eigenenergy in the finite volume, respectively, and a
J
n(t) is the

overlapping coefficient extracted at t.
Then the correlation function for the source J in the direct

method is given by

RJ44(t) =
∑

r

RJ44(r, t) =
∑

n

bJn(t)e
−1Ent

bJn(t) = aJn(t)
∑

r

9n(r). (36)

Finally, approximating a sum over n by the lowest few orders, we
reconstruct the behavior of the effective energy shift as a function
of t as

1E
J
eff(t, t0) =

1

a
log

(
RJ(t, t0)

RJ(t + a, t0)

)

,

RJ(t, t0) =
nmax∑

n=0

bJn(t0)e
−1Ent , (37)

where we fix the overlapping coefficient bJn(t0) at
t = t0, and nmax is a number of excited states used in
the approximation.

In Figure 10, we show reconstructed effective energy shift

1E
J
eff(t, t0 = 13a) on L = 48a with nmax = 4, together with the

effective energy shifts from R
J
44(t), for the wall source (red bands

and red open circles) and the smeared source (blue bands and
blue open squares). The black dashed line represents the energy

shift for the ground state of H = H0 + V
LO(wall)
0 on L = 48a.

We find that the plateau-like structures in the direct method

around t/a = 15 are well-reproduced by 1E
J
eff(t, t0 =

13a) for both sources in Figure 10 (Left). This indicates
that the plateau-like structures in the direct method at this
time interval are explained by the contributions from several
low-lying states.

These plateau-like structures of course do not necessarily
correspond to the true energy shift of the ground state.
The fate of these structures is shown in Figure 10 (Right),

where we plot 1E
J
eff(t, t0 = 13a) at asymptotically large

t. While the plateau-like structure for the wall source is

almost unchanged, 1E
J
eff(t, t0 = 13a) for the smeared

source gradually increases and reaches to the true value
at t/a ∼ 100.

The above results clearly reveal that the plateau-like structures
at t/a ∼ 15 for the smeared source are pseudo-plateaux
caused by the contaminations of the excited states. Large
contaminations from excited states in the case of the smeared
source are not caused by the smearing, but are indeed implied
by putting two baryon operators on the same space-time
point as

1

L3

∑

x

B(x, t)B(x, t) =
∑

p

B̃(p, t)B̃(−p, t),
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FIGURE 11 | The effective energy shift 1EJ,neff (t) from RJ,n44(t), the correlation function projected to the n-th eigenstate at the sink on L = 48a, for J = wall (black open

up-triangles) and J = smear (purple open down-triangle). Red bands represent the energy shifts from the eigenvalues of H in the finite box, while black lines denote

those of a free Hamiltonian H0. (Left) The projection to the ground state (n = 0), together with the effective energy shift in the direct method without projection for the

wall source (red open circles) and the smeared source (blue open squares). (Right) The projection to the 1st excited state (n = 1). Taken from Iritani et al. [48].

B̃(p, t) ≡
∑

x

B(x, t)e−ip·x, (38)

where the above source operator couples to all momentummodes
with almost equal weight. Since almost all previous studies onNN
interactions in the direct method employed this type of the source
operator, their conclusions on the existences of both deuteron
and di-neutron are not valid due to large contaminations4.

3.5. Consistency Between the Two
Methods
Once eigenmodes of H in the finite box are obtained, we can
construct an improved sink operator for a particular eigenstate,
whose correlation function with the J source is given by

R
J,n
BB(t) =

∑

r

9†
n(r)R

J
BB(r, t). (39)

Figure 11 shows the effective energy shift 1EJ,n
eff
(t) calculated

from R
J,n
44(t) on L = 48a with J = wall (black open up-triangles)

and J = smear (purple open down-triangle), for the ground state
(Left) and the 1st excited state (Right), together with1E0 or1E1,
eigenvalues of H in the finite box (red bands) as well as those
of H0 (black lines). For the ground state in Figure 11 (Left), the
effective energy shift in the direct method without projection are
also plotted for the wall source (red open circles) and the smeared
source (blue open squares).

After the sink projection, the effective energy shifts agree well
between wall and smeared sources around t/a ∼ 13, not only
for the ground state but also for the 1st excited state. while the
effective energy shifts for the ground state in the direct method
without projection disagree between two sources. In particular,

4Note that Mainz2018 employed a source operator as B̃(p = 0, t)B̃(−p = 0, t) and

they reported that “In the 27-plet (dineutron) sector, the finite volume analysis

suggests that the existence of a bound state is unlikely.”

an agreement between two sources with sink projection for the
1st excited state is rather remarkable, since variational methods,
usually mandatory for excited states in lattice QCD, are not used
here. Furthermore, the plateaux of the effective energy shifts after
the sink projection also agree with 1E0,1 of H (red bands). Note

that the effective energy shift for the 1st excited state,1Ewall,1
eff

(t),
has larger errors since the contribution of the 1st excited state in
Rwall44 (t) is much smaller.

Although the sink operator projection utilizes the information
of the HAL QCD potential to construct eigenfunctions,
agreements in the effective energy shifts for the ground state
as well as the 1st excited state provide a non-trivial consistency
check between the HAL QCD method and the Lüscher’s finite
volume formula (with proper projections to extract the finite
volume spectra). We thus conclude from Figure 11 not only that
the HAL QCD potential correctly describes the energy shifts of
two baryons in the finite box for both ground and excited states
but also that these energy shifts can be extracted even for baryon-
baryon systems if and only if the sink/source operators are highly
improved. We emphasize that improvement of operators has to
be performed not by the tuning of the plateau-like structures but
by a sophisticated method, such as the variational method [10]5

(or a method presented here). See Francis et al. [43] for a recent
study toward such a direction.

4. NUCLEAR POTENTIAL

In this section, we summarize results on nuclear potentials in the
HAL QCDmethod.

5In lattice QCD studies for the meson-meson scatterings [9], serious systematics

from the excited state contaminations in the simple plateau fitting have been widely

recognized and the variational method has been utilized to obtain the finite volume

spectra rather reliably, which can be combined with the Lüscher’s finite volume

formula to extract phase shifts.
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4.1. Parity-Even Channel With LO Analysis
at Heavy Pion Masses
We first show the results of nuclear forces in the parity-even
channel (1S0 and 3S1-

3D1 channels) at heavy quark masses
obtained by the LO analysis for the derivative expansion of the
potential. Since the statistical fluctuations are smaller at heavier
quark masses in lattice QCD, this study is a good starting point to
grasp the nature of lattice QCD nuclear forces. In addition, quark
mass dependence of nuclear forces is of fundamental importance
from a point of view of, e.g., anthropic principle, which cannot be
studied by experiments.

In the case of 1S0 channel, we obtain the LO central force
following Equation (31). In the case of 3S1-

3D1 channel, the LO
potentials consist of the central and tensor forces, which can be
obtained from the coupled channel analysis between the S- and
D-wave components as

{

−H0 −
∂

∂t
+ 1

4mN

∂2

∂t2

}

RJ(r, t)

=
[

VC(r)+ VT(r)S12 + · · ·
]

RJ(r, t), (40)

where ellipses represent higher order terms in the derivative
expansion. Using the projection to the A+

1 representation of the

cubic group (S-wave projection), PA+
1 , and the orthogonal one

(D wave projection), (1 − PA+
1 ), the above equation reduces to

two independent equations, from which VC(r) and VT(r) can be
obtained [23]. Since the A+

1 representation couples to the angular
momentum l = 0, 4, 6, · · · , these projections are expected to
serve as the relevant partial wave decomposition at low energies.

We find that the NBS correlation functions after PA+
1 and

(1 − PA+
1 ) are dominated by S-wave and D-wave components,

respectively, indicating that the contaminations from l ≥ 4
components are indeed small. For a more advanced partial wave
decomposition, see Miyamoto et al. [49].

We perform the calculations in quenched [23, 26], dynamical
2-flavor [50], dynamical 3-flavor [44, 51, 52], and dynamical
(2+1)-flavor [34, 45, 47, 53] lattice QCD with various quark
masses. We here present the results obtained in 3-flavor lattice
QCD at (Mps,Moct)=(1171, 2274), (1015, 2031), (837, 1749),
(672, 1484), (469, 1161) MeV [44, 51, 52]6. In the case
of (Mps,Moct) = (837, 1749), the value of quark masses
mu = md = ms nearly correspond to the physical strange quark
mass. We generate gauge configurations with the RG-improved
Iwasaki gauge action and non-perturbatively O(a)-improved
Wilson quark action on a L3 × T = 323 × 32 lattice. The lattice
spacing is a = 0.121(2) fm and hence lattice size L is 3.87 fm.
In the calculation of the NBS correlation function, parity-even
states are created by a two-baryon operator with a wall quark
source, while a point operator is employed for each baryon at
the sink.

Shown in Figure 12 (Upper) are the lattice QCD results
for the potentials. We find that the results are insensitive to
the Euclidean time t, at which the NBS correlation function
is evaluated, indicating that the derivative expansion is well-
converged. The obtained potentials are found to reproduce

6Mps = mπ = mK andMoct = mN = m3 = m6 = m4 in 3-flavor QCD.

the qualitative features of the phenomenological NN potentials,
namely, attractive wells at long and medium distances, central
repulsive cores at short distance and strong tensor force with a
negative sign. We also find intriguing features in the quark mass
dependence of the potentials. At long distances, it is observed that
the ranges of the tail structures in the central and tensor forces
become longer at lighter quark masses. Such a behavior can be
understood from the viewpoint of one-boson-exchange potential.
At short distances, the repulsive cores in the central forces are
found to be enhanced at lighter quark masses. This could be
explained by the short-range repulsion due to the one-gluon-
exchange in the quark model, whose strength is proportional to
the inverse of the (constituent) quarkmass. In fact, our systematic
studies including hyperon forces with the same lattice setup
revealed that the nature of repulsive core is well-described by the
quark Pauli blocking effect together with the one-gluon-exchange
effect [44, 51, 54].

As noted before, the potentials themselves are not physical
observables and quantitative lattice QCD predictions shall be
given in terms of scattering observables. Shown in Figure 12

(Lower) are the scattering phase shifts (and mixing angles)
obtained from lattice nuclear forces. We find that NN systems
do not bound at these pseudoscalar masses as discussed in
section 3. Behaviors of phase shifts are qualitatively similar to
the experimental ones, while the strength of the attraction is
weaker due to the heavy quark masses in this calculation. It
is also observed that quark mass dependence of phase shifts
is quite non-trivial. In fact, if we decrease the quark masses,
there appear competing effects in the interaction: the long-
range attraction becomes stronger and the short-range repulsive
core also becomes stronger. We also note that lighter quark
masses correspond to lighter nucleon mass, which leads to larger
kinetic energies.

We also present the results obtained in (2+1)-flavor lattice
QCD at quark masses corresponding to (mπ ,mN) ≃(701, 1584),
(570, 1412), and (411, 1215) MeV [45]. Note that only up and
down quark masses are varied with a strange quark mass being
fixed to the physical value in this study. We employ the gauge
configurations generated by the PACS-CS Collaboration with
the RG-improved Iwasaki gauge action and non-perturbatively
O(a)-improved Wilson quark action on a L3 × T = 323 × 64
lattice. The lattice spacing is a ≃ 0.091 fm (a−1 = 2.16(31)GeV),
which leads to the spatial extension L ≃ 2.9 fm.

In Figure 13, we show the lattice QCD results for the
potentials in the 1S0 and 3S1-

3D1 channels, together with
the corresponding phase shifts in the 1S0 channel. Qualitative
features are similar to those in 3-flavor case: (i) the central forces
have repulsive cores at short distance and attractive wells at long
and medium distances, both of which are enhanced at lighter
quark masses (ii) the tensor force is strong with a negative sign,
which increases at lighter quark masses.

4.2. More Structures: Spin-Orbit Forces in
the Parity-Odd Channel and Three Nucleon
Forces
If we consider an interaction at higher order terms in the
derivative expansion, there appear more structures in the
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FIGURE 12 | (Upper) Nuclear forces obtained from 3-flavor lattice QCD at Mps = 469–1171 MeV. (Left) Central force in the 1S0 channel (27-plet in SU(3)f
representation). (Middle) Central force in the 3S1-

3D1 channel (10∗-plet in SU(3)f representation). (Right) Tensor force in the 3S1-
3D1 channel. (Lower) NN scattering

phase shifts as a function of energy in the laboratory frame (colored solid lines), obtained from 3-flavor lattice QCD at Mps = 469-1171 MeV, together with those from

experiments (black dashed lines). (Left) Results in the 1S0 channel. (Right) Results in the 3S1-
3D1 channel (with Stapp’s convention). Figures are taken from Inoue et al.

[44].

potentials. In particular, the extension from LO analysis to NLO
analysis enables us to determine the spin-orbit (LS) force. The LS
force is known to play an important role in the LS-splittings of
nuclear spectra and the nuclear magic numbers. In addition, the
LS force in the 3P2-

3F2 channel attracts great interest in nuclear
astrophysics, since it could lead to the P-wave superfluidity in the
neutron stars and affect the cooling process of neutron stars.

We here present the calculation in parity-odd channels (1P1,
3P0,

3P1,
3P2-

3F2 channels) at heavy quark masses and show the
results of LS forces as well as central/tensor forces [50]. In order to
construct the source operator which couples to parity-odd states,
we employ the two nucleon operators as

Jαβ (fi) ≡ Nα(f
(i))Nβ (f

(i) ∗) for i = ±1,±2,±3 (41)

where N denotes a nucleon operator with a momentum,

Nα(f
(i)) =

∑

Ex1 ,Ex2 ,Ex3
ǫabc

(

uTa (Ex1)Cγ5db(Ex2)
)

qc,α(Ex3)f (i)(Ex3) (42)

with f (±j)(Ex) ≡ exp
(

±2π ixj/L
)

. A cubic group analysis shows

that this source operator contains the orbital contribution T−
1 ⊕

A+
1 ⊕ E+, whose dominant components have l = 1, 0, 2,

respectively, and thus covers all the two-nucleon channels with
J ≤ 2. Combined with the spin degrees of freedom, we consider

the T−
1 representation in the spin singlet channel and the A−

1 ,
T−
1 , (E

− ⊕ T−
2 ) representations in the spin triplet channel.

At low energies, these representations correspond to the 1P1
channel and the 3P0,

3P1, and
3P2-

3F2 channels, respectively,
from which we extract the central force in the spin singlet
channel (VI=0

C,S=0(r)), and the central, tensor and LS forces

(VI=1
C,S=1(r),V

I=1
T (r),VI=1

LS (r)) in the spin triplet channel.
Calculations are performed in 2-flavor lattice QCD at quark

masses corresponding to (mπ ,mN) ≃ (1133, 2158) MeV [50].
We employ the gauge configurations generated by the CP-PACS
Collaboration with the RG-improved Iwasaki gauge action and
a mean field O(a)-improved Wilson quark action on a 163 × 32
lattice. The lattice spacing a = 0.156(2) fm leads to the spatial
extension L ≃ 2.5 fm.

Shown in Figure 14 (Upper-Left) are the lattice QCD results
for the potential, VI=0

C,S=0(r), V
I=1
C,S=1(r),V

I=1
T (r),VI=1

LS (r). We find

that (i) the central forces VI=0
C,S=0(r) and VI=1

C;S=1(r) are repulsive,

(ii) the tensor force VI=1
T (r) is positive and weak compared to

VI=1
C;S=1(r) and VI=1

LS (r), and (iii) the LS force VI=1
LS (r) is negative

and strong. These features are qualitatively in line well with
those of the phenomenological potential. One can also see these
properties in terms of the potential in each channel. In Figure 14

(Upper-Right), we plot the potentials in the 1P1,
3P0,

3P1 and
3P2 channels, which are defined by V(r; 1P1) = VI=0

C,S=0(r),
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FIGURE 13 | Nuclear forces obtained from (2+1)-flavor lattice QCD at mπ ≃ 411 (red), 570 (green), 701 (blue) MeV: (Upper-Left) Central forces in the 1S0 channel

(Lower) Central forces (left) and tensor forces (right) in the 3S1-
3D1 channel. (Upper-Right) The scattering phase shifts in the 1S0 channel at mπ ≃ 411 (blue), 570

(green), 701 (red) MeV. Figures are taken from Ishii [45].

V(r; 3P0) = VI=1
C,S=1(r) − 4VI=1

T (r) − 2VI=1
LS (r), V(r; 3P1) =

VI=1
C,S=1(r) + 2VI=1

T (r) − VI=1
LS (r), V(r; 3P2) = VI=1

C,S=1(r) −
2
5V

I=1
T (r)+ VI=1

LS (r).
To obtain the scattering observables, we fit the potentials

and solve the Schrödinger equation in the infinite volume. In
Figure 14 (Lower), we show the results for the scattering phase
shifts. Compared with the experimental phase shifts, we find that
behaviors of phase shifts are generally well-reproduced, while
the magnitudes are smaller due to the heavier pion mass in
lattice QCD calculations. In the 3P0 channel, we observe that the
attraction is missing compared with the experimental one, which
however is also likely due to the weak tensor force VT caused
by the heavier pion mass. Among others, the most interesting
feature is the attraction in the 3P2 channel as shown in Figure 14

(Lower-Right), originated from the strong (and negative) LS
forces. As noted before, it is this interaction which is relevant
to the paring correlation of the neutrons and possible P-wave
superfluidity in the neutron stars.

We now turn to the study of three-nucleon forces.
Determination of three-nucleon forces is one of the most

challenging problems in nuclear physics: Three-nucleon forces
are known to play important role in nuclear spectra/structures,
such as the binding energies of (light) nuclei and properties
of neutron-rich nuclei. They are also essential ingredients to
understand properties of nuclear matters, such as the equation
of state (EoS) at high density, which is relevant to the structures
of neutron stars and nucleosynthesis at the binary neutron star
mergers. While there have been many studies to construct three-
nucleon forces by phenomenological approaches [55, 56] or by
chiral EFT approaches [6–8, 57], it is most desirable to carry out
the direct determination from QCD.

To study three-nucleon forces in lattice QCD, we consider the
NBS wave function for a n(≥ 3)-particle system, |α〉,

9n
α([x])e

−Wα t = 〈0|N(x1, t)N(x2, t) · · ·N(xn, t)|α〉,
[x] = x1, x2, · · · , xn (43)

where Wα is the center of mass energy of the system and we
ignore the spins of nucleon for simplicity. In Aoki et al. [58, 59]
and Gongyo and Aoki [60], we show that the asymptotic behavior
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FIGURE 14 | (Upper-Left) Central (S = 0 and 1), tensor and spin-orbit potentials in parity-odd channels obtained by 2-flavor lattice QCD at mπ ≃ 1133 MeV.

(Upper-Right) The potentials for the 1P1,
3P0,

3P1, and
3P2 channels. (Lower-Left) Phase shifts in the 1P1,

3P0, and
3P1 channels, together with the experimental ones

for comparisons. (Lower-Right) Phase shifts and mixing parameter (with Stapp’s convention) in the 3P2–
3F2 channel, together with the experimental ones. Figures are

taken from Murano et al. [50].

of the NBSwave function with the non-relativistic approximation
can be written as

9n
[L],[K](R,Q)

∝
∑

[N]

U[L][N](Q)e
iδ[N](Q)

sin
(

QR−1L + δ[N](Q)
)

(QR)
D−1
2

U†
[N][K](Q)

(44)

whereD = 3(n−1) is the dimension of a n-particle system,1L =
(2L + D − 3)π/4, 9n

[L],[K](R,Q) is the radial component of the
NBS wave function inD-dimension with R andQ being the hyper
radius and momentum, respectively, and [L], [K] denotes the
quantum numbers of the angular momentum in D-dimension.
δ[N](Q) is the generalized “phase shift” for a n-particle system
and U[L][N](Q) is a unitary matrix, which parameterize the T-
matrix as

T[L][K](Q,Q) =
∑

[N]

U[L][N](Q)T[N](Q)U
†
[N][K](Q), (45)

T[N](Q) = − 2n3/2

mNQ3n−5
eiδ[N](Q) sin δ[N](Q). (46)

Therefore, as in the case of n = 2 system (see section 2.2.1), the
information of T-matrix is encoded in the asymptotic behavior
of the NBS wave function. Based on this property, we can define
the energy-independent non-local potential for a n-particle
system, which can be extracted from the (time-dependent) HAL
QCD method.

We calculate the six-point correlation function divided by
two-point correlation function cubed,

R3N(Er, Eρ, t − t0) ≡ G3N(Er, Eρ, t − t0)/{GN(t − t0)}3 (47)

G3N(Er, Eρ, t − t0) ≡ 1

L3

∑

ER
〈0|(N(Ex1)N(Ex2)N(Ex3))(t) (N′N′N′)(t0)|0〉

(48)

where ER ≡ (Ex1 + Ex2 + Ex3)/3, Er ≡ Ex1 − Ex2, Eρ ≡ Ex3 −
(Ex1 + Ex2)/2 are the Jacobi coordinates. In the time-dependent
HAL QCD method at the LO analysis for the derivative
expansion and with the non-relativistic approximation, we can
extract the three-nucleon forces V3NF(Er, Eρ) through the following
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Schrödinger equation,

[

− 1

2µr
∇2
r −

1

2µρ
∇2
ρ +

∑

i<j

V2N(Erij)+ V3NF(Er, Eρ)
]

R3N(Er, Eρ, t)

= − ∂

∂t
R3N(Er, Eρ, t), (49)

where V2N(Erij) with Erij ≡ Exi − Exj denotes two-nucleon
forces between (i, j)-pair, µr = mN/2, µρ = 2mN/3 the
reduced masses.

In our first study of three-nucleon forces, we consider the
total 3N quantum numbers of (I, JP) = (1/2, 1/2+), the triton
channel.We also consider a particular spacial geometry of the 3N,
i.e., the “linear setup” ( Eρ = E0), where 3N are aligned linearly with
equal spacing of r2 ≡ |Er|/2. This setup makes the analysis much
simpler. In addition, we consider the following channel, ψS ≡
1√
6

[

−p↑n↑n↓+p↑n↓n↑−n↑n↓p↑+n↓n↑p↑+n↑p↑n↓−n↓p↑n↑
]

,

and calculate the corresponding matrix element of V3NF , so that
we can suppress the statistical fluctuations in subtracting the
contribution from V2N .

One of the biggest challenges in the lattice QCD study of three-
nucleon forces is the enormous computational cost required for
the calculation of correlation functions. In fact, in terms of a
mass number A, the cost grows with the multiplication of two
factors, one of which scales factorially in A due to the Wick
contraction (permutation of quarks), and the other of which
scales exponentially in A due to the color/spinor contractions.
On this point, we have developed a novel computational
algorithm, called the unified contraction algorithm (UCA), in
which two contractions are unified and redundant calculations
are eliminated systematically [61]. In particular, the computation
becomes faster by a factor of 192 for a calculation of three-
nucleon forces.

We perform the calculation in 2-flavor lattice QCD at
(mπ ,mN) = (0.76, 1.81), (0.93, 1.85), (1.13, 2.15) GeV [62].
We employ the gauge configurations generated by CP-PACS
Collaboration with mean field O(a)-improved Wilson fermion
and RG-improved Iwasaki gauge action on a L3 × T = 163 × 32
lattice. The lattice spacing is a = 0.1555(17) fm and thus L = 2.5
fm. Shown in Figure 15 (Left) are the lattice QCD results for the
three-nucleon forces. We find a repulsive interaction at short-
distances, r2 ≃ 0.2–0.4 fm (results at r2 . 0.2 fm would suffer
from lattice discretization error). Note that a repulsive short-
range three-nucleon force is phenomenologically required to
explain the properties of high density matter. On the other hand,
three nucleon forces are found to be suppressed at long distances.
This is in accordance with the suppression of two-pion-exchange
due to the heavier pion masses.

Shown in Figure 15 (Right) is the latest preliminary result
obtained atmπ = 510MeV. In this calculation, we employ (2+1)-
flavor lattice QCD gauge configurations generated in Yamazaki
et al. [36] with the RG-improved Iwasaki gauge action and non-
perturbatively O(a)-improved Wilson quark action on a L3 ×
T = 643 × 64 lattice (work in progress). The lattice spacing is
a = 0.090 fm and L = 5.8 fm. Avoiding the very short-distance
region where lattice discretization error could affect the results,

we again find the short-range repulsive three-nucleon forces at
r2 ≃ 0.2–0.7 fm. We find that, while the pion mass dependence
of three-nucleon forces is not significant atmπ = 0.76–1.13 GeV,
the range of repulsive three-nucleon forces tend to be enlarged
at mπ = 0.51 GeV. It is important to pursue the study at lighter
pion masses toward the physical pion mass.

4.3. Applications to Nuclei, Nuclear
Equation of State, and Structure of
Neutron Stars
Once nuclear potentials are obtained by lattice QCD, we can
use them to study various phenomena in nuclear physics
and astrophysics. We here present the study of nuclear
spectra/structures and Equation of State (EoS) of dense matter
relevant to neutron star physics. Potentials used in this subsection
are of the leading order only, and therefore are all hermitian.
We can make non-hermitian higher order potentials in the
HAL QCD method hermitian in the derivative expansion [63],
which may be used for future applications in nuclear many
body calculations.

In McIlroy et al. [64], binding energies and structures of
doubly magic nuclei, 4He, 16O, 40Ca, are studied by an ab initio
nuclear many-body calculation based on lattice nuclear forces.
We employ the nuclear forces obtained in 3-flavor lattice QCD at
Mps = 469 MeV (see Figure 12). We consider two-body nuclear
forces in 1S0,

3S1, and
3D1 channels, while nuclear forces in

other channels and spin-orbit forces as well as three-nucleon
forces are neglected. For simplicity, the Coulomb force between
protons is not taken into account, either. As the ab initio many-
body calculation, we employ self-consistent Green’s function
(SCGF) method, in which the single-particle propagator (Green’s
function) and the self-energy is solved self-consistently in a non-
perturbative manner. In a practical calculation, the self-energy
is calculated by Algebraic Diagrammatic Construction (ADC)
formalism at third order for the so-called (low-momentum) P-
space and Bethe-Goldstone equation (BGE) for the Q = 1 − P
space. (see [64] for details.)

In Table 2, we summarize the results for the ground state
energies, together with the results from Brueckner Hartree-
Fock (BHF) calculation [65] and exact stochastic variational
calculation [66] using the same lattice nuclear forces. For
the results from SCGF, the first parentheses show the errors
associated with the infrared (IR) extrapolation in the SCGF
calculation. We also estimate the errors from many-body
truncations using 4He as a benchmark. Since the SCGF result
deviates from the exact solution by<10% for 4He, and the SCGF
approach is size extensive, we take a conservative estimate of
10% error for 16O and 40Ca, which are quoted in the second
parentheses. The BHF results are sensibly more bound than
the SCGF results, and we interpret this as a limitation of BHF
theory. For the results shown in Table 2, there exist additional
errors associated with the statistical fluctuations in the input
lattice nuclear forces, which are estimated to be∼10% [65]. Note
that statistical fluctuations are correlated among nuclei, so we
expect our observations described below are rather robust against
statistical errors.
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FIGURE 15 | Three-nucleon forces in the triton channel with the linear setup. (Left) Results from 2-flavor lattice QCD at mπ = 0.76–1.13 GeV. (Right) Results from

(2+1)-flavor lattice QCD at mπ = 0.51 GeV.

TABLE 2 | Ground state energies of 4He, 16O, and 40Ca calculated by

self-consistent Green’s function (SCGF) method using nuclear forces at MPS =

469 MeV obtained from 3-flavor lattice QCD with the HAL QCD method.

EA
0 [MeV] 4He 16O 40Ca

SCGF −4.80(0.03) −17.9 (0.3) (1.8) −75.4 (6.7) (7.5)

BHF −8.2 −34.7 −112.7

Exact calc. −5.09 – –

Experiment −28.3 −127.7 −342.0

Separation into 4He clusters −2.46 (0.3) (1.8) 24.5 (6.7) (7.5)

Comparison is given with those obtained with BHF [65] and the exact calculation [66].

The last line is the breakup energy for splitting the system in 4He clusters (of total energy

A/4×5.09 MeV). Taken from McIlroy et al. [64].

Wefind that atMps = 469MeV in the SU(3) limit of QCD, both
4He and 40Ca have bound ground states while the deuteron is
unbound. 16O is likely to decay into four separate alpha particles,
though it is already close to become bound. Moreover, we find
that asymmetric isotopes, like 28O, are strongly unbound systems.
These results suggest that, when lowering the pion mass toward
its physical value, closed shell isotopes are created at first around
the traditional magic numbers and the region ofMps ∼ 500 MeV
marks a transition between an unbound nuclear chart and the
emergence of bound isotopes.

We calculate the root mean square radii, which are given
in Table 3, where we show only the central values. Although
the total binding energies are 15–20% of the experimental value
(Table 2), the computed charge radii are about the same as the
experiment.We also find that the calculated one-nucleon spectral
distributions are qualitatively close to those of real nuclei even
for Mps = 469 MeV considered here. This is due to the fact that
the heavy nucleon mass (mN = 1161.1 MeV) used here reduces
the motion of the nucleons inside the nuclei and counterbalances
the effect of weak attraction of the lattice nuclear forces at this
pion mass.

TABLE 3 | Matter and charge radii of 4He, 16O, and 40Ca at MPS = 469 MeV

computed by the SCGF method, which are compared with those by BHF [65], by

Hartree-Fock (HF) and by experiments [67, 68].

4He 16O 40Ca

rpt−matter [fm]: SCGF 1.67 2.64 2.97

BHF 2.09 2.35 2.78

HF 1.62 2.39 2.78

rcharge [fm]: SCGF 1.89 2.79 3.10

Experiment 1.67 2.73 3.48

For charge radii, we assumed the physical charge distributions of the nucleons. Taken

from McIlroy et al. [64].

We next present the study of properties of dense matter,
namely, Equation of State (EoS) of nuclear matter. We again
employ the nuclear forces in 1S0,

3S1, and
3D1 channels obtained

in 3-flavor lattice QCD. To study the quark mass dependence,
we use lattice results for all five quark masses, at Mps = 469,
672, 837, 1015, 1171 MeV, which are shown in Figure 12. As a
method for a many-body calculation, we employ the Brueckner-
Hartree-Fock (BHF) theory [69], which is known to be
quantitative enough to give the essential underlying physics for
infinite matter.

In Figure 16 (Upper), we show the results of the ground
state energy per nucleon (E/A) as a function of the Fermi
momentum kF for the symmetric nuclear matter and the
pure neutron matter. Shown together are the so-called APR
EoS [70], which are obtained by the variational chain summation
method from phenomenological nuclear forces with (APR(Full))
and without (APR(AV18)) three-nucleon forces. In Figure 16

(Upper-Left), we find that the symmetric nuclear matter becomes
a self-bound system with a saturation point (kF ,E/A) ≃
(1.83(16) fm−1,−5.4(5) MeV) at the lightest quark mass (Mps =
469 MeV). This is the first time that the saturation in the
symmetric nuclear matter is obtained through first-principles
lattice QCD simulations. The saturation point, however, deviates
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FIGURE 16 | (Upper) Ground state energy per nucleon (E/A) as a function of the Fermi momentum kF by the BHF theory with nuclear forces from 3-flavor lattice QCD

at Mps = 469–1,171 MeV, together with that from APR [70] with and without phenomenological three-nucleon forces. (Left) Results for the symmetric nuclear matter.

filled square indicates the empirical saturation point. (Right) Results for the pure neutron matter. (Lower) Mass-radius relation of the neutron star based on EoS

obtained by the BHF theory with nuclear forces from 3-flavor lattice QCD at Mps = 469–1,171 MeV. Figures are taken from Inoue et al. [69].

from the empirical point primarily due to heavy pion (pseudo-
scalar meson) mass in lattice simulation and the lack of three-
nucleon forces in BHF calculation.

We also find a non-trivial Mps dependence of the EoS:
the saturation disappears at intermediate pion masses
(Mps = 672, 837 MeV) and possibly appears again at
the heavy pion mass region (Mps = 1015, 1171 MeV).

This implies that the saturation originates from a subtle
balance between short-range repulsion and the intermediate
attraction of the nuclear force, which have different mq

dependence [44]. A similar non-trivial Mps dependence
originated from the balance between repulsion and attraction is
also observed for NN scattering phase shifts, as was discussed
in section 4.1.
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FIGURE 17 | An illustration of the complementary role of lattice QCD and experiments in the determination of baryon forces.

In Figure 16 (Upper-Right), we find that neutron matter
is not self-bound due to large Fermi energy. If we decrease
the pion mass, EoS is found to become stiffer. To further
study the impact on phenomena in nuclear astrophysics,
we calculate the mass (M) vs. the radius (R) relation of
neutron stars at each pion mass. Here, we solve the Tolman-
Oppenheimer-Volkoff (TOV) equation by using the EoS of
the neutron-star matter with neutron, proton, electron and
muon under the charge neutrality and beta equilibrium, where
we use the standard parabolic approximation for asymmetric
nuclear matters.

Shown in Figure 16 (Lower) is theM-R relation of the neutron
star for different pion masses. As Mps decreases, the M-R curve
shifts to the upper right direction, due to the stiffening of the
EoS. While the maximum mass of the neutron star (Mmax) in
this calculation is much smaller than the recent observations,
Mmax ≃ 2M⊙, the deviation is most likely due to the heavy
pion masses and lack of interactions as three-nucleon forces. A
naive extrapolation of Mmax and the corresponding radius to
Mps = 137 MeV would give Mmax ∼ 2.2M⊙ and R ∼ 12 km,
which are encouraging for more quantitative studies in future.
Another hottest topic in the context of neutron star physics is the
effect of hyperon on the EoS at high density (so-called “hyperon
puzzle”). Lattice QCD can play an unique role to study this
effect by determining the hyperon forces which suffer from large
uncertainties in experiments to date. For the on-going study in
this direction, see Inoue [71].

4.4. Challenge: Nuclear Forces Near the
Physical Pion Mass
While the results of nuclear forces at heavy pion masses are very
intriguing and useful to extract the physical picture of nuclear
forces, the quantitative results require the study at the physical
pion mass. Note that the pion mass dependence of nuclear forces
is quite non-trivial as discussed in sections 4.1 and 4.3, so the
direct calculation near the physical point is desirable.

To this end, we have recently performed the first calculation
of nuclear forces near the physical up, down and strange quark
masses. Actually, our aim is to calculate not only nucleon forces
but also hyperon forces, hereby achieve the comprehensive
determination of two-baryon interactions from the strangeness
S = 0 to −6 in parity-even channels (S- and D-waves). As
mentioned before, the statistical fluctuations in lattice QCD are

smaller (larger) for larger (smaller) quark masses, and thus the
results have better precision in sectors involving more number
of strange quarks (larger strangeness |S|). On the other hand,
experiments in such larger |S| sectors are more difficult due to
the short life time of hyperons. Therefore, lattice QCD studies
and experiments are complementary with each other in the
determination of baryon forces (see Figure 17).

(2+1)-flavor gauge configurations are generated on a L3 ×
T = 963 × 96 lattice with the RG-improved Iwasaki gauge
action and non-perturbatively O(a)-improved Wilson quark
action and APE stout smearing. The lattice spacing is a ≃
0.0846 fm (a−1 ≃ 2.333 GeV), so that spatial extent, L =
8.1 fm, is sufficiently large to accommodate two baryons in
a box. Quark masses are tuned so as to be near the physical
point, and the hadron masses are found to be (mπ ,mK ,mN) ≃
(146, 525, 955) MeV. NBS correlation functions for two-baryon
systems are calculated for 55 channels in total and we extract
the central and tensor forces in parity-even channel at the LO
analysis for the derivative expansion (work in progress, and
see also [72]). In order to make this first calculation a reality,
“trinity” of state-of-the-art developments was crucial: (a) time-
dependent HAL QCD method (theory), (b) unified contraction
algorithm (software) and (c) K-computer, HOKUSAI and HA-
PACS supercomputers (hardware).

Shown in Figure 18 are the results for the central force in the
1S0 channel (Left), and the central force (Middle) and tensor force
(Right) in the 3S1-

3D1 channel. As noted above, nuclear forces
are the most challenging interactions in lattice QCD calculation,
and one can see that the results suffer from large statistical
fluctuations. Nevertheless, the obtained results exhibit several
interesting properties.

First of all, the repulsive core at short-range is clearly observed
in central forces. In order to clarify the physical picture for the
repulsive core, it is useful to compare them with hyperon forces
obtained in the same lattice setup. We find that the strength of
repulsive core (or attractive core) highly depends on the flavor
SU(3) (SU(3)f ) classification, in a consistent way with the quark
Pauli blocking effect. In addition, if we compare interactions
which belong to the same SU(3)f classification, such as NN(1S0)

and 44(1S0) both of which belong to 27-plet, we find that the
strength differs in a way which can be understood from the
viewpoint of one-gluon-exchange (e.g., repulsive core inNN(1S0)
is stronger than that in 44(1S0)). These observations confirm
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FIGURE 18 | Nuclear forces from (2+1)-flavor lattice QCD near the physical point, mπ = 146 MeV. The central force in the 1S0 channel (Left). The central force

(Middle) and the tensor force (Right) in the 3S1-
3D1 channel.

the physical picture for the repulsive core obtained in the 3-
flavor lattice QCD (section 4.1), the quark Pauli blocking effect
and the one-gluon-exchange, is relevant even at physical quark
masses. See also Park et al. [73] for a more detailed study on
this point.

At middle and long distances, while statistical errors are quite
large, we observe that the central force is attractive, resembling
the phenomenological potential as one-pion-exchange potential
(OPEP). The tensor force has relatively smaller statistical errors
than the central forces, showing that the tensor force becomes
stronger (with a negative sign) and has a longer tail, as compared
with the tensor forces at heavier pion masses (section 4.1). This
property can be understood by the picture of OPEP. These results
are encouraging and serve as the first step to establish a direct
connection between QCD and nuclear physics. At the same time,
statistical errors remain to be large and there also exist systematic
errors associated with inelastic state contaminations. The studies
to resolve these issues are in progress, and the second generation
calculation is planned on the forthcoming Exascale computer,
“Fugaku” (see https://postk-web.r-ccs.riken.jp/).

5. DIBARYONS

Before closing this review, we present our latest results on
dibaryon searches in lattice QCD near the physical pion
mass [72]. A dibaryon, a bound-state (or a resonance) with a
baryon number B = 2 in QCD, can be classified in the SU(3)f as

8⊗ 8 = 27⊕ 8s ⊕ 1⊕ 10⊕ 10⊕ 8a (50)

for the octet-octet system, where the deuteron, the only
stable dibaryon observed in nature so far, appears in the 10

representation while H dibaryon has been predicted in the 1

representation [74] and actively investigated in lattice QCD [43,
44, 51, 52, 75]. For the decuplet-octet system, the classification
leads to

10⊗ 8 = 35⊕ 8⊕ 10⊕ 27 (51)

and N� (N1) dibaryon has been predicted in the 8 (27)
representation [76–78], and

10⊗ 10 = 28⊕ 27⊕ 35⊕ 10 (52)

for the decuplet-decuplet system, where �� dibaryon
has been predicted in the 28 representation [79] while
11 has been predicted in the 10 [78, 80] and the
corresponding d∗(2380) was indeed observed [81]. Note
that among decuplet baryons, only � is stable against
strong decays.

5.1. The Most Strange Dibaryon
We first consider the �� system in the 28 representation of
SU(3)f in the 1S0 channel [82].

Figure 19 (Upper-Left) shows �� potentials at
t/a = 16, 17, 18, which has qualitative features similar to
the central potentials for NN but whose repulsion is weaker and
attraction is shorter-ranged. This potential predicts an existence
of one shallow bound state, whose binding energy is plotted in
Figure 19 (Upper-Right) as a function of the root-mean-square
distance, with (red) and without (blue) Coulomb repulsion
between��. We may call this�� bound state “the most strange
dibaryon.” Such a system can be best searched experimentally
by two-particle correlations in relativistic heavy-ion
collisions [84].

5.2. N� Dibaryon
We next consider the N� system with S = −3 in
the 8 representation in the 5S2 channel [83]. Near
the physical point, N�(5S2) may couple to D-wave
octet-octet channels below the N� threshold (34 and
64), but such couplings are assumed to be small in
this calculation.

Figure 19 (Lower-Left) shows the N� potential at t/a =
11–14, which is attractive at all distances without repulsive
core, so that one bound state appears in this channel. In
Figure 19 (Lower-Right), the binding energy (vertical) and
the the root-mean-square distance (horizontal) are plotted
for n�− with no Coulomb interaction (red) and p�− with
Coulomb attraction (blue). These binding energies are much
smaller than B = 18.9(5.0)(+12.1

−1.8 ) MeV at heavy pion
mass mπ = 875 MeV [85]. Such a N� state can be
searched through two-particle correlations in relativistic nucleus-
nucleus collisions [84] and an experimental indication was also
reported [86].
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FIGURE 19 | (Upper) The �� system in the 1S0 channel in 2+ 1 flavor QCD at mπ ≃ 146 MeV and a ≃ 0.0846 fm on a (8.1 fm)3 box. (Left) The �� potential V (r) at

t/a = 16, 17, 18. (Right) The binding energy of the �� system and the root-mean-square distance between two �’s are shown by blue solid diamond (red solid

triangle), calculated from the �� potential V (r) at t/a = 17 without (with) the Coulomb repulsion. Taken from Gongyo et al. [82]. (Lower) The N� system in the 5S2

channel with the same lattice setup for ��. (Left) The N� potential VC(r) at t/a = 11, 12, 13, 14. (Right) The binding energy and the root-mean-square distance for the

n�− (red open circle) and p�− (blue open square). Taken from Iritani et al. [83].

5.3. Comparison Among Dibaryons
Let us consider the scattering length a0 and the effective range
reff for ��(1S0) and N�(5S2). In Figure 20, the ratio reff/a0 as a
function of reff are plotted for ��(1S0) and N�(5S2) obtained
in lattice QCD near the physical pion mass, together with the
experimental values for NN(3S1) (deuteron) and NN(1S0) (di-
neutron). Small values of |reff/a0| in all cases indicate that these
systems are located close to the unitary limit.

6. CONCLUSIONS

In this paper, we have reviewed the recent progress in lattice
QCD study of baryon-baryon interactions by the HAL QCD
method. We first presented the detailed account on how to
define the potentials in quantum field theories, such as QCD.
The key observation is that the Nambu-Bethe-Salpeter (NBS)
wave functions contain the information of scattering phase shifts

below inelastic threshold in their asymptotic behaviors outside
the range of the interactions. The potentials at the interaction
region can then be defined through the NBS wave functions so as
to be faithful to the phase shifts by construction, where the non-
locality of the potential is defined by the derivative expansion. In
addition, by constructing the potentials in energy-independent
way, the potentials can be extracted from two-baryon correlation
functions without the requirement of the ground state saturation.

We then made a detailed comparison between the HAL
QCD method and the conventional method, in which phase
shifts are obtained from the finite volume energies through
the Lüscher’s formula. We pointed out that, while the validity
of the latter method relies on the ground state saturation
of the correlation function, its practical procedure for multi-
baryon systems (“direct method”) so far has utilized only the
plateau-like structures of the effective energies at Euclidean
times much earlier than the inverse of the lowest excitation
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FIGURE 20 | The ratio of the effective range and the scattering length reff/a0
as a function of reff for ��(

1S0) (blue open diamond) and N�(5S2 ) (red open

circle) obtained in lattice QCD, as well as for NN(3S1 ) (purple open up-triangle)

and NN(1S0) (green open down-triangle) in experiments. Taken from Iritani

et al. [83]. The sign convention for the scattering length is opposite to Eq. (5) in

this figure.

energy. We showed theoretical and numerical evidences that
such a procedure generally leads to unreliable results due to
the contaminations from the elastic excited states: For instance,
the results were found to be dependent on the operators and
unphysical behaviors were exposed by the normality check. This
invalidates the claim of the literature in the direct method
that NN bound states exist for pion masses heavier than
300 MeV.

On the other hand, HAL QCD method is free from
such a serious problem since the signal of potentials can be
extracted from not only the ground state but also elastic excited
states. While there instead exists the truncation error of the
derivative expansion of the potential, the calculation of the
higher order term in the derivative expansion showed that
the convergence of the expansion is sufficiently good at low
energies. Furthermore, utilizing the finite volume eigenmodes of
the HAL QCD Hamiltonian, the excited state contaminations
in the direct method were explicitly quantified. It turns
out that the plateau-like structures of effective energies at
early time slices are indeed pseudo-plateaux contaminated by
elastic excited states and that the plateau for the ground
state is realized only at a much larger time corresponding
to the inverse of the lowest excitation energy gap. We also
showed that, by employing an optimized operator utilizing
the finite volume eigenmodes, the effective energies from
the correlation functions give consistent results with those
from the HAL QCD potential. Thus the long-standing issue
on the consistency between the conventional method based
on the Lüscher’s formula and the HAL QCD method was
positively resolved.

After establishing the reliability of the HAL QCD method,
we presented the numerical results of nuclear forces from the

HAL QCD method at various lattice QCD setups. At heavy
pion masses, where good signal-to-noise ratio can be achieved
in lattice QCD, we observed that the obtained NN potentials in
the parity-even channel (1S0,

3S1-
3D1) reproduce the qualitative

features of the phenomenological potentials, namely, attractive
wells at long and medium distances, accompanied with repulsive
cores at short distance in the central potentials and the strong
tensor force. The net interactions were found to be attractive,
which however are not strong enough to form a bound NN
state, probably due to the heavy pion masses. We observed that
the tail structures are enhanced at lighter pion masses, which
can be understood from the viewpoint of one-pion exchange
contributions. We also found the repulsive cores are enhanced
at lighter pion masses. Combined with our systematic studies
including hyperon forces, the nature of repulsive cores was found
to be well-described by the quark Pauli blocking effect together
with the one-gluon-exchange contribution.

The HAL QCD method can be extended to determine
more complicated nuclear forces, such as spin-orbit forces
and three-nucleon forces. In this paper, we considered two-
nucleon systems in the parity-odd channels (1P1,

3P0,
3P1,

3P2-
3F2 channels) and calculated spin-orbit forces as well

as central and tensor forces. We found that qualitative
features of experimental results are generally well-reproduced,
while the magnitudes differ due to the heavy pion mass.
In particular, we observed the strong (and negative) spin-
orbit forces, which lead to the attraction in the 3P2 channel.
Three-nucleon forces were studied in the triton channel,
(I, JP) = (1/2, 1/2+), thank to the unified contraction
algorithm (UCA), which can enormously speed up calculations
of multi-baryon correlation functions. It was found that there
exists a repulsive three-nucleon forces at short distances.
These observations are of interest in the context of not
only the structures of nuclei but also those of neutron
stars, e.g., P-wave superfluidity and the maximum mass of
neutron stars.

We carried out the applications to nuclei, nuclear equation
of state (EoS) and structure of neutron stars based on lattice
nuclear forces at heavy quark masses. We performed ab initio
self-consistent Green’s function (SCGF) calculations for closed
shell nuclei with nuclear forces at Mps=469 MeV in the SU(3)
limit of QCD. We found that 4He, 40Ca nuclei are bound, and
16O is close to become bound, while asymmetric isotopes are
strongly unbound. The results suggest that, when lowering the
pion mass toward its physical value, islands of stability appear at
first around the traditional doubly magic numbers. The nuclear
EoS was also studied by the BHF theory with nuclear forces in
the flavor SU(3) limit. We found that the saturation property
appears in the symmetric nuclear matter at Mps = 469 MeV. A
mass-radius relation of the neutron star was also studied based
on the EoS obtained from lattice nuclear forces and we observed
a tendency that the maximummass of a neutron star increases as
the pion mass decreases.

Finally, we presented the first lattice QCD study of baryon
forces near the physical pion mass in the parity-even channel.
The computation is quite challenging particularly for nuclear
forces due to bad signal-to-noise ratio near the physical point.
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Nevertheless, we observed prominent characteristics of nuclear
forces, such as repulsive cores at short distances as well as
attractive interactions at mid and long distances in central
forces, and a strong (and negative) tensor force. We also
presented the results for the hyperon forces obtained near the
physical point. We found that both ��(1S0) and N�(5S2)
systems have strong attractions, and (quasi) bound dibaryons are
formed near the unitary limit. These systems could be searched
experimentally through two-particle correlations in relativistic
nucleus-nucleus collisions.

Present results shown in this paper already indicate a clear
pathway which connects nuclear physics with its underlying
theory of the strong interaction, QCD. While there remain
many challenges to accomplish researches in this direction, there
is no doubt that successive theoretical developments together
with next-generation supercomputers will further deepen the
connection between the two. The outcome is also expected
to play a crucial role to understand the nuclear astrophysical
phenomena, such as supernova explosions and mergers of binary
neutron stars, as well as the nucleosynthesis associated with these
explosive phenomena.
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