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Parity-violating and time-reversal conserving (PVTC) and parity-violating and

time-reversal-violating (PVTV) forces in nuclei form only a tiny component of the

total interaction between nucleons. The study of these tiny forces can nevertheless

be of extreme interest because they allow one to obtain information on fundamental

symmetries using nuclear systems. The PVTC interaction derives from the weak

interaction between the quarks inside nucleons and nuclei, therefore the study of PVTC

effects opens a window on the quark-quark weak interaction. The PVTV interaction is

sensitive to more exotic interactions at the fundamental level, in particular to strong CP

violation in the Standard Model Lagrangian, or even to exotic phenomena predicted

in various beyond-the-Standard-Model scenarios. The presence of these interactions

can be revealed either by studying various asymmetries in polarized scattering of

nuclear systems, or by measuring the presence of non-vanishing permanent electric

dipole moments of nucleons, nuclei and diamagnetic atoms and molecules. In this

contribution, we review the derivation of the nuclear PVTC and PVTV interactions within

various frameworks. We focus in particular on the application of chiral effective field

theory, which allows for a more strict connection with the fundamental interactions at

the quark level. We investigate PVTC and PVTV effects induced by these potentials on

several few-nucleon observables, such as the longitudinal asymmetries in proton-proton

scattering and the 3He(En,p)3H reaction, the radiative neutron-proton capture, and the

electric dipole moments of the deuteron and the trinucleon system.

Keywords: fundamental symmetries in nuclei, nuclear forces, effective field theory, chiral perturbation theory,

few-body systems

1. INTRODUCTION

The interaction between nucleons is at the heart of nuclear physics and has been a subject
of great scientific interest for many decades. The strong nuclear forces have their origin in
the residual interaction between quarks and gluons inside colorless nucleons and are described
by quantum chromodynamics (QCD). The resulting parity-conserving, time-reversal-conserving
(PCTC) nuclear interactions are known to exhibit a complicated pattern, involving a delicate
interplay of strongly state-dependent repulsive and attractive pieces. While the nucleon-nucleon

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2020.00218
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2020.00218&domain=pdf&date_stamp=2020-07-21
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:michele.viviani@pi.infn.it
https://doi.org/10.3389/fphy.2020.00218
https://www.frontiersin.org/articles/10.3389/fphy.2020.00218/full
http://loop.frontiersin.org/people/965438/overview
http://loop.frontiersin.org/people/965402/overview
http://loop.frontiersin.org/people/537316/overview


de Vries et al. PV and TV Interactions

(NN) scattering data below the pion production threshold can
nowadays be accurately described by modern NN potentials,
the (weaker) three-nucleon (3N) forces and the electromagnetic
interactions (EM) between the nucleons, known to play an
important role in the nuclear structure and dynamics, are not
so well-understood and represent a subject of active research.
The current status of PCTC nuclear forces is reviewed in other
contributions to this topical issue.

In addition to the bulk PCTC interactions mentioned
above, nuclear forces also feature much tinier components,
which originate from the weak forces between quarks and/or
physics beyond the standard model (BSM) and whose strength
is smaller than that of the strong and EM interactions
by many orders of magnitude. These tiny components are,
nevertheless, extremely interesting since investigation of their
effects may shed new light on fundamental symmetries and
BSM physics. While effects of such exotic PCTC components
are, of course, completely overwhelmed by the strong and EM
nuclear forces, parity- (P) violating and/or time-reversal- (T)
violating nuclear interactions can be determined by measuring
specific observables which would vanish if these symmetries
were conserved. In this contribution, we review the theory of
parity-violating, time-reversal-conserving (PVTC) and parity-
violating, time-reversal-violating (PVTV) nuclear forces and
discuss selected applications.

Starting from 1950s, a wide variety of phenomenological
models have been developed to describe nuclear forces, the
most prominent utilizing the one-boson exchange picture,
see Machleidt [1] and references therein. More recently, the
development of chiral effective field theory (χEFT) [2] has given
a new impetus to the derivation of nuclear interactions [3–
5]. The χEFT approach utilizes the spontaneously broken
approximate SU(2)L×SU(2)R chiral symmetry of QCD1 in order
to describe the low-energy dynamics of pions, the (pseudo-)
Goldstone bosons of the spontaneously broken axial generators,
in a systematic and model-independent fashion within the
framework of the effective chiral Lagrangian [6–11], see [12–
14] for review articles. Owing to the derivative nature of
the Goldstone boson interactions, the scattering amplitude in
the pion- and single-baryon sectors can be calculated via a
perturbative expansion in powers of Q/3χ , where Q refers
to momenta of the order of the pion mass mπ and 3χ ∼
mρ ∼ 1 GeV denotes the chiral symmetry breaking scale, with
mρ the ρ-meson mass. The effective Lagrangian involves (an
infinite number of) all possible hadronic interactions compatible
with the symmetries of QCD, which are naturally organized
according to the number of derivatives and/or quark or pion
mass insertions2. Every term in the effective Lagrangian is
multiplied by a coefficient, whose strength is not fixed by the
symmetry. These so-called low-energy constants (LECs) can be
determined by fits to experimental data and/or obtained from

1Here and in what follows, we restrict ourselves to the two-flavor case of the light

up and down quarks unless specified otherwise.
2In the isospin limit, the quark and pion masses are related to each other via

m2
π = 2Bmq+O(m2

q), where B is a constant proportional to the quark condensate

〈0|ūu|0〉 = 〈0|d̄d|0〉.

lattice QCD simulations, see [13, 14] and references therein. At
every order in the Q/3χ -expansion, only a finite number of
terms from the effective Lagrangian contributes to the scattering
amplitude. The resulting framework, commonly referred to as
chiral perturbation theory (χPT), is nowadays widely applied
to analyze low-energy processes in the Goldstone boson and
single-nucleon sectors. It has also been generalized to study
few- and many-nucleon systems, where certain resummations
beyond perturbation theory are necessary in order to dynamically
generate the ultrasoft scale associated with nuclear binding.
According to Weinberg [2], the breakdown of the perturbative
expansion for the NN scattering amplitude is traced back
to enhanced contributions of ladder diagrams, i.e., Feynman
diagrams that become infrared divergent in the static limit
of infinitely heavy nucleons. The simplest and natural way
to resum enhanced ladder diagrams is provided by solving
the nuclear Schrödinger equation. The framework therefore
essentially reduces to the conventional quantum mechanical A-
body problem. The corresponding nuclear forces and current
operators are defined in terms of non-iterative parts of the
scattering amplitude, which are free from the above mentioned
enhancement. They can be derived from the effective chiral
Lagrangian in a systematically improvable way via a perturbative
expansion in powers of Q/3χ [4, 5]. Assuming the scaling of
few-nucleon contact operators according to naive dimensional
analysis3, the PCTC interactions are dominated by the pairwise
NN force, which receives its dominant contribution at order
(Q/3χ )

ν with ν = 0, defined to be the leading order (LO). Parity
conservation forbids the appearance of nuclear forces at order
ν = 1, so that the next-to-leading order (NLO) contribution to
the PCTC NN potential appears at order ν = 2. Next-to-next-
to-leading order (N2LO) has ν = 3 and so on. PCTC three-
and four-nucleon forces are suppressed and start contributing
at orders ν = 3 (N2LO) and ν = 4 (N3LO), respectively.
Presently, the chiral expansion of the PCTC NN force has been
pushed to order ν = 5 (N4LO) [16–19], while many-nucleon
interactions have been worked out up through N3LO, see [4, 5]
and references therein. We further emphasize that a number of
alternative formulations of χEFT for nuclear systems have been
proposed [20–25], see also [26–31] for a related discussion.

Another framework to analyze nuclear systems at very low
energies is based on the so-called pionless formulation of EFT,
see [31–33] for review articles. It is valid at momenta well
below the pion mass, at which the pionic degrees of freedom
can be integrated out. In the resulting picture, nucleons interact
with each other solely through short-range contact two- and
many-body forces. This formulation is considerably simpler than
χEFT both at the conceptual and practical levels, and has been
successfully applied to study e.g., Efimov physics and universality
in few-body systems near the unitary limit, low-energy properties

3Notice that for systems near the unitary limit corresponding to the infinitely large

scattering length (such as e.g., the NN systems in the S-waves), the scattering

amplitude exhibits a certain amount of fine tuning beyond naive dimensional

analysis. The expansion of the scattering amplitude does, therefore, not necessarily

coincide with the expansion of nuclear potentials [15].
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of halo-nuclei and reactions of astrophysical relevance, see [31–
33] and references therein.

In this paper we focus on the PVTC and PVTV interactions
in the frameworks of χEFT and pionless EFT. We also outline
various meson-exchange models frequently adopted to analyze
the results for some PVTC and PVTV observables. In the
subsections below, we briefly discuss the origin of the PVTC and
PVTV interactions and summarize the current experimental and
theoretical status of research along these lines.

1.1. The PVTC Interaction
The PVTC component of the nuclear force is governed by the
weak interaction between the quarks inside the nucleons (and
pions). Studying such effects, therefore, opens a window on the
so-called “pure” hadronic weak interaction (HWI) [34–38]. This
part of the weak interaction is far less known experimentally.

A number of experiments aimed at studying PVTC in
low-energy processes involving few-nucleon systems have been
completed/are being planned at cold-neutron facilities, such
as the Los Alamos Neutron Science Center (LANSCE), the
National Institute of Standards and Technology (NIST) Center
for Neutron Research, the Spallation Neutron Source (SNS) at
Oak Ridge National Laboratory, and the European Spallation
Source (ESS) in Lund. The primary objective of this experimental
program is to determine the LECs which appear in the PVTC
nuclear potentials. For a recent review of the current status of
experiments along this line and the impact of anticipated results,
see ([39]).

PVTC nuclear forces have already been analyzed in the
framework of χEFT [40–42]. The LO PVTC NN force is
driven by the one-pion-exchange term with ν = −1, while
the NLO terms with ν = 1 emerge from two-pion-exchange
diagrams and NN contact interactions4. In Girlanda [44], it
was shown that the PVTC NN potential involves only five
independent contact operators at this order corresponding to
five S-P transition amplitudes at low energies [45]. Including the
PVTC pion-nucleon coupling constant h1π , the NN potential at
NLO thus contains six LECs which need to be determined from
experimental data. At N2LO one has to take into account five
additional LECs, which determine the strength of the subleading
PVTC pion-nucleon interactions [46].

In pionless EFT, the LO PVTC NN potential is completely
described in terms of the already mentioned five contact
terms [36, 47]. The large-Nc scaling of PVTC NN contact
interactions was analyzed in Phillips et al. [48] and Schindler
et al. [47]. These studies suggest that three out of five PVTC
contact interactions are suppressed by a factor of (1/Nc)

2 or by
the factor (1/Nc) sin

2 θW ≈ 0.08, see also a related discussion
in Vanasse [49]. If the large-Nc scaling persists to the physically
relevant case of Nc = 3, the pionless potential at LO should
be dominated by only 2 LECs [39]. Unfortunately, the currently
available experimental data do not allow one to draw definitive
conclusions on whether the suggested large-Nc hierarchy of
PVTC contact interactions is indeed realized in Nature.

4Notice that PVTC hadronic interactions involve a typical suppression factor of

∼ GFM
2
π ∼ 10−7 as compared to PCTC vertices [43].

Regarding the various meson-exchange models developed to
describe the PVTC interaction, we will mainly discuss the model
proposed by Desplanques, Donoghue, and Holstein (DDH) [50]
which includes pion and vector-meson exchanges with seven
unknown meson-nucleon PVTC coupling constants.

1.2. The PVTV Interaction
PVTV nuclear forces originate from more exotic sources
at the fundamental level, which include the so-called θ-
term in the Standard Model (SM) Lagrangian [51], or even
BSM interactions [52]. Due to the CPT theorem, any PVTV
interaction also violates the CP symmetry, where C refers
to charge conjugation. CP violation is a key ingredient for
the dynamical generation of a matter-antimatter asymmetry in
the Universe [53]. The SM with three generations of quarks
has a natural source of CP-violation in the phase of the
Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix. This
mechanism is however not sufficient to explain the observed
asymmetry [54].

The phase of the CKM matrix also does not contribute
sizably to the nuclear PVTV interaction. For example, let us
consider the electric dipole moment (EDM) of a system of
particles. A non-zero permanent EDM of a particle or a system
of particles necessarily involves the breaking of both parity
and time-reflection symmetries. EDMs of the electron, nucleons
and nuclei are mostly sensitive to P- and T-violating flavor-
diagonal interactions. To induce a non-zero EDM, on the other
hand, the phase of the CKM requires contributions from all
three generations of quarks, including heavy quarks, leading
to a large suppression [52, 55–57]. For example, the expected
size of the nucleon EDM based on the CKM mechanism in
the SM is |dCKMN | ∼ 10−18 e fm [58, 59]. Therefore, any
observed permanent EDM of an atomic or nuclear system larger
in magnitude than the expected size within the SM would
highlight PVTV effects beyond the CKM mixing matrix. The
present experimental upper bounds on the EDMs of neutron
and proton are |dn| < 1.2 · 10−13 e fm [60, 61] and |dp| <
2.0 · 10−12 e fm, where the proton EDM has been inferred from
a measurement of the diamagnetic 199Hg atom [62] using a
calculation of the nuclear Schiff moment [63]. For the electron,
the most recent upper bound is |de| < 1.1 · 10−16 e fm [64],
derived from the EDM of the ThO molecule. In all cases, the
current experimental sensitivities are orders of magnitude away
from the CKM predictions.
χEFT allows one to derive PVTV nuclear forces in a

systematic and model independent way. To this aim, the
PCTC effective chiral Lagrangian has to be extended to include
all possible PVTV terms classified according to their chiral
dimension. Some of these terms are induced, at the microscopic
level, by the SM mechanisms discussed above. The effective
chiral Lagrangian induced by the θ-term is discussed in
Mereghetti et al. [65] and Bsaisou et al. [66]. BSM theories such
as supersymmetry, multi-Higgs scenarios, left-right symmetric
models, etc. would give rise to additional PVTV sources of
dimension six (and higher) in the quark-gluon Lagrangian [67].
The χEFT Lagrangians originating from these sources were
derived in de Vries et al. [68] and Bsaisou et al. [69]. Various
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terms in the resulting effective chiral Lagrangian possess different
scaling with respect to the underlying microscopic PVTV
sources. χEFT can thus be used to establish relations between
the fundamental PVTV mechanisms and specific terms in the
nuclear potentials and, accordingly, specific patterns in the
corresponding nuclear observables [65, 68, 69]. In principle,
this offers the possibility of identifying the fundamental sources
of time-reversal violation and to shed light on some of the
BSM scenarios, provided the corresponding LECs in the effective
Lagrangian can be determined from Lattice QCD calculations or
experimental data [70, 71].

In the framework of χEFT, the PVTV NN potential was
derived up to N2LO including one- and two-pion exchange
contributions and the corresponding contact interactions [72,
73]. Subsequent works showed the presence in the PVTV
Lagrangian of a three-pion term [68], which was for the first time
included in the calculations in Bsaisou et al. [66]. This term also
generates a PVTV 3N force at NLO, which contributes to the 3H
and 3He EDM. The calculation reported in Bsaisou et al. [66] was
also the first one carried out using solely the interactions derived
in χEFT. More precisely, the PVTV potential at NLO was used
in combination with the N2LO PCTC potentials from Epelbaum
et al. [74]. Finally, in Gnech and Viviani [75], the EDMs of
deuteron and trinucleons were studied using the χEFT PVTV
potential up to N2LO along with the N4LO PCTC potential of
Entem et al. [18]. In this paper, it was also shown that the N2LO
contribution to the PVTV 3N force generated by the three-pion
interaction vanishes. The LO χEFT PVTV potential has also been
applied in combination with many-body methods to calculate
Schiff moments of heavy nuclei [76].

Currently, no direct limits on EDMs of light nuclei have been
established. However, experiments are planned to measure the
EDM of protons and light nuclei in dedicated storage rings [77–
82]. This new approach could reach a precision of ∼ 10−16 e
fm, although this goal has to be established in practice. If
successful, these experiments would lead to a great improvement
in the hadronic sector of EDM searches. A measurement of a
non-vanishing EDM of this magnitude would provide evidence
of a PVTV source beyond the CKM mechanism. However, a
single measurement would be insufficient to identify the specific
source of PVTV. For this reason, experiments with various light
nuclei such as 2H, 3H and 3He are planned. Such measurements
would provide the complementary information needed to impose
constraints on PVTV sources at the fundamental level.

A brief discussion of the PVTV potentials derived in the
framework of the one-meson exchange model and in the pionless
EFT approach will also be reported in this review.

1.3. Outline of the Article
Our paper is organized as follow. In section 2, we discuss the
origins of PVTC and PVTV interactions at the fundamental level
and list the relevant terms in the quark-gluon Lagrangian. In
section 3, we give the corresponding terms in the effective chiral
Lagrangian and discuss the derivation of the PVTC and PVTV
potentials in χEFT. In section 4, we specifically focus on the
contact few-nucleon interactions which enter the potentials in
both the chiral and pionless EFT formulations. We also discuss

the expected hierarchy of the corresponding LECs as suggested
by the large-Nc analysis. Next, in section 5, the various meson-
exchange models developed to describe the PVTC and PVTV
interactions will be summarized. Then, in section 6, we report on
a selected set of results for PVTC and PVTV observables in light
nuclei up to A = 4. Finally, the main conclusions of this paper
and future perspectives are summarized in section 7.

2. PARITY VIOLATION AND
TIME-REVERSAL VIOLATION AT THE
MICROSCOPIC LEVEL

Parity is violated in the SM of particle physics because of
the different gauge interactions of left- and right-handed
fermion fields. Only left-handed particles interact via SU(2)L
gauge interactions such that this part of the SM violates
parity maximally. The remaining color and electromagnetic
interactions conserve parity modulo the QCD vacuum angle
which is discussed below. Parity violation was first observed in
semileptonic charged current interactions in 1957 [83]. Twenty
years later, in the late ‘70s, PVTC was observed in neutral current
electron-nucleus scattering [84], providing a strong confirmation
of the SM. Subsequent PVTC electron scattering experiments
have quantitatively confirmed the SM picture [85]. In addition
to PVTC in β decays and semileptonic neutral current processes,
the SM predicts PVTC in weak interactions between quarks. At
energies smaller than the masses of the W and Z bosons, such
interactions can be represented by four-fermion operators. Just
below the electroweak (EW) scale, and limiting ourselves to the
lightest u and d quarks, the four-fermion Lagrangian is

LW = −
GF√
2

{(
1− 2

3
s2w

)
q̄Lγ

µτaqL q̄LγµτaqL

− 2s2w
3

q̄Lγ
µτ3qL (q̄LγµqL + q̄RγµqR)

− 2s2w
(
q̄Lγ

µτ3qL q̄Lγµτ3qL

− 1

3
q̄Lγ

µτaqL q̄LγµτaqL

)
+ . . .

}
, (1)

where GF is the Fermi coupling constant and s2w ≡ sin2 θW ≃
0.231, with θW the Weinberg mixing angle. qL and qR denote
the left-handed and right-handed doublets qTL = (uL, dL) and
qTR = (uR, dR), and the dots denote terms that conserve parity5.
Equation (1) was obtained assuming the CKM matrix to be the
identity, that is Vud = 1. The three operators in Equation (1)
all break parity, but have different transformation properties
under chiral symmetry and isospin. We note that the isovector
and isotensor terms (the second and third operators) given in
Equation (1) are suppressed by a factor s2w with respect to the
isoscalar one.

The operators in Equation (1) need to be evolved using
the renormalization group equations (RGE) from the EW scale
down to the QCD scale, and in this process they mix with

5Here u and d denote the u- and d-quark Dirac fields, respectively. Moreover

uR,L = 1±γ 5
2 u, etc.
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additional PVTC operators [86]. After the RGE evolution, the
PVTC Lagrangian assumes the form

L
SM
PVTC = −

GF√
2

{
CSM
1 q̄Lγ

µτaqL q̄LγµτaqL

+CSM
2 q̄Lγ

µqL q̄LγµqL + CSM
3 q̄Lγ

µτ3qL q̄LγµqL

+CSM
4

(
q̄Lγ

µτ3qL q̄RγµqR − q̄Lγ
µqL q̄Rγµτ3qR

)

+CSM
5

(
q̄αL γ

µτ3q
β
L q̄

β
R γµq

α
R − q̄αL γ

µq
β
L q̄

β
R γµτ3q

α
R

)

+CSM
6

(
q̄Lγ

µτ3qL q̄Lγµτ3qL −
1

3
q̄Lγ

µτaqL q̄LγµτaqL

)

−(L↔ R)

}
, (2)

where in the SM, the coefficients CSM
i are known functions of

SM parameters as sw, the strong coupling constant gs, etc. Greek
indices α and β appearing as superscripts in some of the quark
fields in Equation (2) specify color indices. They are only shown
for cases where the color contractions are not obvious. Notice
that the QCD evolution does not remedy the s2w suppression of
the isospin-one and -two operators [86]. BSM physics that arises
at scales well above the EW can be represented at the EW scale
via gauge-invariant higher-dimensional operators [67, 87]. This
framework is usually called the SM Effective Field Theory (SM-
EFT). SM-EFT operators can induce new PVTC couplings of the
W and Z bosons to left- and right-handed quarks, and new PVTC
four-fermion operators. After evolving the effective operators
from the EW to the QCD scale, the net effect of BSM PVTC
SM-EFT operators is to modify the coefficients CSM

i in Equation
(2) with respect to their SM values, namely in Equation (2)
one substitutes CSM

i → CSM+BSM
i . We have focused so far on

operators involving only the u and d quarks. Flavor-conserving
(1F = 0) operators involving the s quark can also generate
interesting contributions to hadronic P violation [86, 88], such
as contributions to isospin-one operators that are not suppressed
by s2w.

While P and C are maximally broken by the V − A structure
of the SM, the breaking of CP is much more delicate. In the SM
with three generations of quarks, CP is broken by the phase of
the CKM matrix, which explains all the observed CP violation
in the kaon [89–91], and B meson systems [92, 93]. Theoretical
uncertainties are at the moment too large to definitively conclude
whether the recently discovered CP violation in D decays [94]
is compatible with the SM. The phase of CKM gives, on the
other hand, unobservable contributions to flavor-diagonal CP
violation, in particular to the neutron [55, 59, 95] and electron
EDMs [96–98].

The second source of CP violation in the SM is the QCD θ

term [51, 99, 100]

L
θ
PVTV = −θ

g2s
64π2

εµναβ Ga
µνG

a
αβ , (3)

where gs is the strong coupling constant and Ga
µν the gluon field

tensors (a is a color index). The θ term is a total derivative, but

it contributes to physical processes through extended, spacetime-
dependent field configurations known as instantons. CP violation
from the QCD θ term is intimately related to the quark masses.
All phases of the quark mass matrix can be eliminated through
non-anomalous SU(2) vector and axial rotations, except for a
common phase ρ. The mass plus QCD θ terms which are left are

L
mass+θ
PVTV =−

(
eiρ q̄LMqR + e−iρ q̄RMqL

)
−θ g2s

64π2
εµναβ Ga

µνG
a
αβ ,

(4)
where M = diag(mu,md). The parameters ρ and θ are
not independent. In χEFT, it is convenient to rotate L

mass+θ
PVTV

into a complex mass term with an anomalous U(1)A rotation,
obtaining, after vacuum alignment [101],

L
mass+θ
PVTV = m∗θ̄ q̄iγ5q , (5)

where

θ̄ = θ + nf ρ , m∗ =
mumd

mu +md
= m̄(1− ǫ2)

2
. (6)

nf = 2 is the number of light flavors, and the combinations of
light quarks masses m̄ and ǫ are 2m̄ = mu + md, ǫ = (md −
mu)/(md+mu). Equations (5) and (6) can be easily generalized to
include strangeness. θ̄ is a free parameter in the QCD Lagrangian,
and one would expect θ̄ = O(1). This would however lead to a
large neutron EDM |dn| ∼ 10−3θ̄ e fm [102, 103], ten orders of
magnitude larger than the current limits, dn < 3.0 · 10−13 e fm
[61]. Therefore θ̄ . 10−10, which represents the so-called strong
CP problem.

The phase of the CKM matrix and the QCD θ̄ term are the
only CP-violating parameters in the SM Lagrangian. They are
however not sufficient to explain the observed matter-antimatter
asymmetry of the Universe [104–107], and it is therefore natural
to think about CP-violating sources induced by BSM physics. The
low-energy CP-violating operators relevant for EDMs have been
cataloged in several works (e.g., [52, 108–110]). de Vries et al.
[68] considered all the low-energy operators that are induced
by SM-EFT operators at tree level, retaining the two lightest
quarks. Generalization to three flavors are given, for example,
in Jenkins et al. [111] and Mereghetti [112]. The most relevant
SU(3)c×U(1)em-invariant purely hadronic operators induced by
dimension-six SM-EFT operators are

L
6,hadr
PVTV =

gsC̃G

6v2
f abcǫµναβGa

αβG
b
µρG

c ρ
ν

− 1

2v2

(
q̄
[
dE
]
iσµνγ5q eFµν + q̄[dCE]iσ

µν gsGµνγ5q
)

−4GF√
2

{
6

(ud)
1 (d̄LuRūLdR − ūLuRd̄LdR)

+6(ud)
2 (d̄αLu

β
R ū

β
Ld
α
R − ūαLu

β
R d̄

β
Ld

α
R)

}
(7)

− 4GF√
2

{
4

(ud)
1 d̄Lγ

µuL ūRγµdR +4(ud)
2 d̄αLγ

µu
β
L ū

β
Rγµd

α
R

}
,

where f abc are the structure constants of the Lie algebra of the
color SU(3) group, [dE] and [dCE] are matrices in flavor space,
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[dE] = diag(muc̃
(u)
γ ,md c̃

(d)
γ ) and [dCE] = diag(muc̃

(u)
g ,md c̃

(d)
g ).

The coefficients C̃G, c̃
(q)
γ ,g , 6

(ud)
1,2 and 4

(ud)
1,2 are dimensionless

and scale as (v/3X)
2, where v = 246 GeV is the Higgs

vacuum expectation value, and 3X is the scale of new physics.
The Weinberg three-gluon, the quark EDM (qEDM), and the
chromo-EDM (qCEDM) operators (the first, second, and third
term given in Equation (7), respectively) have received the most
attention in the literature [52, 113]. They can be written directly
in terms of SU(3)c × SU(2)L × U(1)Y -invariant operators at the
EW scale, and receive corrections by a variety of CP-violating
operators in the SM-EFT, involving heavy SM fields. The four-
quark operators, given in the third and fourth lines of (7), can
also be expressed in terms of gauge-invariant operators at the
EW scale, and they arise, for example, in leptoquark models,
see [114, 115]. The four-quark operators, given in the last line
of Equation (7), are on the other hand induced by right-handed
couplings of quarks to theW boson [68, 116], and are generated,
for example, in left-right symmetric models.

While all operators in Equations (5) and (7) violate P and
CP symmetry, they transform differently under isospin and
chiral rotations. As such, the operators induce different χEFT
Lagrangians at lower energies, and different hierarchies of CP-
violating hadronic and nuclear observables such as EDMs or
scattering observables.

3. PVTC AND PVTV CHIRAL POTENTIALS

In this section, we discuss the derivation of the PVTC and
PVTV NN and 3N potentials within the framework of χEFT.
In the first and second subsections we briefly review the
properties of the PVTC and PVTV chiral Lagrangians. In
section 3.3, we present briefly two methods used to derive
the potentials starting from a Lagrangian. Finally, in the last
two subsections, we present the PVTC and PVTV chiral
potentials, respectively.

In order to discuss hadronic observables such as nuclear
EDMs or PVTC asymmetries in pp scattering, the quark-
level PVTC and PVTV Lagrangians of Equations (2) and
(7) need to be matched onto nuclear EFTs, such as chiral
EFT and pionless EFT. Due to the non-perturbative nature
of QCD at low energy, this matching cannot be done
in perturbation theory. Nevertheless, the approximate chiral
and isospin symmetries of the QCD Lagrangian provide an
organizing principle for low-energy interactions, see [12–14] for
review articles.

Let us first introduce the nucleon and pion fields. The
(relativistic) nucleon field N(x) is considered to be an
isospin doublet

N(x) =
(
p(x)
n(x)

)
, (8)

where p(x) (n(x)) is the proton (neutron) field. The pion fields are
given in “Cartesian” coordinates πa, a = 1, 2, 3, where

π1(x) =
π (+)(x)+ π (−)(x)√

2
, π2(x) =

i
(
π (+)(x)− π (−)(x)

)

√
2

,

π3(x) = π (0)(x) , (9)

π (+)(x), π (−)(x), and π (0)(x) being the fields associated to the
three charge states of the pion. The pion fields in Cartesian
coordinates are collectively denoted by Eπ(x). We use the 2 × 2
matrices τa, a = 0, . . . , 3, where τ0 is the identity matrix, while τa,
a = 1, . . . , 3 are the Pauli matrices acting on the isospin degrees
of freedom (often indicated cumulatively as Eτ ). For example,
Eτ · Eπ(x) = ∑3

a=1 τaπa(x). Sometimes the a = 3 component
will be denoted as the “z” component, i.e., π3 ≡ πz , etc., in our
notation. Finally, we denote the nucleon (pion) mass byM (mπ ).

In some cases, we will perform a non-relativistic reduction of
the nucleon field N(x) and use Ns(x)

Ns(x) =
(
ps(x)
ns(x)

)
, (10)

where ps(x) (ns(x)) is the two component Pauli spinor
representing the static proton (neutron) field. Effects of the anti-
nucleon degrees of freedom are taken into account in the form
of 1/M relativistic corrections to the vertices. The coefficient of
the annihilation operator reduces to χm exp(ip · x), where χm is a
spinor describing a spin state with z-projectionm = ± 1

2 .
The main “building block” to construct the chiral Lagrangian

is the SU(2) pionic matrix field U(x), often written as (but its
definition is not unique) [12]

U(x) = e
i
fπ
Eπ(x)·Eτ

, (11)

where fπ ≈ 92.4 MeV is the pion decay constant. Another
low energy constant frequently entering the chiral Lagrangian
is the axial coupling constant gA ≈ 1.29. Following the
standard convention, we give here the effective value that
takes into account the Goldberger-Treiman discrepancy and is
extracted from the empirical value of the pion-nucleon coupling
constant. The effective chiral Lagrangian is constructed in
terms of N(x) and U(x) and therefore contains vertices with
arbitrary number of pion fields. In the following, we will retain
explicitly only relevant terms with the minimum number of
pion fields, obtained by expanding U(x) in powers of the pion
field. Additional terms with a larger number of pion fields will
only contribute to the PVTC and PVTV potential at higher
orders in the chiral expansion. For an introduction to the chiral
Lagrangians and their building blocks, the reader is referred to
Bernard et al. [12], Bernard [13], and Bijnens and Ecker [14] and
references therein.

Each term of the chiral Lagrangian will be classified by the
so-called “chiral order”. Each four-gradient of the pion matrix
field or a multiplication by a pion mass increases the order of
the term by one. Four-gradients acting on nucleon fields are
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more difficult to classify, since the time derivative brings down
a factor proportional to the nucleon mass. An easier counting
is obtained using the non-relativistic heavy baryon perturbation
theory [12, 117], which was used in the derivation of the PVTC
potential in de Vries et al. [46] and of the PVTV potential
in Maekawa et al. [72]. In the following, we will use both the
relativistic and non-relativistic nucleon fields.

For the sake of completeness, we report first of all the terms
of the PCTC Lagrangian that contribute to the PVTC and
PVTV potentials up to the order we are interested in. In SU(2)
χPT, the PCTC Lagrangian can be conveniently organized in
sectors with different numbers of pions and nucleons (below
we give the explict expression for the relevant terms in the πN
Lagrangian only).

LPCTC = LPCTC,πN + LPCTC,NN + LPCTC,ππ + · · · , (12)

LPCTC,πN = N

[
− 1

4 f 2π
(Eτ × Eπ) · ∂µ Eπ γ µ −

gA

2 fπ
(Eτ · ∂µ Eπ) γ µγ 5

+4 c1m2
π

(
1− Eπ

2

2 f 2π

)
+ c2

f 2π

(
∂0 Eπ · ∂0 Eπ+

1

M
∂0 Eπ · ∂i Eπγ 0 i

←→
∂ i

)

+ c3

f 2π
∂µ Eπ · ∂µ Eπ −

c4

2f 2π
(Eτ · ∂µ Eπ × ∂ν Eπ) σµν + · · ·

]
N (13)

where “· · · ” in the previous expression denotes terms of higher
order and/or more pions fields of no interest here. Above←→
∂ µ ≡ −→∂ µ − ←−∂ µ and σµν = i

2 [γ
µ, γ ν]. The parameters

ci=1−4 are LECs appearing in the Lagrangian of order Q2. They
have dimension of mass−1. For a complete discussion of the
terms appearing in the Lagrangians LPCTC,πN , LPCTC,NN , and
LPCTC,ππ , etc., see [12, 118].

3.1. The PVTC Chiral Lagrangian
The effective chiral Lagrangian that involves contributions from
the weak sector of the SMwas first discussed in the seminal paper
by Kaplan and Savage [88] and subsequently revisited in Kaplan
et al. [119], Zhu et al. [40], de Vries et al. [46], and Viviani et al.
[42]. Also the PVTC Lagrangian can be conveniently organized
in sectors with different numbers of pions and nucleons, explictly

LPVTC = LPVTC,πN+LPVTC,NN +LPVTC,πππ + · · · , (14)
LPVTC,πN = L

(0)
PVTC,πN + L

(1)
PVTC,πN + · · · , (15)

LPVTC,NN = L
(1)
PVTC,NN + L

(3)
PVTC,NN + · · · , (16)

LPVTC,πππ = L
(2)
PVTC,πππ + · · · , (17)

where the superscript (n) denotes the chiral order of each piece.
The pion-nucleon interaction terms are collected in LPVTC,πN

and those entering the PVTC potential up to Q1 are the

following [46, 88]

L
(0)
PVTC,πN =

h1π√
2
N(Eπ × Eτ )zN , (18)

L
(1)
PVTC,πN = −

h0V
2fπ

Nγ µ∂µ(Eτ · Eπ)N −
h1V
fπ

Nγ µN∂µπz

−2h2V
fπ

∑

a,b

Iab∂µπa Nγ
µτbN −

h1A
f 2π

Nγ µγ 5N(Eπ × ∂µ Eπ)z

+h2A
f 2π

3∑

a,b=1
IabN

(
(Eπ × ∂µ Eπ)aτb + ∂µπa(Eπ × Eτ )b

)
γ µγ 5N ,

(19)

where

Iab =



−1 0 0
0 −1 0
0 0 +2


 . (20)

The parameters h1π and h1I
V ,A are unknown LECs. The superscript

1I labels the rank of the corresponding isospin tensor. The LECs
can be estimated by naive dimensional analysis (NDA) [40, 42,
46, 88]

h1π ∼ GFfπ3χ ∼ 10−6 , h1I
V ,A ∼

fπ

3χ
h1π ∼ 10−7 , (21)

where 3χ = 4π fπ ∼ 1.2 GeV is the typical scale of the
strong interaction. Equation (21) shows the order-of-magnitude
estimates of the PVTC interactions. These estimates do not take
into account factors of s2w and Nc that could modify the expected
scaling of the LECs.

The contact terms entering the Lagrangian LPVTC,NN are
products of a pair of bilinears of nucleon fields that are odd under
P and even under CP. The most general bilinear product reads

ÕAB =
3∑

a,b=0
Fab(N τaŴA N) (N τbŴB N) , (22)

where ŴA and ŴB are elements of the Clifford algebra with
the possible addition of 4-gradients and Fab are unknown
parameters. To violate P but conserve CP, at least one 4-gradient
is required. We must build isoscalar, isovector and isotensor
terms as discussed in section 2. The operators moreover have
to conserve the electric charge and thus commute with the
third component of the isospin operator. The terms with only

one gradient operator are collected in L
(1)
PVTC,NN (i.e., of chiral

order 1). Only five independent terms can be written [44],
corresponding to the five possible S ↔ P transitions in NN
scattering [45]. It is more convenient to give the Lagrangian using
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the non-relativistic reduction of the nucleon fields Ns:

L
(1)
PVTC,NN =

1

32
χ fπ

[
C1

2
∇ × (N†

s σNs) · N†
s σNs

+ C2

2
∇ × (N†

s σ τaNs) · N†
s στaNs

+ C3ǫab3∇ · (N†
s στaNs)N

†
s τbNs

+ C4∇ × (N†
s στ3Ns) · N†

s σNs

+ C5

2
Iab∇ × (N†

s στaNs) · N†
s στbNs

]
. (23)

The factor 1
32
χ fπ

has been chosen to ensure that the Ci are

dimensionless and for convenience in the power counting.
The construction of Equation (23) and the elimination of
redundancies will be discussed in more details in section
4. The operators multiplying the LECs C1,2 are isoscalar,
those multiplying C3,4 change isospin by one unit, while that
multiplyingC5 is an isotensor. The scaling of the LECs from naive
dimensional analysis [120] is given by

Ci ∼ GF3χ fπ , (24)

which once again does not take into account the suppression by
s2w affecting, for example, the isovector operators. The operators
in Equation (23) contribute to the PVTC potential at NLO
(suppressed by (Q/3χ )

2 with respect to LO), and we will give
the potential derived from them in Equation (60). The terms

appearing in L
(3)
PVTC,NN contain two additional gradients and

contribute to the PVTC potential at higher order. They have not
been considered so far.

Finally, there are some terms with 3π vertices appearing in

L
(2)
PVTC,πππ as discussed in Viviani et al. [42]. These terms would

contribute to the Q2 PVTC potential, but their contributions at
the end vanishes as discussed in section 3.4.

3.1.1. Connection to the Underlying PVTC Sources
Attempts to estimate the values of the coupling constants were
performed mainly in the framework of the meson exchange
models (which will be discussed in section 5). However, since
in both χEFT and meson exchange frameworks the lowest
order pion-nucleon Lagrangian term is the same as given
in Equation (18), we can report here the values for h1π
estimated from the underlying fundamental theory also before
the advent of χEFT [121–127]. One of the most comprehensive
calculation including all previous results was performed in
1980 by Desplanques, Donoghue, and Holstein (DDH) [50]
using the valence quark model. Additional calculations have
been performed subsequently [128–130], using similar or
other methods and finding qualitatively similar results. These
estimates, however, are based on a series of rather uncertain
assumptions (see, for example, [131]). For example, DDH
presented not a single value for h1π but rather a range inside
of which it was extremely likely that this parameter would be
found [50]. In addition they presented also a single number called

the “best value” but this is described simply as an educated guess
in view of all the uncertainties. The values of h1π were [50]

DDH: h1π = 4.56× 10−7 (“best value”) ,

h1π = 0− 11.4× 10−7 (“reasonable range”) . (25)

Some years ago, a lattice QCD calculation of h1π was also
made [132], resulting in the estimate

Lattice: h1π = (1.1± 0.5)× 10−7 , (26)

where the theoretical uncertainty is related to the statistical
Monte Carlo error. While the systematic errors are expected to
be within the quoted statistical uncertainty [132], we stress that
the calculation was performed at a heavy pion mass and not
extrapolated to the physical point, disconnected diagrams were
not included, and operator renormalization was neglected.

Regarding the other LECs entering the contact Lagrangian
given in Equation (23), no direct estimates have been reported
in literature. These LECs were estimated by comparing the
expression of contact potential with the potential developed using
the exchanges of heavy mesons, as for example, in the DDH
potential [42, 46] (this issue will be considered in more detail
in section 5). However, since also the DDH estimates are rather
uncertain, we will not discuss this issue further.

3.2. The PVTV Lagrangian
The PVTV chiral Lagrangian taking into account the QCD θ̄

term was first considered in the seminal paper by Crewther, di
Vecchia, Veneziano andWitten [102], and consequently revisited
in Cheng [133], Pich and de Rafael [134], Cho [135], Borasoy
[136], and Ottnad et al. [137]. Subleading terms in the chiral
expansion were systematically constructed in Mereghetti et al.
[65] and Bsaisou et al. [69]. The chiral Lagrangian induced by
the dimension-six operators in Equation (7) were derived in de
Vries et al. [68] and Bsaisou et al. [69].

As before, in SU(2) χPT, the PVTV Lagrangian can
be organized in sectors with different numbers of pions
and nucleons

LPVTV=LPVTV ,πN+LPVTV ,NN+LPVTV ,πππ+ · · · , (27)
LPVTV ,πN = L

(0)
PVTV ,πN + L

(1)
PVTV ,πN + · · · , (28)

LPVTV ,NN = L
(1)
PVTV ,NN + L

(3)
PVTV ,NN + · · · , (29)

LPVTV ,πππ = L
(0)
PVTV ,πππ + · · · . (30)

As in the previous subsection, we report here only the most
important interactions for each sector, focusing on the terms
with the minimum number of pion fields entering in the final
expression of the potential. Terms with additional pions are not
universal for the different PVTV sources at the quark level, but
instead depend on their chiral-symmetry breaking pattern. These
differences only enter at higher order in the potentials than we
consider here.

In the PVTV case, the simultaneous violation of P, T, and
isospin symmetry allows for a pion tadpole linear in the pion field
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∼ π3 with a corresponding LEC proportional to the symmetry-
violating source terms at the quark level. Such tadpoles can
always be removed by appropriate field redefinitions of the pion
and nucleon fields [65, 68, 69]. At LO in the chiral expansion, the
tadpole removal is the same as the vacuum alignment procedure
at the quark level [101]. While tadpoles can be removed, the
corresponding field redefinitions affect other couplings in the
chiral Lagrangian. In particular, for chiral-symmetry-breaking
CP sources that do not transform as a quark mass term, a PVTV
three-pion vertex of chiral order Q0 is left behind [68, 69].

L
(0)
PVTV ,πππ = M1̄π3 Eπ2 , (31)

where 1̄ is a LEC. Other three-pion vertices will appear at N2LO,
but they will contribute to high orders of the PVTV potential.

Arguably the most important interactions appear in the
pion-nucleon sector. Simultaneous violation of P, T, and
chiral symmetry allows for non-derivative single-pion-nucleon
interactions, something which is not possible in the PCTC
Lagrangian. In principle, three different interactions can
be written

L
(0)
PVTV ,πN = ḡ0N Eπ · EτN + ḡ1Nπ3N + ḡ2Nπ3τ3N , (32)

corresponding, respectively, to an isospin singlet, vector, and
tensor interaction. As discussed below, the relative size of
the LECs ḡ0,1,2 strongly depends on the quark-level PVTV
source under consideration. In the case of CP-violation from
chiral invariant operators, such as the three gluon term, ḡi are
suppressed by powers of the pion masses, and the pion-nucleon
Lagrangian contains chiral-invariant, derivative couplings as
important as those in Equation (32) [68]. These can however
always be absorbed into a shift of ḡ0 and of the 1I = 0 NN
operators discussed below.

The NLO Lagrangian contains several two-pion two-nucleon
PVTV interactions [65, 68, 69, 75], but, for all CP-violating
sources, they contribute to the two- and three-body PVTV
potentials at N3LO and N2LO, respectively. We therefore
ignore these couplings. Isospin-breaking sources also generate
a single-pion-nucleon NLO coupling. The coupling involves a
time derivative of the pion field, thus inducing a relativistic
correction in the O(Q) PVTV potential. At N2LO the number of
interactions proliferates significantly and there are also new pure
pionic interactions. These contributions can either be absorbed
into LO LECs or appear at high orders in the PVTV potential
considered here.

Apart from pionic and pion-nucleon interactions, there
appear PVTV NN contact interactions. As in the PVTC case,
at least one gradient is required such that these operators start
at order Q. Terms with three or more gradients have not been
considered so far. At order Q, only five independent interactions
of this kind can be written, corresponding to the five possible
S ↔ P transitions (see section 4 for a general discussion of this
kind of interaction terms). Neglecting terms with multiple pions,
the Lagrangian reads (again, it is convenient to write it in terms

of the non-relativistic nucleon field Ns)

L
(1)
PVTV ,NN =

1

32
χ fπ

[
C̄1∇ · (N†

s σNs)N
†
s Ns

+ C̄2∇ · (N†
s στaNs)N

†
s τaNs

+ C̄3∇ · (N†
s στ3Ns)N

†
s Ns + C̄4∇ · (N†

s σNs)N
†
s τ3Ns

+ C̄5Iab∇ · (N†
s στaNs)N

†
s τbNs

]
. (33)

As suggested by the factor of 32
χ which we pulled out of the

definition of the LECs, in χEFT these operators contribute in
general at N2LO and are suppressed with respect to the PVTV
one-pion exchange (OPE) potential. The only exception, as
discussed in section 3.2.1, are quark-level operators that do not
break chiral symmetry, for which C̄1,2 are as important as the
contributions from ḡ0,1.

Finally, the calculation of EDMs or other PVTV
electromagnetic moments requires the inclusion of
electromagnetic currents. Nucleon EDMs are induced by

pion loops involving the interactions in L
(0,1)
PVTV ,πN . The

renormalization of these loops requires the inclusion of short-
distance counter terms contributing to the nucleon EDMs. Such
counter terms indeed appear in the chiral Lagrangian

LPVTV ,Nγ =
1

4
N
(
d̄0 + d̄1τ3

)
ǫµναβσµνN Fαβ , (34)

where Fαβ is the electromagnetic field strength and d̄0 and d̄1
are LECs related to the proton and neutron EDMs, respectively.
The above interactions are sufficient for calculations of hadronic
and nuclear PVTV scattering observables and EDMs up to NLO
in the chiral expansion. Calculations of higher PVTV moments,
such asmagnetic quadrupolemoments, can depend on additional
LECs [138].

3.2.1. Connection to the Underlying PVTV Sources
In the previous section we listed the PVTV hadronic interactions
relevant for observables of experimental interest. However, for a
given PVTV source at the quark-gluon level, a specific hierarchy
among the various interactions appear. The relative importance
of the LECs in Equations (31), (32), (33), and (34) for the different
microscopic sources of CP violation is summarized in Table 1.
These estimates are based on NDA [120]. NDA is valid in the
regime in which the strong coupling gs is non-perturbative,
and, as done for NDA estimates of the chiral-invariant PCTC
interactions, we will take gs ≃ 4π . In addition, for dimension-
six sources, we assumed that a Peccei-Quinn mechanism [139]
relaxes θ̄ to an induced θ̄ind, which depends on the coefficients
and vacuummatrix elements of the operators in Equation (7) [52,
140, 141]. The scaling of the couplings without this assumption
can be found in deVries et al. [68]. To make the power counting
explicit, we introduced three ratios of scales

ǫv ≡
32
χ

v2
, ǫmπ ≡

m2
π

32
χ

, ǫχ ≡
f 2π
32
χ

= 1

(4π)2
. (35)
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TABLE 1 | Scaling of the LECs in the chiral Lagrangian in dependence of the microscopic CP violation sources.

(4πǫmπ ) θ̄ (4πǫmπ )ǫv c̃
(u,d)
g (4πǫmπ ) ǫv c̃

(u,d)
γ 4πǫvC̃G ǫv4

(ud)
1,2 /(4π ) ǫv6

(ud)
1,2 /(4π )

1̄ ǫmπ ǫmπ – εǫ2mπ 1 ǫmπ

ḡ0 1 1 – ǫmπ εǫmπ ǫmπ

ḡ1 εǫmπ 1 – εǫmπ 1 εǫmπ

ḡ2 ε2ǫ2mπ εǫmπ – ε2ǫ2mπ εǫmπ ε2ǫ2mπ

d̄0,1fπ e ǫχ e ǫχ e ǫχ e ǫχ e ǫχ e ǫχ

C̄1,2 1 1 – 1 εǫmπ 1

C̄3,4 εǫmπ 1 – εǫmπ 1 εǫmπ

C̄5 ε2ǫ2mπ εǫmπ – ε2ǫ2mπ εǫmπ ε2ǫ2mπ

We introduced the counting parameters ǫv ≡ 32
χ /v

2, ǫmπ ≡ m2
π /3

2
χ , ǫχ ≡ f2π /3

2
χ . With ǫmπ ∼ ǫχ , we introduced two different parameters to explicitly track insertions of the light

quark masses from the QCD Lagrangian. ε is the isospin breaking parameter ε = (md − mu )/(md + mu ) ≃ 1/3. The scaling of the LECs induced by dimension-six sources assume

a Peccei-Quinn mechanism. A “−” implies the interaction is only induced at higher order than considered here. The parameters C̄1,2, C̄3,4, and C̄5 are the LECs entering the contact

PVTV potential, respectively of isoscalar, isovector, and isotensor type.

Numerically, ǫχ ∼ ǫmπ , but we define two different parameters to
track the dependence of the LECs on the quark masses. To assess
the size of the contribution of different CP violating sources to
the nucleon and nuclear EDMs, the scaling of the LECs inTable 1
can be combinedwith a naive estimate of these observables. As we
will discuss in detail in sections 3.2.2 and 6.5, the nucleon EDM
receives tree level contributions from d̄0,1 and loop contributions
by ḡ0 and ḡ1, leading to

dn,p ∼
d̄0 ∓ d̄1

2
+ e

fπ
ǫχ
(
α0ḡ0 + α1ḡ1ǫ1/2mπ

+ . . .
)
, (36)

where e is the electric charge and the coefficients of the loops
α0,1 will be given explicitly in section 3.2.2. The additional
suppression of ḡ1 is due to the fact that this coupling only involves
neutral pions, which do not interact with a single photon at LO.
Nuclear EDMs, on the other hand, receive tree level contributions
from the single nucleon EDM, and from pion-nucleon and
nucleon-nucleon couplings,

dA = andn + apdp + e

(
a11̄+

2∑

i=0
aiḡi + ǫχ

5∑

i=1
AiC̄i

)
.(37)

The coefficients an,p, a1,0,1,2 and A1,...,5 depend on the nucleus
under consideration, and in section 6.5 we will present results
for their calculation in chiral EFT for the deuteron, 3H and 3He.
By power counting, they are expected to be O(1) (measured in
units of fm in the case of the dimensionful a1,0,1,2 and A1,...,5),
barring isospin selection rules, which for example suppress the
contributions of the isoscalar operators ḡ0 and C̄1,2 in nuclei with
N = Z, such as the deuteron [142, 143] 6.

The reader should be aware that the dimensionless Wilson
coefficients of the dimension-six operators, c̃

(u,d)
g , c̃

(u,d)
γ , C̃G,4

(ud)
1,2 ,

and 6
(ud)
1,2 also come with intrinsic suppression factors. These

arise from the typical loop and chiral factors that appear in

6 ḡ0 and C̄1,2 contribute to the deuteron EDM in conjunction with isospin breaking

in the strong interaction, or via the spin-orbit coupling of the photon to the

nucleons [143]. Both contributions are beyond the accuracy we work at in

this paper.

BSM models. For example, quark and gluon dipole operators
are typically induced at the one-loop level, and the quark EDM
and chromo-EDM coefficients come with explicit factors of the
quark mass (already included in Equation 7). This implies that

one can expect {c̃(u,d)g , c̃
(u,d)
γ , C̃G} = O(ǫ3/(4π)

2), where ǫ3 =
v2/32

X . Of course this is just an estimate and certainly models
exist where these operators appear only at the two- or higher-
loop level. On the other hand, the four-quark operators 4 and
6 can be induced at tree level, so that {4,6} = O(ǫ3). Once the
matching coefficients are calculated in a givenmodel,Table 1 and
Equations (36)-(37) allow identification of the dominant low-
energy operator and to get a rough idea of the EDM constraints.

Table 1 highlights the feature that the chiral and isospin
properties of the quark-level CP-violating sources induce very
specific hierarchies between different low-energy couplings.
These hierarchies in turn imply different relations between
the EDMs of the nucleon, deuteron, and three-nucleon
systems, which, if observed, would allow disentanglement of
the various CP-violating sources. From Table 1, we see that

chiral-symmetry-breaking sources, such as θ̄ , c̃
(u,d)
g , and 4

(u,d)
1,2 ,

induce relatively large PVTV pion-nucleon couplings. These
couplings appear in the table with entry 1, indicating no further
suppression. In particular, the isoscalar θ̄ term and isovector
4(u,d) predominantly induce, respectively, ḡ0 and ḡ1, while a
qCEDM would yield both couplings with similar strengths. The
consequence is that for these sources light nuclear EDMs are
enhanced with respect to the nucleon EDM. For these chiral-
symmetry-breaking sources, the contact nucleon interactions
proportional to C̄i are suppressed in the chiral expansion because

these operators involve an explicit derivative. The suppression

can be explicitly seen combining the scaling in Table 1 with the

explicit factor of ǫχ in Equations (33) and (37).
Chiral invariant sources such as the Weinberg operator

C̃G and the four-quark operators 6
(u,d)
1,2 , on the other hand,

require additional chiral-symmetry breaking to generate ḡ0,1, as

indicated by extra powers of ǫmπ . In this case, EDMs of light-

nuclei are expected to be of similar size as the nucleon EDM.

Furthermore, the contact nucleon operators proportional to C̄1,2

now contribute to the PVTV potential at the same order as ḡ0,1.
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Finally, the qEDM mostly induces d̄0,1, all other couplings being
suppressed by O(αem), where αem is the fine structure constant
∼ 1/137. In this case one expects nuclear EDMs to be dominated
by the constituent nucleon EDMs.

While most statements are source-dependent, there is an
important general message hidden in Table 1. There is no PVTV
source for which the couplings ḡ2 and C̄3,4,5 appear at LO. For
all sources they appear with a relative suppression of εǫmπ or
ǫχ compared to other PVTV interactions. For most calculations
one can simply neglect the associated interactions, reducing
the number of LECs entering the expression of hadronic and
nuclear observables. The suppression of the LECs ḡ2 and C̄3,4,5

ultimately is a consequence of imposing gauge invariance on the
dimension-six PVTV sources.

Table 1 relies on NDA estimates for hadronic matrix elements
[120]. A more quantitative assessment of the discriminating
power of EDM experiments necessitates to replace the NDA
estimates in Table 1 with solid non-perturbative calculations of
the LECs. At the moment, there exist controlled estimates only
of a few LECs. The pion-nucleon couplings ḡ0 induced by the
QCD θ̄ term is related by chiral symmetry to modifications
in the baryon spectrum [102]. In particular, in SU(2) χPT ḡ0
is related to the quark mass contribution to the nucleon mass
splitting [65, 144], up to N2LO corrections. Using Lattice QCD
evaluations of the nucleon mass splitting [145, 146], one finds

ḡ0(θ̄) = (15.5± 2.6)× 10−3 θ̄ , (38)

where the 15% error includes both the Lattice QCD error onmn−
mp, and an estimate of the error from N2LO chiral corrections.
Unfortunately, chiral-symmetry-based relations do not allow
to extract ḡ1 and d̄0,1. ḡ1 has been estimated with resonance
saturation leading to ḡ1(θ̄)/ḡ0(θ̄) ≃ −0.2, somewhat larger than
expected from NDA [73]. The LECs d̄0,1 are usually estimated
by naturalness arguments and considered to be of similar size to
non-analytic contributions to the isoscalar and isovector nucleon
EDM, see the section 3.2.2.

The relation between PVTV pion-nucleon couplings and
corrections to the nucleon and pion masses is not specific to
the QCD θ̄ term, but can be generalized to all chiral-symmetry-
breaking sources, such as for example the qCEDM [68, 147] and

4
(ud)
1,2 [141, 148]. Since corrections to spectroscopic quantities

should be easier to compute on the lattice, these chiral relations
allow a calculation of ḡ0,1 in Lattice QCD. While promising, this
strategy has yet to lead to controlled results. The best estimate of
ḡ0,1 induced by the qCEDM comes fromQCD sum rules [52, 149]

ḡ0 = (0.1± 0.2)
(
0.7c̃(u)g − 1.5c̃(d)g

)
× 10−6,

ḡ1 =
(
0.4+0.8−0.2

) (
0.7c̃(u)g − 1.5c̃(d)g

)
× 10−6 . (39)

These estimates agree with NDA, especially for ḡ1. However,
ḡ0 seems to be slightly suppressed, in agreement with large-Nc

expectations [150].

Only for the four quark operators proportional to 4
(ud)
1,2 of

Equation (7) does the three-pion vertex with LEC 1̄ appear at
LO in the chiral Lagrangian. For this case, the LEC 1̄ is related by

SU(3) symmetry to K → ππ matrix elements and K − K̄ matrix
elements that have been calculated on the lattice. We obtain

1̄ = fπ

Mv2

(
A1 LR Im4

(ud)
1 +A2 LR Im4

(ud)
2

)
, (40)

with

A1 LR(µ = 3GeV) = (2.2± 0.13) GeV2,

A2 LR(µ = 3GeV) = (10.1± 0.6)GeV2 . (41)

Thematrix elements in Equation (41) are in good agreement with
NDA. The value of 1̄ also determines the tadpole component of
ḡ1, which again is in line with NDA.

Most of the remaining LECs are undetermined at present.
The focus of the Lattice QCD community has been on the
matrix elements connecting the nucleon EDMs to the θ̄ term
[103, 151, 152], the qEDMs [153, 154], the qCEDMs [152, 155],
and the Weinberg operator [156]. Some results are given in
next subsection.

3.2.2. The Nucleon EDM in Chiral Perturbation Theory
The PVTV LECs defined in the previous section can be used to
calculate the nucleon PVTV electric dipole form factor (EDFF).
At zero momentum transfer, the EDFFs are identified with the
nucleon EDMs. In dimensional regularization with modified
minimal subtraction up to NLO in the chiral expansion, the
EDMs are given by [137, 157]

dn = d̄0(µ)− d̄1(µ)+
egAḡ0

(4π)2fπ

(
log

m2
π

µ2
− πmπ

2M

)
, (42)

dp = d̄0(µ)+ d̄1(µ)

− egAḡ0

(4π)2fπ

[(
log

m2
π

µ2
− 2πmπ

M

)
− ḡ1

ḡ0

πmπ

2M

]
, (43)

where µ is the dimensional regularization scale. The leading
loops proportional to ḡ0 are divergent and renormalized by the
µ-dependent LECs d̄0,1. The NLO corrections proportional to
mπ/M are finite. The LEC 1̄ does not contribute at this order
for any of the PVTV sources. As standard in χPT, the loops are
associated to inverse powers of (4π fπ )

2 = 32
χ . Combined with

the scaling of the LECs in Table 1, we conclude that for the θ̄
term and the qCEDMs the leading loop proportional to ḡ0 and
the counter terms d̄0,1 appear at the same order. For all other
PVTV sources, the short-range counter terms d̄0,1 are expected
to dominate the nucleon EDMs. In no scenario can the EDMs
be calculated solely from the pion-nucleon LECs ḡ0,1 as is often
assumed in the literature. Estimates for the nucleon EDMs are
often obtained by setting µ = M and d̄0,1(µ = M) = 0 such that
EDMs depend on the value of ḡ0,1, which for some PVTV sources
is better known.

The separation between the short-range and loop
contributions is scheme dependent and therefore not physical.
Lattice QCD calculations can therefore only calculate the total
nucleon EDMs dn and dp. In recent years, significant efforts have
been made toward calculating the nucleon EDMs in terms of
the underlying PVTV sources. Most efforts have focused on the
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QCD θ̄ term and the qEDM. The most recent results for the θ̄
term [103] give

dn = −(1.5± 0.7)× 10−3 θ̄ e fm ,

dp = (1.1± 1.0)× 10−3 θ̄ e fm , (44)

in good agreement, but with sizeable uncertainties, with
expectations from the chiral logarithm in Equation (42) using
Equation (38). In the case of the qEDM, the nucleon EDM is
related to the tensor charges, which have been computed with
good accuracy [153, 154]. Using the FLAG average [154], we get

dn = gdT
Qumu

v2
c̃(u)γ + guT

Qdmd

v2
c̃(d)γ

=
(
−(0.96± 0.22)c̃(u)γ − (4.0± 0.4)c̃(d)γ

)
× 10−9e fm ,

dp = guT
Qumu

v2
c̃(u)γ + gdT

Qdmd

v2
c̃(d)γ

=
(
(3.7± 0.8)c̃(u)γ + (1.0± 0.1)c̃(d)γ

)
× 10−9e fm , (45)

where Qu,d are the u and d-quark charges in units of the electric

charge, and gu,dT the u and d-quark tensor charges of the proton,
and the error on the r.h.s. of Equation(45) is dominated by the
uncertainty on the light quark masses.

On a longer time-scale, calculations of the qCEDMs and the
Weinberg operator are also targeted. For now, the best results
come from calculations using QCD sum rules [52, 158].

3.3. From the Lagrangian to the Potential
In this subsection, we briefly present two methods that have
been used to derive nucleon-nucleon potentials starting from a
Lagrangian. We first introduce the notation used here and in the
next subsections.

The process under consideration is the scattering of two
nucleons from an initial state |p1p2〉 to the final state |p′1p′2〉
(hereafter the dependence on the spin-isospin quantum numbers
is understood). It is convenient to define the momenta

K j =
p′j + pj

2
, kj = p′j − pj , (46)

where pj and p′j are the initial and the final momenta of the

nucleon j. Furthermore it is useful to define

σ j ≡ (σ )s′j ,sj ≡
〈
1

2
s′j|σ |

1

2
sj

〉
, Eτj ≡ (Eτ )t′j ,tj ≡

〈
1

2
t′j |Eτ |

1

2
tj

〉
,

(47)
which are the spin (isospin) matrix element between the final
state s′j (t

′
j) and the initial state sj (tj) of the nucleon j.

Because k1 = −k2 ≡ k from the overall momentum
conservation p1 + p2 = p′1 + p′2, the momentum-space potential
V is a function of the momentum variables k, K1 and K2, namely

〈p′1p′2|V|p1p2〉 = V(k,K1,K2)(2π)
3δ(p1 + p2 − p′1 − p′2) . (48)

Moreover, we can write in general

V(k,K1,K2) = V(CM)(k,K)+ V(P)(k,K) , (49)

where K = (K1 − K2)/2, P = p1 + p2 = K1 + K2, and the
term V(P)(k,K) represents a boost correction to V(CM)(k,K), the
potential in the center-of-mass frame (CM). Below we will ignore
the boost correction and provide expressions for V(CM)(k,K)
only. Note that in the CM we define also p1 = −p2 ≡ p and
p′1 = −p′2 ≡ p′. So we have k = p′ − p and K = (p′ + p)/2, so in

the following we also write V(CM) as V(CM)(p, p′). From now on,
we will suppress the superscript “(CM)” for simplicity.

In order to derive the potential, two methods have been
frequently used, the method of unitarity transformation (UT),
and themethod of the time-ordered perturbation theory (TOPT).
They are briefly introduced below.

The time-ordered perturbation theory method. Let us consider
the matrix element of the T-matrix, Tfi = 〈p′1p′2|T|p1p2〉, the
“amplitude” of a process of scattering of two nucleons. Its square
modulus |Tfi|2 is directly related to the cross section of the
process. The conventional perturbative expansion for this matrix
element is given as

Tfi = 〈p′1p′2 | HI

∞∑

n=1

(
1

Ei −H0 + i ǫ
HI

)n−1
|p1p2〉 , (50)

where Ei is the energy of the initial state, H0 is the Hamiltonian
describing free pions and nucleons, and HI is the Hamiltonian
describing interactions among these particles. These operators
are defined to be in the Schrödinger picture and they can be
derived from the Lagrangian constructed in terms of pions and
nucleons as described, for example, in Epelbaum et al. [159] and
Baroni et al.[118]. The evaluation of Tfi is carried out in practice
by inserting complete sets of H0 eigenstates between successive
HI factors. Power counting is then used to organize the expansion
in powers of Q/3χ ≪ 1, where Q stands for either an external
momenta or the pion mass. We will use the “naive” Weinberg
counting rules [2], namely, we will count simply the powers of
both the external momenta and pion mass insertions (we will
consider low energy processes only). Each term will be of some
order (Q/3χ )

ν . The terms with the lowest power of ν will be the
LO, and so on.

In the perturbative series given in Equation (50), a generic
contribution will be characterized by a certain number of
vertices coming from the interaction HamiltonianHI and energy
denominators, and it can be visualized also as a diagram
(hereafter referred to as a TOPT diagram). Each vertex will give
a “vertex function” and a δ conservation of the momenta of
the particles involved in the vertex. The vertex functions are the
results of the matrix elements of terms appearing in HI and are
given as products of Dirac four-spinors, momenta, etc. A sum
over themomenta of the particles entering the intermediate states
is also present. When a diagram includes one or more loops, the
δ’s are not sufficient to eliminate all the sums over the momenta
of the intermediate states. The energy denominators come from
the factors 1/(Ei − Eα + iǫ), where Eα is the (kinetic) energy of
a specific intermediate state entering the calculation. The chiral
order of each diagram can be calculated as follows. One needs
to consider:
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1. The chiral order of the vertex functions, which can be
calculated from the non-relativistic (NR) expansion of the
nucleon Dirac four-spinors (1/M expansion), and from
various other factors. Typically, the powers of p/M coming
from the NR expansion of the nucleon Dirac four-spinors are
counted as∼ Q2 [2, 4, 160]. In other approaches however they
are considered to be of orderQ [20, 161, 162]. In this paper, we
will follow the first prescription.

2. The energy denominators. We note that typical momenta
p of the nucleons are much smaller than the mass of the
nucleons, so we can treat them non-relativistically. Namely√
p2 +M2 ≃ M + p2

2M ∼ O(Q0) + O(Q2). Regarding the

pion energies, ωk =
√
m2
π + k2 ∼ O(Q). Usually in the

energy denominator all the nucleon masses M cancel out and
therefore we have two cases:

• If there are no pions in the intermediate state, the energy
denominator has only nucleon energy terms so it results of
order 1/Q2.
• If there are pions in the intermediate states, the energy

denominator reads

1

1E− ωk
∼ − 1

ωk

(
1+ 1E

ωk
+ · · ·

)
, (51)

where the term1E = E1 + E2 + · · · − Ei where E1, . . . are
the energies of the nucleons in the intermediate state and Ei
is the initial scattering energy. In the Taylor expansion the
first term is of order Q−1, while the other terms are usually
called “recoil corrections”. For the sake of consistency with
the choice discussed above regarding the NR expansion
of the Dirac 4-spinors, here we will count the p/M terms
coming from recoil corrections as Q2 as well.

3. The number of loops, or better the number of the sums over
the intermediate state momenta that remain after using the
conservation δ’s. Each loop at the end will give a contribution
of order Q3.

4. The number of disconnected parts of the diagram. For
each of these parts, a δ factor expressing the momentum
conservation of each part is present. Then, if there are
ND disconnected parts, one of the δ simply gives the total
momentum conservation, a factor common to all diagrams
and therefore not relevant. Each of the remainingND−1 δ’s at
the end will “block” a sum over an external three-momentum,
each one therefore reducing the chiral order by 3 units.

Once the T-matrix has been calculated, one would obtain
in general

Tfi =
∑

n=nmin

T
(n)
fi

, (52)

where T
(n)
fi
∼ Qn. In all cases the sum starts from a minimum

value nmin, nmin = 0 for the PCTC and nmin = −1 for the PVTC
and PVTV amplitudes. The idea now is to “define” the potential
acting between the two nucleons so that it can reproduce the same

amplitude Tfi, namely, so that (for more details, see [118])

TV = V + V
1

Ei −H
(NN)
0 + iǫ

TV ≡ Tfi , (53)

whereH
(NN)
0 is the non-interacting Hamiltonian of two nucleons.

Clearly, this procedure is not unique, since usually one imposes
the relation TV = Tfi to hold “on shell,” namely by requiring
the conservation of the energy between initial and final states.
This induces an ambiguity, as discussed for example in Pastore
et al. [162]. However, the obtained potentials are expected to
be equivalent by means of a unitary or at least a similarity
transformation [163].

Finally, to invert Equation (53), one assumes that V has the
same Q expansion as the T matrix,

V =
∑

n=nmin

V(n) , V(n) ∼ Qn , (54)

and Equation (53) can be solved for V(n) order-by-order (see, for
example, Baroni et al. [118] for more details). This procedure
can be generalized to the A = 3 case to define a three-nucleon
potential and so on.

The method of unitarity transformation. The method of
unitary transformation (MUT) has been pioneered in the
1950s to derive nuclear potentials in the framework of pion
field theory [164, 165]. In the context of chiral EFT, this
approach was formulated in Epelbaum et al. [166] and Epelbaum
[167]. Similarly to TOPT, the MUT is applied to the pion-
nucleon Hamiltonian which can be obtained from the effective
Lagrangian in a straightforward way using the standard canonical
formalism. Let η and λ denote the projection operators on
the purely nucleonic subspace and the rest of the Fock space
involving pion states with the usual properties η2 = η, λ2 = λ,
ηλ = λη = 0 and η + λ = 1. To derive nuclear forces
and/or current operators, the Hamiltonian needs to be brought
into block-diagonal form with no coupling between the η- and
λ-subspaces, which can be achieved via a suitably chosen unitary
transformation U. Following Okubo, a unitary operator can be
conveniently parametrized in terms of the operator A = λAη
that mixes the two subspaces via

U =
(
η(1+ A†A)−1/2 −A†(1+ AA†)−1/2

A(1+ A†A)−1/2 λ(1+ AA†)−1/2

)
. (55)

One then obtains the non-linear decoupling equation for the
operator A:

H̃ ≡ U†HU
!=
(
ηH̃η 0

0 λH̃λ

)
H⇒λ (H−[A, H]− AHA) η = 0 .

(56)
The solution of the decoupling equation together with the
calculation of the unitary operator U and the nuclear potential
ηH̃η is carried out in perturbation theory by employing the
standard chiral expansion. The resulting expressions for the
operators A, U and ηH̃η have a form of a sequence of vertices
from the pion-nucleon HamiltonianH and energy denominators
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involving the kinetic energies of particles in the intermediate
states with one or more virtual pions. They are thus similar
to the expressions emerging in the context of TOPT, see
e.g., the operator in Equation (50), and the corresponding matrix
elements can also be interpreted in terms of TOPT-like diagrams.
Notice that contrary to Equation (50), the expressions in the
MUT do, per construction, not involve energy denominators
that vanish in the static limit of infinitely heavy nucleons and
correspond to iterative contributions to the scattering amplitude.
As explained in Epelbaum [167], in order to implement the chiral
power counting in the algebraic approach outlined above it is
convenient to rewrite it in terms of different variables. Using
the rules given in the description of the TOPT approach and
counting the powers of the soft scale Q for a given irreducible
(i.e., of non-iterative type) connected N-nucleon TOPT-like
diagramwithout external sources, one obtains for the chiral order
n [2, 167]

n = −4+ 2N + 2L+
∑

i

Vi1i , (57)

where L is the number of loops, Vi is the number of vertices of
type i. Further, the vertex dimension 1i is given by 1i = di +
1/2ni − 2 with di and ni being the number of derivatives and/or
mπ -insertions and the number of nucleon fields, respectively.
The above expression is convenient to use for estimating the
chiral dimension of TOPT-like diagrams. For the MUT, it is,
however, advantageous to rewrite it in the equivalent form

n = −2+
∑

i

Viκi , κi = di +
3

2
ni + pi − 4 , (58)

where pi is the number of pionic fields. The parameter κi
obviously corresponds to the inverse overall mass dimension of
the coupling constant(s) accompanying a vertex of type i. In
this form, the chiral expansion becomes formally equivalent to
the expansion in powers of the coupling constants, and it is
straightforward to employ perturbation theory for solving the
decoupling equation (56) and deriving the nuclear potentials
ηH̃η.

One non-trivial issue that emerges when applying chiral EFT
to nuclear potentials concerns their renormalization. While on-
shell scattering amplitudes, calculated in chiral EFT, can always
be made finite by including the counterterms from the effective
Lagrangian (provided one uses a chiral-symmetry preserving
regularization scheme such as dimensional regularization),
nuclear potentials represent scheme-dependent quantities, which
correspond to non-iterative parts of the scattering amplitude.
There is no a priori reason to expect all ultraviolet divergences
emerging from TOPT-like diagrams, which give rise to nuclear
forces, to be absorbable into a redefinition of the LECs. Indeed, it
was found that the static PCTC three-nucleon force at order Q4

of the two-pion-one-pion exchange type cannot be renormalized
if one uses the unitary transformation given in Equation (55)
[168]. On the other hand, the employed parametrization of the
operatorU is clearly not the most general one and represents just
one possible choice. The freedom to change the off-shell behavior
of the nuclear potentials, already mentioned in the context of

TOPT, has been exploited in a systematic way in the PCTC
sector in order to enforce renormalizability of nuclear forces
(using dimensional regularization) [167, 169–172]. The MUT
has also been successfully applied to the effective Lagrangian
in the presence of external classical sources in order to derive
the corresponding nuclear current operators, see [160] and
references therein.

3.4. The PVTC Potential Up to Order Q2

In this subsection we will discuss in detail the derivation of
the PVTC potential up to N2LO using the TOPT approach.
We consider diagrams contributing to the T-matrix with one
vertex coming from the PVTC Lagrangian, with all other vertices
coming from the PCTC interaction. Diagrams with two or more
PVTC vertices can be safely neglected.

The TOPT diagrams contributing to the PVTC T-matrix up to
N2LO are shown in Figure 1.

The one pion exchange diagram (a) gives a contribution to
the T-matrix of order Q−1 (that will be our LO). The diagram
(b) represents a PVTC contact interaction of order Q; also the
diagrams (c) and (d) with the PCTC contact vertex and one
pion exchange are of order Q. The triangle diagram (e) with
a PCTC ππNN vertex is of order Q, while if we consider the
PVTC ππNN vertex as in panel (l) the diagram is of order Q2.
The box diagrams (f) and (g) includes contribution of order Q0

and Q; the contribution of order Q0 is exactly canceled when
inverting Equation (53). Finally, the “bubble” diagram (h), the
three-pion vertex diagram (i), the box diagram (j) with the πNN
vertex coming from the subleading PVTC Lagrangian terms
proportionals to the LECs hiV , and also the diagram (k) with
the ππNN vertex coming from the subleading PCTC Lagrangian
terms proportionals to the LECs ci, are of order Q

2. These latter
diagrams were considered for the first time in de Vries et al. [173]
using the MUT, and using TOPT in [174].

Contributions proportional to 1/M coming from the NR
expansion of the vertex functions or from recoil corrections in
this work are considered to be at least of order N3LO.

Other types of diagrams like those shown in Figure 2(1–3)
simply contribute to a renormalization of the coupling constants
and masses, see Viviani et al. [42] for more details. In the
following, we will disregard these diagrams, but it should be taken
into account that the formulas below are given in terms of the
renormalized (physical) LECs and masses. The contribution of
diagram (4) is canceled when inverting Equation (53).

Let us now consider each kind of diagram separately:

• One pion exchange (OPE) diagram. Diagram (a) of Figure 1
gives the LO contribution (Q−1) to the potential

V
(−1)
PVTC(a) =

gAh
1
π

2
√
2fπ

(Eτ1 × Eτ2)z
ik · (σ 1 + σ 2)

ω2
k

, (59)

where ωk =
√
k2 +m2

π and arises directly from the LO
expansion of the vertices and energy denominators. Derived
from the same diagram, there are terms coming from the NR
expansion of the vertices, the first correction being of order
(p/M)2. However, as discussed previously, they are counted
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FIGURE 1 | TOPT diagrams contributing up to N2LO to the PVTC amplitude. Nucleons and pions are denoted by solid and dashed lines, respectively. The open

(solid) circles represent LO PCTC (PVTC) vertices. The vertex depicted by a square sourrounding a solid circle denotes the contribution of the subleading PVTC πNN

terms coming from the Lagrangian given in Equation (19). The vertex depicted by a square surrounding an open circle denotes the contribution of the subleading

PCTC ππNN (PVTC πNN) terms coming from the Lagrangian given in Equation (13).

to be of order Q4, and thus the corresponding terms are
considered to be suppressed by four orders with respect to

V
(−1)
PVTC.

• Contact terms (CT) diagrams. The diagrams (b) depicted
in Figure 1 derive from the interaction terms appearing in

L
(1)
PVTC,NN . They give a contribution to the potential of order

Q1. As discussed in Chapter 4, this contribution can be written
in various equivalent forms due to the Fierz identities [44]. We
have chosen to write this part as follows [42]

V
(1)
PVTC(b) =

1

32
χ fπ

[C1i(σ 1 × σ 2) · k+ C2(Eτ1 · Eτ2)i(σ 1 × σ 2) · k

+C3(Eτ1 × Eτ2)zi(σ 1 + σ 2) · k
+C4(τ1z + τ2z)i(σ 1 × σ 2) · k
+C5Iabτ1aτ2bi(σ 1 × σ 2) · k] . (60)

where3χ = 4π fπ ≈ 1.2 GeV. The parameters Ci, i = 1, . . . , 5
are LECs. Different (but equivalent) forms of this part were
used in de Vries et al. [41] and de Vries et al. [173].
• Contact plus OPE diagrams. The diagrams (c) and (d) in

Figure 1 are representative of diagrams containing a contact
term and an OPE. However all these diagrams vanish after the
integration over the loop variable.
• NLO two pions exchange: triangle diagrams. There are 6

different time-orderings of diagrams (e) given in Figure 1.
After summing them, the total contribution from these
diagrams results to be [40, 175]

V
(1)
PVTC(e) =

gAh
1
π

8
√
2f 3π

(Eτ1 × Eτ2)zik · (σ 1 + σ 2)

∫
d3q

(2π)3
1

ω+ω−(ω+ + ω−)
, (61)

where ω± =
√
(q± k)2 + 4m2

π . The integral is singular and
must be somehow regularized. We will discuss this issue later.
• NLO two pions exchange: box diagrams. There are 48 diagrams

represented by the diagrams of type (f) and (g) of Figure 1
when we consider all possible time orderings. The final
contribution is [40, 175]

V
(1)
PVTC(f , g) =

h1π g
3
A

8
√
2f 3π

∫
d3q

(2π)3
ω2
+ + ω+ω− + ω2

−
ω3
+ω

3
− (ω+ + ω−)

{−2i (τ1z + τ2z) [q · σ 1(q× k) · σ 2 − q · σ 2(q× k) · σ 1]

−2i (τ1z − τ2z) [q · σ 2(q× k) · σ 1 + q · σ 1(q× k) · σ 2]

+i (Eτ1 × Eτ2)z
(
k2 − q2

)
k · (σ 1 + σ 2)} ,

(62)

and is of order Q1. Again the integral is singular. In this
case, in the amplitude Tfi there appears a term of order Q0

coming from diagram (g), but it cancels out when inverting
Equation (53).
• Bubble diagrams.We now turn to the diagrams contributing at

order Q2, that is at N2LO. The sum of “bubble” diagrams (h)
depicted in Figure 1 mutually cancel and these diagrams do
not give any contribution to the PVTC potential.
• Diagrams with three pion vertices. The expansion of the

PVTC Lagrangian in terms of pions gives rise to two terms
proportional to (Eπ)3 which would contribute to Tfi via the
diagram (i) depicted in Figure 1. However, after summing
over all possible time orderings, the corresponding final
contribution vanishes.
• N2LO two pion exchanges: box diagrams. The box diagrams (j)

contributes also at N2LO, where the PVTC vertex comes from
the subleading Lagrangian terms proportional to the LECs hV0 ,
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FIGURE 2 | Other diagrams that would contribute at NLO. These diagrams

contribute to the renormalization of the LECs (1–3) or give a vanishing

contribution to the potential (4) due to the inversion of Equation (53). Notation

as in Figure 1.

hV1 , and hV2 in Equation (19). We have [75, 173]

V
(2)
PVTC(j) =

g3A
32f 4π

[(
h0V (3+ 2Eτ2 · Eτ1)

−4

3
h2VIabτ1bτ2b

)
i

∫
d3q

(2π)3
1

ω2
+ω

2
−
[(q · σ 1(q× k) · σ 2)

−(q · σ 2(q× k) · σ 1)]

−2ih1V
∫

d3q

(2π)3
1

ω2
+ω

2
−
[(q · σ 1(q× k) · σ 2)τ1z

−(q · σ 2(q× k) · σ 1)τ2z]

+ih1V (Eτ1 × Eτ2)zk · (σ 1 + σ 2)

∫
d3q

(2π)3
q2 − k2

ω2
+ω

2
−

]
. (63)

• N2LO two pion exchanges: triangle diagrams. The diagram
depicted in panel (k) derives from subleading ππNN vertices
in the PCTC Lagrangians [75, 173], see Equation (13),

V
(2)
PVTC(k) = −i

c4h
1
π gA

2
√
2f 3π

∫
d3q

(2π)3
1

ω2
+ω

2
−
× (64)

[(q · σ 1(q× k) · σ 2)τ2z − (q · σ 2(q× k) · σ 1)τ1z] .

Note in Equation (64) the presence of the LEC c4, which belong
to the PCTC sector [12].

The expression for the diagrams (l) comes from the LO
PCTC and PVTC vertex functions. The final result is [75, 173]

V
(2)
PVTC(l) = −

g2A
8f 4π

∫
d3q

(2π)3
1

ω2
+ω

2
−

(65)

×{2h1A[(q · σ 1(q× k) · σ 2)τ2z − (q · σ 2(q× k) · σ 1)τ1z]

+h2AIabτ1aτ2b[(q · σ 1(q× k) · σ 2)− (q · σ 2(q× k) · σ 1)]} ,

where h1A and h2A are two of the LECs that appear in the
Lagrangian terms given in Equation (19).

Finally, we conclude this section by mentioning that at N2LO,
one should also include PVTC 3N forces. Examples of diagrams
contributing to this 3N force are shown in Figure 3. The chiral
order of diagrams with more than two nucleons is discussed in

detail in Epelbaum [167]. The diagram depicted in panel (a) with
a LO PCTC ππNN vertex would contribute at NLO, but vanishes
when summed over all time orderings. The other three diagrams
(the one in panel (b) has a subleading PCTC ππNN vertex
proportional to ci, i = 1, . . . , 4 [12]) are N2LO and therefore
they must be considered in order to perform fully consistent
calculations in A ≥ 3 systems. However, these kind of diagrams
have not yet been considered in literature. Note that diagrams
with a 3N PVTC contact vertex are highly suppressed, so no new
LEC needs to be introduced.

3.4.1. Regularization of the PVTC Potential
In this section we deal with the divergences in the loop
diagrams. We will briefly present three methods frequently
used in literature, namely the dimensional regularization (DR)
method used e.g., in [161], the spectral function regularization
(SFR) [176], and the novel (semi-)local momentum-space
regularization approach of Reinert et al. [19].

• Dimensional regularization method. This technique is well-
known for dealing with divergences of loop integrals present
in Feynman diagrams, where the integration is performed over
four-momenta. In case of time-ordered diagrams, the loops
involve integration over three-momenta. To deal with the
singularities, the integrals are re-defined in d dimensions and
successively one takes the limit d → 3. The singular part is
singled out by terms∼ 1/(3−d), which then can be reabsorbed
in some of the LECs. As usual, we define ǫ = 3 − d, and
we assume that ǫ → 0. When we use the DR, it is better to
“rescale” all the dimensional quantities with an energy scale µ.
Therefore we define q = q̃µ, m = m̃µ, etc., where the “tilde”
quantities are dimensionless. We can now go to d dimensions
and manipulate the integrals as discussed in detail in Pastore
et al. [161], see also Friar [177]. Here we limit ourselves to
listing the results needed to regularize the loop integrals we
have encountered. Regarding the loop integrals appearing at
NLO in Equations (61) and (62), we have

∫
d3q

(2π)3
1

ω+ ω− (ω+ + ω−)
= − 1

4π2

(
L(k)− dǫ + 2

)
,

(66)
∫

d3q

(2π)3
ω2
+ + ω+ ω− + ω2

−
ω3
+ ω

3
−(ω+ + ω−)

= 1

16π2

H(k)

m2
π

, (67)

where

L(k) = 1

2

s

k
ln

s+ k

s− k
, H(k) = 4m2

π

s2
L(k) ,

s =
√
4m2

π + k2 , (68)

and

dǫ =
2

ǫ
− γ + lnπ − ln

m2
π

µ2
, (69)

which contains the divergent part, where γ is the Euler–
Mascheroni constant.
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FIGURE 3 | TOPT diagrams that would contribute to the PVTC 3N force For the notation see Figure 1.

The loop integrals appearing in the N2LO diagrams as in
Equations (64) and (65) are of the form

∫
d3q

(2π)3
1

ω2
+ω

2
−
, (70)

∫
d3q

(2π)3
1

ω2
+ω

2
−
qiqj , (71)

The first integral is finite, but the second integrand diverges
linearly as q → ∞. The finite contribution can be obtained
using the DR method. Alternatively, one can impose an
ultraviolet cut-off3C on the integrals. The integrals then yield
divergent pieces as 3C → ∞, which can be again reabsorbed
in some LECs, finite parts independent on 3C that are exactly
the same as obtained using the DR method, and a number of
other terms which can be expressed in terms of a power series
of Q/3C, where Q is either k or mπ . Taking the limit 3C to
infinity these latter parts would disappear. Since, in general
we must fix 3C at a value greater than the typical energies
of the χEFT, then these additional terms carry at least an
additional power of Q which means they give contributions at
N3LO (or beyond) to the potential. Therefore, for the integral
in Equation (71), we have followed the prescription to absorb
the divergent parts in some LEC’s, to disregard the parts
depending on Q/3C, and to retain the finite parts as given by
the DR method. Explicitly, the two integrals are given by

∫
d3q

(2π)3
1

ω2
+ ω

2
−
= A(k)

4π
, (72)

∫
d3q

(2π)3
1

ω2
+ ω

2
−
qiqj ⇒

(
− s2A(k)

8π
− mπ

8π

)
δij

+
( s2A(k)

8π
− mπ

8π

)ki kj
k2

, (73)

where

A(k) = 1

2k
arctan

( k

2mπ

)
. (74)

• Spectral function regularization method. Pion loop integrals
appearing in the two-pion exchange contributions discussed
in the previous subsection can be generally expressed using
a dispersive representation. Writing the momentum-space
potentials in the general form V =∑i OiWi(k) with Oi being

spin-isospin-momentum operators andWi the corresponding
structure functions that depend only on the momentum
transfer k ≡ |k|, the unsubtracted dispersion relations for the
functionsWi(k) have the form [178]

Wi(k) =
2

π

∫ ∞

2mπ

dµµ
ρi(µ)

µ2 + k2
, (75)

where the spectral functions ρi(µ) are given by ρi =
ℑ
(
Wi(0

+ − iµ)
)
. Notice that the spectral integrals in

Equation (75) do not converge for potentials derived in chiral
EFT since ρi(µ) generally growwithµ, andmust be subtracted
the appropriate number of times. The subtractions introduce
terms which are polynomial in k2 and can be absorbed into the
corresponding contact interactions. It was shown in Epelbaum
et al. [176] that even at fairly large internucleon distances, the
potentials receive significant contributions from the spectral
function in the region of µ & 3χ , where the chiral expansion
cannot be trusted. It was, therefore, proposed in that paper to
employ an ultraviolet cutoff 3 in the spectral integrals. This
can be shown to be equivalent to introducing a particular
ultraviolet cutoff in the loop integrals over the momentum q.
Using a sharp cutoff3 in the spectral integrals over µ leads to
the followingmodification of the loop functions L(k) andA(k):

L3(k) = θ(3− 2mπ )
s

2k
ln
32s2 + k2l2 + 23ksl

4m2
π (3

2 + k2)
,

A3(k) = θ(3− 2mπ )
1

2k
arctan

k(3− 2mπ )

k2 + 23mπ
, (76)

where we have introduced l =
√
32 − 4m2

π . The resulting
approach is referred to as the spectral function regularization.
The limit of an infinitely large cutoff 3 corresponds to the
previously considered case of dimensional regularization with
L∞(k) = L(k) and A∞(k) = A(k). The spectral function
regularization approach with a finite value of3 was employed
in the PCTC potentials of Epelbaum et al. [74] and the more
recent work [18], as well as in the derivation of the N2LO
PVTC potential in de Vries et al. [46].
• Local regularization in momentum space. The previously

introduced spectral function regularization approach has the
unpleasant feature of inducing long-range finite-3 artifacts as
can be seen by expanding the functions L3(k) and A3(k) in
inverse powers of3. This featuremay affect the applicability of
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chiral EFT for softer cutoff choices. Recently, local regulators
in coordinate [17, 179] and momentum space [19] were
introduced, which do not affect the analytic structure of
the pion-exchange interactions and thus maintain the long-
range part of the nuclear force. The approach of Reinert
et al. [19] amounts to replacing the static propagators of pions
exchanged between different nucleons via

1

q2 +m2
π

−→ 1

q2 +m2
π

exp

(
−q2 +m2

π

32

)
, (77)

with q ≡ |q|. Such a regulator obviously does not induce
any long-range artifacts at any order in the 1/3-expansion.
This regularization approach can be easily implemented for
two-pion exchange NN potentials with no need to recalculate
the various loop integrals. Using the feature that the regulator
does not affect long-range interactions, it is easy to show that
the regularization of a generic two-pion exchange contribution
simply amounts to introducing a specific cutoff in the
dispersive representation (modulo short-range interactions),
namely [19]

2

π

∫ ∞

2mπ

dµµ
ρi(µ)

µ2 + k2

−→ 2

π

∫ ∞

2mπ

dµµ
ρi(µ)

µ2 + k2
exp

(
−µ

2 + k2

232

)
. (78)

In Reinert et al. [19], the regularized two-pion exchange
contributions were defined using the requirement (i.e., a
convention) that the corresponding potentials in coordinate
space and derivatives thereof vanish at the origin. This is
achieved by adding to the right-hand side of Equation (78)
a specific combination of (locally regularized) contact
interactions allowed by the power counting. For more details
and explicit expressions see Reinert et al. [19]. This local
regularization scheme has not been used for PVTC or PVTV
nuclear potentials.

3.4.2. The Regularized PVTC Potential
Once the loop integrals have been manipulated as discussed
previously, we can now write the PVTC potential up to N2LO
derived from χEFT. In the following, some of the LEC’s have
been further redefined to absorb the singular parts coming from
the loop integrals. If one has chosen to regularize the loop
integral using the SFR method, then the functions L(k) and A(k)
below have to be substituted with L3(k) and A3(k), the spectral
regularized functions, see Equation (76). In summary,

VPVTC = V
(−1)
PVTC(OPE)+ V

(1)
PVTC(CT)+ V

(1)
PVTC(TPE)

+ V
(2)
PVTC(TPE) , (79)

where

V
(−1)
PVTC(OPE) =

gAh
1
π

2
√
2fπ

(Eτ1 × Eτ2)z
ik · (σ 1 + σ 2)

ω2
k

, (80)

V
(1)
PVTC(CT) =

1

32
χ fπ

[C1i(σ 1 × σ 2) · k

+C2(Eτ1 · Eτ2)i(σ 1 × σ 2) · k
+C3(Eτ1 × Eτ2)zi(σ 1 + σ 2) · k
+C4(τ1z + τ2z)i(σ 1 × σ 2) · k
+C5Iabτ1aτ2bi(σ 1 × σ 2) · k] , (81)

V
(1)
PVTC(TPE) = −

gAh
1
π

2
√
2fπ

1

32
χ

(Eτ1 × Eτ2)zik · (σ 1 + σ 2)L(k)

− g3Ah
1
π

2
√
2fπ

1

32
χ

[
4(τ1z + τ2z) ik · (σ 1 × σ 2) L(k)

+ (Eτ1 × Eτ2)zik · (σ 1 + σ 2)
(
H(k)− 3L(k)

)]
, (82)

V
(2)
PVTC(TPE) = −

c4h
1
π gA√
2fπ

π

32
χ

ik · (σ 1 × σ 2)(τ1z + τ2z)s2A(k)

+ g2A
2f 2π

π

32
χ

{[3gAh0V
4
+ gAh

0
V

2
Eτ1 · Eτ2

+
( gAh1V

4
− h1A

)
(τ1z + τ2z)

−
(
h2A +

gAh
2
V

3

)
Iabτ1bτ2b

]
ik · (σ 1 × σ 2)

− gAh
1
V

2
(Eτ1 × Eτ2)zik · (σ 1 + σ 2)

(
1−2m

2
π

s2

)}
s2A(k) .

(83)

The NLO term V
(1)
PVTC(TPE) derives from the regularized parts

of V
(1)
PVTC(e) and V

(1)
PVTC(f , g), while the N

2LO term V
(2)
PVTC(TPE)

from V
(1)
PVTC(j), V

(1)
PVTC(k), and V

(1)
PVTC(l). Let us note that we have

in total 11 LECs that must be determined from the experimental
data: one in the LO term, five in the subleading order and five
at N2LO. This potential is the same as the one derived using the
MUT in de Vries et al. [173].

Finally, the potential to be used in calculation of PVTC
observables has to be regularized for large values of p, p′. The
frequently used procedure is to multiply by a cutoff function
containing a parameter3C

VPVTC(p, p
′)→ f3C (p, p

′)VPVTC(p, p
′) . (84)

Typical choices for f3C are [74]

f3C (p, p
′) = exp

[
−
(

p

3C

)n

−
(

p′

3C

)n]
, (85)

where usually n = 6, adopted for example in de Vries
et al. [173], or

f3C (p, p
′) = exp

[
−
( |p− p′|

3C

)4
]
, (86)
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adopted in Viviani et al. [42]. The value of the cutoff3C is chosen
to be around 400–600 MeV, and consistent with the analogous
parameter used to regularize the PCTC potential.

The currently most accurate and precise PCTC NN potentials
of Reinert et al. [19] employ the local momentum-space
regularization approach for pion-exchange contributions as
described in section 3.4.1 in combination with a non-local
Gaussian regulator given in Equation (85) with n = 2 and
3C = 3 for contact interactions [3 is the cutoff used
in the local regulator in Equations (77), (78)]. The superior
performance of the momentum-space regulator in Equation (78),
as compared with both the spectral-function regularization and
a local multiplicative regularization as defined in Equation (86),
manifests itself in exponentially small distortions at large
distances as visualized in Figure 5 of [19].

Last but not least, we emphasize that using different regulators
when calculating loop integrals in the nuclear potentials/currents
and solving the Schrödinger equation to compute observables
is generally incorrect. This issue becomes relevant at the chiral
order, at which one encounters the first loop contributions to the
3N potentials and to the NN exchange current operators (i.e., at
order Q4 or N3LO in the PCTC sector) [180, 181], which is
beyond the accuracy of the calculations described in this review
article. For more details and a discussion of a possible solution to
this problem see [182].

3.4.3. Relevant PCTC and PVTC Electromagnetic

Currents
Electromagnetic currents can be calculated in the χEFT
expansion. For our purposes we require currents for the
longitudinal asymmetry in radiative neutron capture on a proton
target at thermal energies. As we deal with a real outgoing photon,
the LO PCTC current is induced by the nucleon magnetic
moment. At NLO there are contributions from the convection
currents and one-pion-exchange currents proportional to g2A. At
NLO the relevant currents become

JPCTC =
A∑

j=1

e

4M

{
−
[
(1+ κ0)+ (1+ κ1)τjz

]
i(σ j × q)

+(1+ τjz)(pj + p ′j )
}
δpj−p ′j ,q

+ eg2A
4f 2π

A∑

j<k

i
(
Eτj × Eτk

)
z

{
2k

σ j · (k+ q/2)

(k+ q/2)2 +m2
π

σ k · (k− q/2)

(k− q/2)2 +m2
π

−σ j
σ k · (k− q/2)

(k− q/2)2 +m2
π

− σ k

σ j · (k+ q/2)

(k+ q/2)2 +m2
π

}
, (87)

where κ0 = −0.12 and µv = 3.71 are the isoscalar and isovector
anomalous nucleon magnetic moments. pj and p ′j denote the

incoming and outgoing momenta of nucleon j interacting with a
photon of outgoing momentum q. The intermediate pions carry
momenta k + q/2 = pj − p ′j or k − q/2 = p ′

k
− pk. de

Vries et al. [173] used these currents in combination with N3LO
χEFT potentials from Epelbaum et al. [17] to calculate the total
np → dγ capture cross section. Using just the LO currents
gives a cross section of 305 ± 4 mb, which grows to 319 ± 5 at

NLO. The remaining 4% discrepancy to the experimental cross
section 334.2±0.5, indicates that N2LO currents should probably
be included.

A consistent calculation of PVTC observables such as the
photon asymmetry in the Enp → dγ radiative capture also
requires the inclusion of PVTC currents. There is no one-body
current in this case, as the anapole moment vanishes for on-shell
photons [183]. As such, the leading PVTC currents arises from
one-pion-exchange currents

JPVTC =
egAh

1
π

2
√
2fπ

A∑

j<k

(
Eτj · Eτk − τjzτkz

)

{
2k

σ j · (k+ q/2)+ σ k · (k− q/2)

[(k+ q/2)2 +m2
π ][(k− q/2)2 +m2

π ]

− σ j

(k− q/2)2 +m2
π

− σ k

(k+ q/2)2 +m2
π

}
, (88)

where we stress the dependence on the PVTC pion-nucleon LEC
h1π . Higher-order PVTC currents have not been developed.

3.5. The PVTV Potential Up to Order Q
In this section, we discuss the derivation of the PVTVNN and 3N
potentials at N2LO. The final expressions are given in terms of a
sum of diagrams, which can be obtained either using theMUT [4,
166, 184], standard dimensional regularization [72] or the TOPT
method [75]. In the following, we briefly report the derivation of
the PVTV potential in the framework of TOPT approach.

The TOPT diagrams that give contribution to the NN PVTV
potential up to N2LO (order Q1) are shown in Figure 4. We
do not consider diagrams which give contributions only to the
renormalization of the LECs. In this section we write the final
expression of the NN PVTV potential VPVTV having already
taken into account the singular parts coming from loops. Note
that for the PVTV potential the LO term is of order Q−1 as for
the PVTC case. However, now there will be terms of order Q0,
which will be denoted as NLO terms, etc. We have

VPVTV (p, p
′) = V

(−1)
PVTV (OPE)+ V

(1)
PVTV (CT)+ V

(1)
PVTV (TPE)

+V(0)
PVTV (3π)+ V

(1)
PVTV (3π) , (89)

namely coming from OPE diagrams at LO, TPE at N2LO,
three-pion vertices (3π) at NLO and at N2LO, and contact
contributions (CT). From now on we define ḡ∗0 = ḡ0 + ḡ2/3. In
this case, we report here the final form of the potential, namely,
the LECs appearing in the expressions below are the physical
ones, having reabsorbed the various infinities generated by loops
and diagrams like those shown in Figure 2(1–3).

• One pion exchange diagram. The OPE term, depicted in
diagram (a) of Figure 4, gives a contribution at LO, namely
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FIGURE 4 | Time-ordered diagrams contributing to the PVTV potential (only a single time ordering is shown). Nucleons and pions are denoted by solid and dashed

lines, respectively. The open (solid) circle represents a PCTC (PVTV) vertex.

of order Q−1, coming from the NR expansion of the vertices

V
(−1)
PVTV (OPE)=

gAḡ
∗
0

2fπ
(Eτ1 · Eτ2)

ik · (σ 1 − σ 2)

ω2
k

+ gAḡ2

6fπ
(3τ1zτ2z − Eτ1 · Eτ2)

ik · (σ 1 − σ 2)

ω2
k

+ gAḡ1

4fπ

[
(τ1z + τ2z)

ik · (σ 1 − σ 2)

ω2
k

+(τz1 + τz2)
ik · (σ 1 + σ 2)

ω2
k

]
, (90)

where there are an isoscalar, an isovector and an isotensor
components. Contributions coming from the 1/M expansion
are considered to be suppressed at least by four orders with

respect to V
(−1)
PVTV (OPE).

• Contact term diagrams. The potential V
(1)
PVTV (CT), derived

from the NN contact diagrams (b) of Figure 4, reads

V
(1)
PVTV (CT) =

1

32
χ fπ

{
C̄1 ik · (σ 1 − σ 2)

+C̄2 ik · (σ 1 − σ 2) Eτ1 · Eτ2

+ C̄3

2

[
ik · (σ 1 − σ 2) (τ1z+τ2z)+ik · (σ 1+σ 2) (τ1z − τ2z)

]

+ C̄4

2

[
ik · (σ 1 − σ 2) (τ1z+τ2z)−ik · (σ 1+σ 2) (τ1z − τ2z)

]

+C̄5 ik · (σ 1−σ 2) (3τ1zτ2z−Eτ1 · Eτ2)
}
. (91)

Notice that the above LECs C̄1, C̄2, C̄3, C̄4, and C̄5 have been
redefined to absorb various singular terms coming from the
TPE and 3π diagrams. It is possible to write ten operators

which can enter V
(1)
PVTV (CT) at order Q but only five of them

are independent as discussed in Chapter 4. In this work we
have chosen to write the operators in terms of k, so that the

r-space version of V
(1)
PVTV (CT) will assume a simple local form

with no gradients.
• Contact terms with an OPE. Diagrams like (c) and (d) of

Figure 4 vanish directly due to the integration over the loop
momentum.
• Two pions exchange diagrams. The TPE term comes from the

non-singular contributions of diagrams (e-h) in Figure 4. This
term has no isovector component, as shown for the first time
in Bsaisou et al. [73]. It reads

V
(1)
PVTV (TPE) =

gAḡ
∗
0

fπ32
χ

Eτ1 · Eτ2 ik · (σ 1 − σ 2) L(k)

+ g3Aḡ
∗
0

fπ32
χ

Eτ1 · Eτ2 ik · (σ 1 − σ 2) (H(k)− 3L(k))

− gAḡ2

3fπ32
χ

(3τ1zτ2z − Eτ1 · Eτ2) ik · (σ 1 − σ 2) L(k) (92)

− g3Aḡ2

3fπ32
χ

(3τ1zτ2z − Eτ1 · Eτ2)ik · (σ 1 − σ 2) (H(k)− 3L(k)) ,

where the loop functions L(k) and H(k) are defined in
Equation (68).
• Diagrams with three pion vertices The 3π-exchange term gives

a NLO contribution through the diagram (i) of Figure 4,

V
(0)
PVTV (3π) = −

5g3A1̄M

4fπ32
χ

π

[
(τ1z + τ2z)

ik · (σ 1 − σ 2)

ω2
k

+ (τ1z − τ2z)
ik · (σ 1 + σ 2)

ω2
k

]

×
((
1− 2m2

π

s2

)
s2A(k)+mπ

)
, (93)

where A(k) is given in Equation (74). Additional contributions
coming from diagram (i) deriving from the 1/M expansion
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of the energy denominators and vertex functions are here
neglected since they are counted as N3LO.

The diagram (j) in Figure 4 contributes to V
(3π)
PVTV at N2LO,

V
(1)
PVTV (3π) =

5gA1̄Mc1

2fπ32
χ

[
(τ1z + τ2z)ik · (σ 1 − σ 2)

+ (τ1z − τ2z)ik · (σ 1 + σ 2)
]
4
m2
π

ω2
k

L(k)

− 5gA1̄Mc2

6fπ32
χ

[
(τ1z + τ2z)ik · (σ 1 − σ 2)

+ (τ1z − τ2z)ik · (σ 1 + σ 2)
](

2L(k)+ 6
m2
π

ω2
k

L(k)
)

− 5gA1̄Mc3

4fπ32
χ

[
(τ1z + τ2z)ik · (σ 1 − σ 2)

+ (τ1z − τ2z)ik · (σ 1 + σ 2)
](

3L(k)+ 5
m2
π

ω2
k

L(k)
)
.

(94)

Note in Equation (94) the presence of the c1, c2, and c3 LECs,
which belong to the PCTC Lagrangian given in Equation (13).
In Equations (93) and (94), 1̄ is a renormalized LEC.

The 3π PVTV vertex gives rise to a three body interaction
through the diagram (k) in Figure 4. The lowest contribution
appears at NLO while at N2LO the various time orderings
cancel out [75]. The final expression for the NLO of the 3N
PVTV potential is,

V
(0)
PVTV (3N) =

1̄g3AM

4f 3π
(Eτ1 · Eτ2 τ3z + Eτ1 · Eτ3 τ2z + Eτ2 · Eτ3 τ1z)

× (ik1 · σ 1) (ik2 · σ 2) (ik3 · σ 3)

ω2
k1
ω2
k2
ω2
k3

, (95)

where ki = p′i − p. This expression is in agreement with that
reported in deVries et al. [68] and Bsaisou et al. [69].

3.5.1. The PVTV Current
The PVTV current up to now has been considered to arise from
the LO one-body contribution

JPVTV = −
A∑

j=1

[
dp

1+ τjz
2
+ dn

1− τjz
2

]
i(σ j · q) , (96)

where dp (dn) is the proton (neutron) EDM. In nuclear
physics applications, it is customary to consider dp and
dn as unknown parameters, although they in principle can
be estimated in terms of the LECs entering the χEFT, as
we have seen in section 3.2.2. The complete derivation of
PVTV two-body currents has not been completed, though
partial results have been given in de Vries et al. [143] and
Bsaisou et al. [73].

4. PVTC AND PVTV POTENTIALS IN
PIONLESS EFT

In this section, we specifically focus on the few-nucleon contact
interactions which enter the potentials in both chiral and pionless
EFT formulations. We also discuss the expected hierarchy of the
corresponding LECs as suggested by the large-Nc analysis.

4.1. Effective Lagrangians
At distances much larger than the range of the interactions
mediated by pions, the pionic degrees of freedom can be
integrated out of the effective theory, and the relevant effective
Lagrangian can be written in terms of nucleon fields only,
interacting through contact vertices.

At leading order these vertices involve a single spatial
derivative of fields, responsible for parity violation. Time
derivatives can be eliminated recursively, using the equations
of motion order by order in the low-energy expansion. This
reflects our freedom in choosing the nucleon interpolating field,
and amounts to a definite choice of the off-shell behavior
of amplitudes. The theory can be formulated in terms of
non-relativistic nucleon fields represented by two-component
Pauli spinors Ns(x). The relativistic 1/M corrections, which
can in principle be worked out (see e.g., [185]) will be
of no interest here. Relativistic covariance requires that the
interactions depend on the relative momenta only (momentum-
dependent “drift” corrections, which vanish in the center-of-
mass frame of two nucleon systems, are part of the above
mentioned relativistic corrections). Thus, gradients of nucleon
fields in two-nucleon contact operators may only enter in
the combinations

∇(N†
s O1Ns)N

†
s O2Ns,

[(N†
s i
←→
∇ O1Ns)N

†
s O2Ns − N†

s O1Ns(N
†
s i
←→
∇ O2Ns)] , (97)

where (ai
←→
∇ b) ≡ a(i∇b) − (i∇a)b and the factor i,

meant to ensure the hermiticity, makes it odd under
time-reversal.

Since the underlying mechanism of parity violation in the
SM may induce 1I = 0, 1, 2 transitions (at least to order
G2
F), the effective Lagrangian will contain contact operators

which transform as isoscalars or the neutral components
of isovector and isotensors. In the two-nucleon case all
these flavor structures are real, and therefore unaffected by
the time-reversal operation, except for (Eτ1 × Eτ2)z , which
changes sign.

4.2. PVTC Lagrangian
Following the general considerations outlined above, there
are ten possible structures entering the two-nucleon contact
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Lagrangian in the PVTC case,

1I = 0





OPVTC
1 = ∇ × (N†

s σNs) · N†
s σNs ,

OPVTC
2 = ∇ × (N†

s σ τ
aNs) · N†

s σ τ
aNs ,

OPVTC
1′ = (N†

s i
←→
∇ · σNs)N

†
s Ns − N†

s σNs · (N†
s i
←→
∇ Ns) ,

OPVTC
2′ = (N†

s i
←→
∇ · σ τ aNs)N

†
s τ

aNs

−N†
s στ

aNs · (N†
s i
←→
∇ τ aNs) ,

1I = 1





OPVTC
3 = ǫab3∇ · (N†

s στ
aNs)N

†
s τ

bNs ,

OPVTC
4 = ∇ × (N†

s σ τ
3Ns) · N†

s σNs ,

OPVTC
3′ = (N†

s i
←→
∇ · σ τ 3Ns)N

†
s Ns

−N†
s στ

3Ns · (N†
s i
←→
∇ Ns) ,

OPVTC
4′ = (N†

s i
←→
∇ · σNs)N

†
s τ

3Ns

−N†
s σNs · (N†

s i
←→
∇ τ 3Ns) ,

1I = 2





OPVTC
5 = Iab∇ × (N†

s στ
aNs) · N†

s στ
bNs ,

OPVTC
5′ = Iab

[
(N†

s i
←→
∇ · σ τ aNs)N

†
s τ

bNs

− N†
s στ

aNs · (N†
s i
←→
∇ τ bNs)

]
.

(98)
The Fermi statistics of nucleon fields, together with Fierz’s
reshuffling of spin-isospin indices allow to establish linear
relations between primed and unprimed operators,

OPVTC
1′ = 1

2

(
OPVTC
1 + OPVTC

2

)
,

OPVTC
2′ = 1

2

(
3OPVTC

1 − OPVTC
2

)
,

OPVTC
3′ = OPVTC

3 + OPVTC
4 ,

OPVTC
4′ = −OPVTC

3 + OPVTC
4 ,

OPVTC
5′ = OPVTC

5 ,

(99)

thus reducing the number of independent operators to five, so
that the effective Lagrangian can be written as

L
(1)
PVTC,NN =

1

32
χ fπ

[1
2
C1O

PVTC
1 + 1

2
C2O

PVTC
2 + C3O

PVTC
3

+ C4O
PVTC
4 + 1

2
C5O

PVTC
5

]
, (100)

where Ci are LECs. This Lagrangian is identical to that reported
in Equation (23). From this Lagrangian, one can derive the
potential given in Equation (60).

The five LECs are in a one-to-one correspondence with the
possible S-P transitions in two-nucleon systems [45], namely 1S0-
3P0 (1I = 0, 1, 2), 3S1-

1P1 (1I = 0) and 3S1-
3P1 (1I = 1).

This may be shown explicitly by using the spin-isospin projection
operators [45, 186–188]

P0,0 =
1√
8
σ2τ2 , P0,a =

1√
8
σ2τ2τa , Pi,0 =

1√
8
σ2σiτ2 ,

Pi,a =
1√
8
σ2σiτ2τa , (101)

normalized according to

TrPµ,αP
†
ν,β =

1

2
δµνδαβ , µ(ν) = 0, i(j) ,

α(β) = 0, a(b) , (102)

such that the operator (NT
s Pµ,αNs)

† creates a correctly
normalized two-nucleon state with the appropriate spin-isospin
quantum numbers. The relevant operators [188]

O
(1S0−3P0)
1I=0 = (NT

s σ
2τ 2τ aNs)

†(NT
s i
←→
∇ · σ 2σ τ 2τ aNs)+ h.c. ,

O
(1S0−3P0)
1I=1 = −iǫab3(NT

s σ
2τ 2τ aNs)

†(NT
s i
←→
∇ · σ 2στ 2τ bNs)+h.c. ,

O
(1S0−3P0)
1I=2 = Iab(N

T
s σ

2τ 2τ aNs)
†(NT

s i
←→
∇ · σ 2στ 2τ bNs)+ h.c. ,

O
(3S1−1P1)
1I=0 = (NT

s σ
2στ 2Ns)

† · (NT
s i
←→
∇ σ 2τ 2Ns)+ h.c. ,

O
(3S1−3P1)
1I=1 = (NT

s σ
2στ 2Ns)

† · (NT
s

←→
∇ × σ 2στ 2τ 3Ns)+ h.c. ,

(103)
are related to the original basis via Fierz’s transformations
as follows,

O
(1S0−3P0)
1I=0 = 3OPVTC

1 + OPVTC
2 ,

O
(1S0−3P0)
1I=1 = 4OPVTC

4 ,

O
(1S0−3P0)
1I=2 = −2OPVTC

5 ,

O
(3S1−1P1)
1I=0 = −OPVTC

1 + OPVTC
2 ,

O
(3S1−3P1)
1I=1 = −4OPVTC

3 ,

(104)

whence one can read the relation between the partial-waves
projected LECs and the Ci. The potential derived from the
operators given in Equation (103) has been often used in studies
of PVTC observables. It is given explicitly as [37, 39]

V
(1)
PVTC(GHH) = 1

2Mm2
ρ

{
3

(1S0−3P0)
1I=0

[
2(σ 1 − σ 2) · K

+ i(σ 1 × σ 2) · k
]

+ 3
(3S1−1P1)
1I=0

[
2(σ 1 − σ 2) · K − i(σ 1 × σ 2) · k

]

+ 3
(1S0−3P0)
1I=1 (τ1z + τ2z)2(σ 1 − σ 2) · K

+ 3
(3S1−3P1)
1I=1 (τ1z − τ2z)2(σ 1 + σ 2) · K

+ 3
(1S0−3P0)
1I=2 Iabτ1aτ2b

2√
6
(σ 1 − σ 2) · K

}
, (105)

where the five LECs3
(...)
1I are in one-to-one correspondence with

C1−5. Explicitly

3
(1S0−3P0)
1I=0 = κ

2
(C1 + C2) ,

3
(3S1−1P1)
1I=0 = κ

2
(3C2 − C1) ,

3
(1S0−3P0)
1I=1 = κC4 , (106)

3
(1S1−3P1)
1I=1 = κC3 ,

3
(1S0−3P0)
1I=2 =

√
6κC5 ,

where κ = 2Mm2
ρ/fπ3

2
χ .
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4.3. PVTV Lagrangian
The T-odd sector is very similar (see also [189]): one starts with
a list of 10 redundant operators,

1I = 0





OPVTV
1 = ∇ · (N†

s σNs)N
†
s Ns ,

OPVTV
2 = ∇ · (N†

s στ
aNs)N

†
s τ

aNs ,

OPVTV
1′ = (N†

s i
←→
∇ × σNs) · N†

s σNs ,

OPVTV
2′ = (N†

s i
←→
∇ × στ aNs) · N†

s στ
aNs ,

1I = 1





OPVTV
3 = ∇ · (N†

s στ
3Ns)N

†
s Ns ,

OPVTV
4 = ∇ · (N†

s σNs)N
†
s τ

3Ns ,

OPVTV
3′ = (N†

s i
←→
∇ × στ 3Ns) · N†

s σNs

+(N†
s i
←→
∇ × σNs) · N†

s στ
3Ns ,

OPVTV
4′ = ǫab3

[
(N†

s i
←→
∇ · στ aNs)N

†
s τ

bNs

+ (N†
s i
←→
∇ τ aNs) · N†

s σ τ
bNs

]
,

1I = 2

{
OPVTV
5 = Iab∇ · (N†

s στ
aNs)N

†
s τ

bNs ,

OPVTV
5′ = Iab(N

†
s i
←→
∇ × στ aNs) · N†

s στ
bNs ,

(107)
and uses Fierz’s identities to establish the linear relations,

OPVTV
1′ = −OPVTV

1 − OPVTV
2 ,

OPVTV
2′ = −3OPVTV

1 + OPVTV
2 ,

OPVTV
3′ = −2OPVTV

3 − 2OPVTV
4 , (108)

OPVTV
4′ = −2OPVTV

3 + 2OPVTV
4 ,

OPVTV
5′ = −2OPVTV

5 ,

so that the Lagrangian only depends on five LECs,

L
(1)
PVTV ,NN =

1

32
χ fπ

5∑

i=1
C̄iO

PVTV
i , (109)

from which one can derive the potential given in Equation (91).
The five S-P transition operators only differ from the T-even

case by a factor i,

Ō
(1S0−3P0)
1I=0 = (NT

s σ
2τ 2τ aNs)

†(NT
s

←→
∇ · σ 2σ τ 2τ aNs)+ h.c. ,

Ō
(1S0−3P0)
1I=1 = ǫab3(NT

s σ
2τ 2τ aNs)

†(NT
s i
←→
∇ · σ 2σ τ 2τ bNs)+ h.c. ,

Ō
(1S0−3P0)
1I=2 = Iab(N

T
s σ

2τ 2τ aNs)
†(NT

s

←→
∇ · σ 2στ 2τ bNs)+ h.c. ,

Ō
(3S1−1P1)
1I=0 = (NT

s σ
2σ τ 2Ns)

† · (NT
s

←→
∇ σ 2τ 2Ns)+ h.c. ,

Ō
(3S1−3P1)
1I=1 = (NT

s σ
2σ τ 2Ns)

† · (NT
s i
←→
∇ × σ 2στ 2τ 3Ns)+ h.c. ,

(110)
related to the original basis as follows,

Ō
(1S0−3P0)
1I=0 = 6OPVTV

1 + 2OPVTV
2 ,

Ō
(1S0−3P0)
1I=1 = −4OPVTV

3 − 4OPVTV
4 ,

Ō
(1S0−3P0)
1I=2 = −4OPVTV

5 , (111)

Ō
(3S1−1P1)
1I=0 = 2OPVTV

1 − 2OPVTV
2 ,

Ō
(3S1−3P1)
1I=1 = 4OPVTV

3 − 4OPVTV
4 .

4.4. Constraints From the Large-Nc Limit
In 1974 ’t Hooft combined the large-Nc and the small coupling
limit, with g2s Nc fixed [190], and showed that QCD considerably
simplifies, while maintaining many of the features of the actual
theory, becoming a theory of stable hadrons. The baryons emerge
as dense systems of many quarks, subjected to a mean field
potential [191]. Nucleon-nucleon interactions exhibit in this
limit a spin-flavor symmetry [192–194]. Indeed, due to the fact
that nucleons carry definite spin and isospin ofO(1), interactions
inducing a change in either spin or isospin are suppressed
relative to the dominant O(Nc) ones, that are either spin-isospin
independent (∼ 1) or dependent on both (∼ στ ). The large-
Nc counting of momenta follows from the observation that the
nucleon-nucleon scattering amplitude is in this limit a sum of
meson exchange poles, each one depending only on the relative
momentum transfer. The average relative momenta can only
appear as relativistic corrections, which are suppressed by inverse
powers ofM ∼ O(Nc).

Apparently the resulting scaling laws do not conform with
the operator identities (99) and (108) and seem to imply a
dependence on the choice of operator basis. However, one can
start with the redundant set of operators, pertinent to a theory of
distinguishable nucleons, since the large-Nc arguments outlined
above are completely general and do not rely on the statistics of
the interacting baryons (the only assumption is that they both
carry spin and isospin of O(1)). As a result one obtains the
large-Nc scaling of the LECs in the PVTV contact potential,

C2 ∼ C5 ∼ O(1) ,
C3 ∼ C4 ∼ C3′ ∼ O(1/Nc) ,
C1 ∼ C1′ ∼ C2′ ∼ C5′ ∼ O(1/N2

c ) ,
C4′ ∼ O(1/N3

c ) ,

(112)

and in the PVTV one,

C̄3 ∼ O(1) ,

C̄1 ∼ C̄2 ∼ C̄2′ ∼ C̄5 ∼ C̄5′ ∼ O(1/Nc) ,

C̄4 ∼ C̄3′ ∼ C̄4′ ∼ O(1/N2
c ) ,

C̄1′ ∼ O(1/N3
c ).

(113)

Therefore we have only two leading LECs in the PVTC potential
(C2 and C5 corresponding to 1I = 0, 2 respectively) and only
one in the PVTV potential (C̄3 with 1I = 1) [47, 150]. This
feature largely increases the predictive power for low-energy
hadronic parity violation, and allows one to put more severe
constraints on the forthcoming experimental results. Notice
however that the above results are obtained by simply projecting
the Hartree Hamiltonian in the nucleon-nucleon sector. A
consistent treatment would require consideration of the induced
effect on NN contact vertices of 1 exchanges, since the latter are
enhanced, in the large-Nc limit, due to the degeneracy between
nucleon and delta masses implied by the spin-flavor symmetry.

Moreover, for the PVTV case, this picture is obscured by the
fact that the magnitude of the five contact LECs depends strongly
on the particular type of the CP-violating source at the quark
level. For example, the QCD θ̄ term conserves isospin symmetry
such that C̄3,4,5 are suppressed by powers of εǫmπ compared to
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C̄1,2 (see Table 1). Despite the possible 1/Nc suppression of C̄1,2

compared to C̄3 the former are still expected to dominate.

5. ONE-MESON EXCHANGE MODELS

In the past, a simple and rather efficient description of the strong
PCTC NN interaction was obtained in terms of a sum of single
meson exchanges [195, 196]. These models began to be popular
on account of the discovery of various meson resonances during
the sixties. The potentials were generally constructed taking into
account the exchanges of pions (JP = 0−, mπ = 138 MeV),
η-mesons (JP = 0−, mη = 550 MeV), and ρ- and ω-mesons
(JP = 1−, mρ,ω = 770, 780 MeV), but clearly, the number of
mesons to be included is somewhat arbitrary. This picture has
been extended also to describe PVTC and PVTV interactions,
simply considering single meson exchanges where one vertex is
strong and PCTC, while the other violates P and conserves T or
violates both P and T. Then, all the dynamics of such interactions
is contained in a number of PVTC and PVTC nucleon-nucleon-
meson (NNM) coupling constants.

One starts by writing the Lagrangian consistent of Yukawa-
like NNM vertices, invariant under the proper Lorentz
transformations, and either conserving or violating the discrete
P, C, T symmetries. The building blocks of the Lagrangian are
therefore nucleon bilinears multiplied by a meson field arranged
so that Lorentz symmetry is satisfied. For the construction of the
PCTC Lagrangian, one usually includes only isospin-conserving
terms. However, for the PVTC and PVTV Lagrangians, isospin-
changing terms must be included since the underlying operators
at the quark level are not necessarily isospin symmetric. A
summary of the transformation properties of nucleon bilinears
with different elements of the Clifford algebra and the various
meson fields under hermitian conjugation (H), parity P, and
charge conjugation C are reported in Table 2.

Using these properties it is not difficult to write the
Lagrangians. For example, the strong LPCTC Lagrangian
constructed with these mesons is given by (here we list only
isospin -conserving terms)

LPCTC = gπ N̄iγ5Eτ · EπN + gηN̄iγ5ηN

− gρN̄
(
γ µ − i

χV

2M
σµνqν

)
Eτ · EρµN

− gωN̄
(
γ µ − i

χS

2M
σµνqν

)
ωµN , (114)

where qµ is the mesonmomentum7, πa, ρ
µ
a , η, andω

µ are meson
fields and gπ , . . . PCTC coupling constants. Above, χV and χS
are the ratios of the tensor to vector coupling constant for ρ and
ω, respectively. Assuming vector-meson dominance [197], they
can be related to the iso-vector and iso-scalar magnetic moments
of a nucleon (χV = 3.70 and χS = −0.12). Note that the

7More appropriately, these Lagrangian terms should be written in terms of four-

gradients. For example

N̄i
χV

2M
σµνqν Eτ · EρµN →−N̄

χV

2M

[
∂ν , σ

µν Eτ · Eρµ
]
N .

where [, ] denotes the commutator.

pion and rho-meson are isospin triplets, therefore the fields have
the isospin index a = 1, . . . , 3. Moreover, the rho- and omega-
mesons have spin 1, and their fields correspondingly are vector
fields with index µ = 0, . . . , 3.

Let us now consider the PVTC Lagrangian constructed in
terms of the same mesons. In this case one has to take into
account Barton’s theorem [198], which asserts that exchange
of neutral and spinless mesons between on-shell nucleons is
forbidden by CP invariance, and therefore they cannot enter in
a PVTC Lagrangian. Therefore only π±, ρ, and ω vertices need
to be considered and the form of the PVTC effective Lagrangian
is [131]

LPVTC =
h1π√
2
N̄(Eπ × Eτ )3N

+N̄
(
h0ρ Eτ · ( Eρ)µ + h1ρρ

µ
3 +

h2ρ

2
√
6
(3τ3ρ

µ
3 − Eτ · ( Eρ)µ)

)
γµγ5N

+N̄(h0ωω
µ + h1ωτ3ω

µ)γµγ5N − h
′1
ρ N̄(Eτ × ( Eρ)µ)3

σµνq
ν

2M
γ5N ,

(115)

where h1π , . . . are PVTC coupling constants to be determined.
As discussed also in section 3, where we focused in particular
on the pion-nucleon PVTC constant h1π , attempts to estimate
the magnitude of these couplings from the fundamental theory
were reported in several papers [121–127]. In particular, in the
DDH paper [50], the authors presented reasonable ranges inside
of which these parameters were extremely likely to be found,
together with a set of “best values” (see Table 3). Clearly, these
values have to be considered as educated guesses in view of all
the uncertainties of their evaluation. Of the seven unknown weak
couplings h1π , h

0
ρ , . . ., there are estimates that indicate that h

′1
ρ is

quite small [199] and this term was generally omitted, leaving
PVTC observables to be described in terms of six constants.
Notice further that the DDH parameters were also considered
using a soliton description of the nucleon in [200] and [130].

In the same manner, we can write the PVTV Lagrangian
composed of NNM vertices [142, 201]

LPVTV = N̄[ḡ0π Eτ · Eπ + ḡ1ππ3 + ḡ2π (3τ3π3 − Eτ · Eπ)]N
+ N̄[ḡ0ηη + ḡ1ητ3η]N

+ N̄
1

2M
[ḡ0ρ Eτ · ( Eρ)µ + ḡ1ρρ

µ
3

+ ḡ2ρ(3τ3ρ
µ
3 − Eτ · ( Eρ)µ)]σµνqνγ5N

+ N̄
1

2M
[ḡ0ωωµ + ḡ1ωτ3ωµ]σ

µνqνγ5N , (116)

where ḡiα , i = 0, 1, 2, are PVTV meson-nucleon coupling
constants. In this case, there were no attempts to obtain the values
of these coupling constants from the fundamental theory, as also
the magnitude of the parameters entering the underlying theory
is unknown.

From these Lagrangians, the PVTC and PVTV interactions
are obtained as a sum of single-meson exchange diagrams.
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TABLE 2 | Transformation properties of fermion bilinears with different elements of the Clifford algebra and various meson fields under hermitian conjugation (H), parity (P),

and charge conjugation (C).

NN Ni γ5N NγµN Nγµγ5N NσµνN πa ρa η ω

H + + + + + + + + +

P + – + – + – + – +

C + + – + – (−)a+1 −(−)a+1 + –

Note that the pion and rho-meson fields are isospin triplets, a = 1, 2, 3.

TABLE 3 | Weak NNM couplings as estimated in Desplanques et al. [50].

DDH [50] DDH [50]

Coupling Reasonable

range

“Best” value

h1π 0→ 30 12

h0ρ 30→−81 −30
h1ρ −1→ 0 −0.5
h2ρ −20→−29 −25
h0ω 15→−27 −5
h1ω −5→−2 −3

All numbers are quoted in units of the value 3.8× 10−8.

Regarding PVTC, below we report the potential in the form
obtained by DDH [50]

VPVTC = −
gπh

1
π

2
√
2M

i(Eτ1 × Eτ2)z
(σ 1 + σ 2) · k
k2 +m2

π

− gρ

M

[
Eτ1 · Eτ2 h0ρ +

(τ1z + τ2z)
2

h1ρ +
3τ1zτ2z − Eτ1 · Eτ2

2
√
6

h2ρ

]

×
[
2(σ 1 − σ 2) · K + (1+ χV )i(σ 1 × σ 2) · k

k2 +m2
ρ

]

− gω

M

[
h0ω +

(τ1z + τ2z)
2

h1ω

]

×
[
2(σ 1 − σ 2) · K + (1+ χS)i(σ 1 × σ 2) · k

k2 +m2
ω

]

+
[
gρh

1
ρ

M

(τ1z − τ2z)(σ 1 + σ 2) · K
k2 +m2

ρ

]

−
[
gωh

1
ω

M

(τ1z − τ2z)(σ 1 + σ 2) · K
k2 +m2

ω

]

−
[
gρh

1 ′
ρ

2M

i(Eτ1 × Eτ2)z(σ 1 + σ 2) · k
k2 +m2

ρ

]
, (117)

where k and K are defined in Equation (46). Often the potential

is regularized for large values of k, modifying the meson

propagators so that 1/(k2 + m2
x) → f3x (k

2)/(k2 + m2
x), where

x = π , ρ, and ω. For example, in Schiavilla et al. [202] the

following regularization was chosen

1

k2 +m2
x

→ 1

k2 +m2
x

(
32

x −m2
x

32
x + k2

)2

, (118)

For example, the parameters 3π , 3ρ , and 3ω were chosen
to have the same value 2.4 GeV in Schiavilla et al. [203] and
Schiavilla et al. [202]. However, the cutoff functions f3x (k

2) were
not always applied and also their form can vary.

Several PVTC observables have been studied using the DDH
potential, with the aim to identify the values of the six or
seven coupling constants, see for example [34, 36, 37]. Up to
now the lack of accurate experimental values has prevented the
completion of this task.

Usually, the experiments are analyzed in terms of the DDH
parameters. In the next Section, we will present a discussion of
the experimental values within the χEFT framework. In order
to make contact between the two approaches, we briefly discuss
the relation between DDH and χEFT PVTC potentials. The
OPE term is clearly the same, while in the DDH approach all
the TPE terms are missing. They can be considered effectively
included via the heavy-meson exchanges, however the ρ and
ω masses are larger than 2mπ , which is the range of the TPE
contributions. More precisely, the heavy meson exchange terms
should be considered as equivalent to the five contact terms in the
chiral potential multiplied by the LECs Ci. Keeping this in mind,
we can match the components of the DDH potential mediated by

ρ and ω exchanges to those ofV
(1)
PVTC(CT), and obtain in the limit

k≪mρ ,mω [42, 46]

C
(DDH)
1 = −3

2
h0ρDρ − h0ω

(
3

2
+ χS

)
Dω , (119)

C
(DDH)
2 = −h0ρ

(
1

2
+ χV

)
Dρ −

1

2
h0ωDω , (120)

C
(DDH)
3 = −1

2
(h1
′
ρ − h1ρ)Dρ −

1

2
h1ωDω, (121)

C
(DDH)
4 = −1

2
h1ρ(2+ χV )Dρ −

1

2
h1ω(2+ χS)Dω , (122)

C
(DDH)
5 = − 1

2
√
6
h2ρ(2+ χV )Dρ , (123)

where

Dρ = gρ
32
χ

m2
ρ

fπ

M

(
1−

m2
ρ

32
ρ

)2

, (124)

Dω = gω
32
χ

m2
ω

fπ

M

(
1− m2

ω

32
ω

)2

. (125)
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Using the “best” values for the DDH parameters given in Table 3

(the other coupling constants and parameters have been taken
from Schiavilla et al. [203]), we obtain, for example, the following
estimates (in units of 10−7):

C
(DDH)
1 ≈ 17 , C

(DDH)
2 ≈ 30 , C

(DDH)
3 ≈ 1 ,

C
(DDH)
4 ≈ 5 , C

(DDH)
5 ≈ 7 . (126)

The large value of C
(DDH)
2 is due to the tensor coupling constant

χV ≃ 3.7 of the ρ-meson to the nucleon. Clearly, these
values should be taken only as indicative, since terms in the
DDH vector-meson potential implicitly also account for TPE
components, which in the χEFT PVTC potential are included
explicitly. Relations where the TPE contributions are subtracted
from the results above and the estimations of the LECs Ci within
the soliton picture of the nucleon are given in de Vries et al. [46].

The PVTV potential was derived in Haxton and Henley [204],
Gudkov et al. [205], Towner and Hayes [206], and Liu and
Timmermans [142]. The momentum space version reads

VPVTV = +
gπ

2M

[
ḡ0π Eτ1 · Eτ2 + ḡ1π

(τ1z + τ2z)
2

+ ḡ2π (3τ1zτ2z − Eτ1 · Eτ2)
]
i(σ 1 − σ 2) · k

m2
π + k2

− gρ

2M

[
ḡ0ρ Eτ1 · Eτ2 + ḡ1ρ

(τ1z + τ2z)
2

+ ḡ2ρ(3τ1zτ2z − Eτ1 · Eτ2)
]
i(σ 1 − σ 2) · k

m2
ρ + k2

+ gη

2M

[
ḡ0η + ḡ1η

(τ1z + τ2z)
2

]
i(σ 1 − σ 2) · k

m2
η + k2

− gω

2M

[
ḡ0ω + ḡ1ω

(τ1z + τ2z)
2

]
i(σ 1 − σ 2) · k

m2
ω + k2

+
[
gπ ḡ

1
π

4M

(τ1z − τ2z)i(σ 1 + σ 2) · k
k2 +m2

π

]

+
[
gρ ḡ

1
ρ

4M

(τ1z − τ2z)i(σ 1 + σ 2) · k
k2 +m2

ρ

]

−
[
gη ḡ

1
η

4M

(τ1z − τ2z)i(σ 1 + σ 2) · k
k2 +m2

η

]

−
[
gω ḡ

1
ω

4M

(τ1z − τ2z)i(σ 1 + σ 2) · k
k2 +m2

ω

]
. (127)

Also in this case, cut off functions can be applied in order to
regularize the large k behavior ofVPVTV. It is worthwhile to stress
that the PVTV meson-exchange potential involves significantly
more parameters than the LO PVTV chiral potential which
depends in principle only on 4 LECs ḡ0,1 and C̄1,2, with ḡ2, 1̄, and
C̄3,4,5 appearing at subleading orders. While the meson-exchange
potential can be mapped onto the short-distance C̄i operators,
the dynamics from the 3-pion 1̄ interaction is not captured in
this way.

6. SELECTED RESULTS FOR VARIOUS
PVTC AND PVTV OBSERVABLES

In this section we present a selection of results obtained with
the chiral EFT potentials and currents described in section 3 for
various PVTC and PVTV observables. We will discuss first in
the next four subsections the parity violation in (i) the radiative
neutron capture on the proton, (ii) the longitudinal asymmetry in
Epp scattering, (iii) the longitudinal asymmetry in the 3He(En, p)3H
reaction, and (iv) the En-p and En-d spin rotations, respectively.
Finally, in the last subsection, we present some results for the
EDM of light nuclei. Our motivation to include these results
in the review is mainly to establish benchmarks to help future
applications. We include also a “minimum” analysis how the
current experimental data constrain some of the values of the
LECs entering the χEFT interactions.

Results obtained using the pionless EFT can be found, for
example, in Schindler and Springer [36], Haxton and Holstein
[37], and Gardner et al. [39]. The meson-exchange potentials (in
particular the DDH model) were used to analyze the results of
several experiments of PVTC observables also in medium and
heavy nuclei. For a summary of the obtained results, see, for
example, [34, 39, 131]. Calculations of the EDM of light nuclei
using the meson exchange potential were performed in Liu and
Timmermans [142], Song et al. [207], and Yamanaka [208].

6.1. Parity Violation in Radiative Neutron
Capture on the Proton
The radiative neutron capture on the proton Enp → dγ , where d
denotes the deuteron and En a longitudinally polarized neutron,
represents a very interesting process wherein to study PVTC
effects in nuclear physics. The longitudinal analyzing power for
this process is defined as

Aγ (θ) =
dσ+(θ)− dσ−(θ)
dσ+(θ)+ dσ−(θ)

= aγ cos θ , (128)

where dσ±(θ) is the differential cross section for positive/negative
helicity neutrons, and θ is defined as the angle between the
neutron spin and the outgoing photon momentum. aγ has been
measured by several experiments during the past decades. The
first non-zero signal was reported last year for incoming neutrons
of thermal energies [209],

aγ = (−3.0± 1.4± 0.2) · 10−8 . (129)

although this number is only two standard deviations away from
a null result.

The theoretical asymmetry is given by

aγ =
(
−
√
2 Re

[
M∗1 (

1S0)E1(
3S1)+ E∗1(

1S0)M1(
3S1)

]

+Re
[
E∗1(

3S1)M1(
3S1)

])

×
(
|M1(

1S0)|2 + |E1(1S0)|2 + |M1(
3S1)|2 + |E1(3S1)|2

)−1
,

(130)
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where Xℓ(
2S+1SJ) are reduced matrix elements (RMEs) either of

electric (X = E) or magnetic (X = M) type, of multipolarity ℓ,
and describing the EM transition from the n − p system in the
scattering state 2S+1SJ [203].

Compared to the PVTC longitudinal analyzing power in
proton-proton scattering discussed later, aγ carries a significant
advantage. The initial neutron-proton system can be in the 3S1
state, so that the process is sensitive to the 3S1 ↔ 3P1 transition
and thus depends on the LO PVTC NN potential. In chiral
EFT, the LO potential depends only on the LEC h1π , meaning
that measurements of aγ provide a unique chance to pin down
the value of this LEC – something that is much more difficult
to achieve in proton-proton scattering, where the contribution
of the LO potential vanishes. The disadvantage is that Enp →
dγ is an electromagnetic process and therefore depends on
P-conserving and P-violating electromagnetic currents.

As can be seen from Equation (130), a non-zero value of
aγ requires interference between electric and magnetic dipole
currents. As such, including only the leading magnetic moment
current in the presence of the LO PVTC NN potential leads to a
vanishing result and NLO currents are necessary. There are then
three relevant contributions that consist of interference between
the isovector nucleon magnetic moment and

1. The one-body convection current in combination with the
PVTC NN potential,

2. The two-body PCTC currents in combination with the PVTC
NN potential,

3. The two-body PVTC currents.

Each of these contributions is sizeable: a1γ = (−0.27 ± 0.03)h1π ,

a2γ = (−0.53 ± 0.02)h1π , and a3γ = (0.72 ± 0.03)h1π where the
theoretical error bands are obtained from cut-off variations in the
strong NN potential and do not reflect uncertainties from higher-
order contributions [173]. While these uncertainties are small on
the individual contributions, they lead to a sizeable uncertainty
in the total analyzing power [173]

aγ = a1γ + a2γ + a3γ = (−0.11± 0.05)h1π . (131)

The cancellations between the different contributions are related
to gauge invariance [173, 203, 210] and this explains the relatively
large total theoretical uncertainty. While the electromagnetic
currents given above are explicitly gauge invariant as they
result from the gauge-invariant χEFT Lagrangian, explicit gauge
invariance is lost due to applied regulator when solving the NN
scattering and bound-state equations. Future calculations can
probably reduce the uncertainty by using regulators that do not
violate explicit gauge invariance, but such schemes have not been
applied to PVTC processes. Alternatively, it is possible to apply
the Siegert theorem to relate part of the electric dipole currents
to the one-body charge density. Schiavilla et al. [211] applied the
Siegert theorem in combination with phenomenological strong
potentials to calculate aγ finding a result in good agreement
with the central value in Equation (131). Such calculations
however do not include an uncertainty estimate, for instance
from missing transverse currents that are not included when
applying the Siegert theorem. In this light, Equation (131) can
be interpreted as a conservative result. It would be interesting to

redo the calculation of aγ in an updated framework to reduce the
theoretical uncertainty.

The contribution to aγ from the short range components of
the potential is considered to be negligible. For example, using
the meson-exchange model, the calculations have shown that
aγ is essentially unaffected by short-range contributions [203,
212–214], represented in this case by ρ and ω exchanges.
Within χEFT, a resonance saturation estimate of the short-
distance LECs contributing to the asymmetry led to short-
distance contributions to aγ of roughly 5 · 10−9 and is thus very
small [173]. Therefore, considering the theoretical expression
given in Equation (130) and the experimental value given in
Equation (129), we obtain an estimate for the LEC h1π

h1π = (2.7± 1.8)× 10−7 . (132)

Note that the large experimental error and the large theoretical
uncertainty only allow one to establish the positive sign and that
the magnitude of this LEC is consistent with the preliminary
Lattice QCD evaluation reported in Equation (26) [132].

6.2. Parity Violation in Epp Scattering
PVTC effects in proton-proton scattering can be studied by
looking at the longitudinal analyzing power Az(E, θ) defined as,

Az(E, θ) =
σ+(θ ,E)− σ−(θ ,E)
σ+(θ ,E)+ σ−(θ ,E)

, (133)

where θ is the scattering angle and E the energy of the protons
in the laboratory frame, and σ+(θ ,E)(σ−(θ ,E)) the cross section
when the polarization of the incoming proton is parallel (anti-
parallel) to the beam direction. Actually the experiments detect
the particles scattered in angular range [θ1, θ2] and the measured
quantity is an “average” of the asymmetry over the total cross-
section in this range, explicitly

Az(E) =
∫
θ1≤θ≤θ2 d cos θ Az(θ ,E)σ (θ ,E)∫

θ1≤θ≤θ2 d cos θ σ (θ ,E)
, (134)

where

σ (θ ,E) = 1

2

(
σ+(θ ,E)+ σ−(θ ,E)

)
(135)

is the unpolarized differential cross-section for the process. There
exist several measurements of the angle-averaged Epp longitudinal
asymmetry Az(E), see Equation (134), obtained at different
laboratory energies E [215–218]. The measurements and the
angle ranges included in our analysis are reported in Table 4. The
other “non-zero” measurement reported in the literature but not
included in our analysis was performed at E = 15 MeV, with the
result Az = −1.7± 0.8 [216].

The isospin state of two proton system is |pp〉 ≡ |T = 1,Tz =
1〉, implying that the LO contribution that comes from the OPE
vanishes and the LEC h1π will contribute to the observable only via
the TPE box diagrams that appear at NLO andN2LO. Taking into
account the isospin selection rules, the longitudinal asymmetry
can be written as

Az = h1π a
(pp)
0 + C a

(pp)
1 + h̃ a

(pp)
2 , (136)
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TABLE 4 | Values of Az and angle ranges for the three measurements of the Epp
longitudinal analyzing power [215, 217, 218].

E (MeV) Az (10
−7) (θ1, θ2)

13.6 −0.97± 0.20 (20◦, 78◦)

45 −1.53± 0.21 (23◦, 52◦)

221 +0.84± 0.34 (5◦, 90◦)

TABLE 5 | Values of the coefficients a
(pp)
i calculated with the χEFT N2LO PVTC

potential described in section 3.4 and the N4LO PCTC potential derived in Entem

et al. [18] at three energies corresponding to the experimental data points.

E [MeV] a
(pp)
0 (NLO) a

(pp)
0 (N2LO) a

(pp)
0 (TOT) a

(pp)
1 a

(pp)
2

13.6 0.289 0.160 0.449 −0.044 −0.215
45 0.595 0.355 0.950 −0.084 −0.475
221 −0.281 −0.187 −0.468 0.036 0.251

The PVTC potential has been regularized as in Equation (86) adopting the value3C = 500

MeV for the cutoff parameter. The PCTC potential has been regularized with the same

value of the cutoff parameter. For the coefficient a
(pp)
0 we give separately the contributions

of the NLO and N2LO terms only and then their sum, see Equation (139).

where the first two terms are NLO contributions and the third
term enters at N2LO. We have defined

C = C1 + C2 + 2 (C4 + C5) , (137)

h̃ = 5gA

4
h0V + 2

( gA
4
h1V − h1A

)
− 2

(gA
3
h2V + h2A

)
, (138)

and a
(pp)
0 , a

(pp)
1 , a

(pp)
2 are numerical coefficients independent of

the LEC values (but depending on the energy). The values of the

coefficients a
(pp)
0 , a

(pp)
1 , and a

(pp)
2 calculated with the χEFT N2LO

PVTC potential described in section 3.4 and the N4LO PCTC
potential derived in Entem et al. [18] are reported in Table 5. The
only coefficient which receives contributions from both the NLO

and N2LO potentials is a
(pp)
0 . In the table, we report separately the

two contributions and also the total contribution, given simply as

a
(pp)
0 (TOT) = a

(pp)
0 (NLO)+ a

(pp)
0 (N2LO) ,

a
(pp)
0 (N2LO) = c4a

(pp)
0 (4) . (139)

The value of a
(pp)
0 (N2LO) has been obtained assuming a value

c4 = 3.56 GeV−1 [219]. This correction to a
(pp)
0 is of the order

of ∼ 50% with respect to the NLO value, somewhat larger than
expected. This is related by the unnaturally large value of the
πNN LEC c4 appearing in the PCTC Lagrangian (13). This value
has been obtained from the Roy-Steiner analysis of πN scattering
data at N2LO performed in Hoferichter et al. [219].

Unfortunately, of the performed measurements, the two at
the lowest energy do not give independent information. In fact,
the observable Az at low energy scales as

√
E, since its energy

dependence in this energy range is driven solely by that of the
S-wave (strong interaction) phase shift [220]. Because of this

FIGURE 5 | Region of C and h̃ values for which χ2 ≤ 2 for the Ep -p
longitudinal asymmetry. The calculation is based on the coefficients a

(pp)
0 , a

(pp)
1 ,

and a
(pp)
2 reported in Table 5 assuming the value h1π = 2.7× 10−7.

scaling, it is not possible to fit from these data all three LECs h1π ,

C, and h̃ at the same time. If we fix the value h1π = 2.7×10−7 from
the central value as extracted from the Enp → dγ observable, see
Equation (132), then we can perform a χ2 analysis of the three
data points listed in Table 4 in order to fix the values of C and

h̃. Note that this value of h1π was obtained from the Enp → dγ
calculation performed in de Vries et al. [173] using a different

PCTC potential than that one used compute the a
(pp)
i coefficients.

However, since the Enp → dγ experiment depends mainly on
the peripheral regions of the process, the value of aγ is not
very sensitive to the PCTC interaction (see also the calculations
reported in [221]).

First of all, if we restrict ourselves to an NLO analysis, using
h1π = 2.7 × 10−7 we would obtain C = (49 ± 2) · 10−7. If we
take into account also the N2LO LEC, we report in Figure 5 the

C and h̃ values for which χ2 ≤ 2, which form an elliptic region.
As can be seen, there appears to be a strong correlation betweenC

and h̃ and the range of allowed values of the LECs is rather large

5× 10−7 < C < 67× 10−7 and−1.5× 10−7 < h̃ < 2.5× 10−7.
Note that the ellipse is rather narrow and almost coincides with a
straight line. See also de Vries et al. [46], Viviani et al. [42] for a
similar analysis performed at NLO for the LECs h1π and C only.

The previous discussion did not take into account the large
uncertainty of the h1π coupling constant after the fit of the En -p
radiative capture asymmetry. InTable 6, we report representative

values of C and h̃ giving the minimum value of χ2 corresponding
to range of values for h1π as given in Equation (132). In the
fourth column we report values for C if we neglect the N2LO

contributions (setting h̃ = 0). We conclude that the combination
of the Epp and Enp→ dγ asymmetries allows for a rough extraction
of the LO and NLO LECs h1π and C, but is insufficient to also

pinpoint the N2LO LEC h̃. The uncertainty of the extractions
of h1π and C is dominated by theoretical and experimental
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TABLE 6 | Values for C and h̃ corresponding to different values of h1π (all LECs are

given in units of 10−7) giving the minimum value of the χ2 in the fit of the three

experimental Ep -p data points.

h1
π C h̃ C(h̃ = 0)

0.9 27.7 0.11 28± 2

2.7 34.5 0.97 49± 2

4.5 41.2 1.84 69± 3

For example, for h1π = 2.7 × 10−7, the C, h̃ values are those lying in the center of the

elliptical contour shown in Figure 5. The fourth column corresponds to an analysis where

we ignore the N2LO contributions and thus set h̃ = 0.

uncertainties related to the PVTC asymmetry in the radiative
neutron capture process.

6.3. The 3He(En,p)3H Longitudinal
Asymmetry
Very recently, a measurement of the longitudinal asymmetry

A
(nh)
z for the reaction 3He(En, p)3H induced by ultracold neutrons

was successfully completed at ORNL [222]. This quantity is given

by A
(nh)
z = az cos θ [223], where θ is the angle between the

outgoing proton momentum and the neutron beam direction.
The measured value for az is given by az = (1.58 ± 0.97 (stat)
±0.24 (sys) )× 10−8 [224].

So far, this observable has been calculated using the NLO
χEFT PVTC potential [42] (and also the DDH potential
in [223]). The expression for the coefficient az is given as
usual as

az = h1πa
(nh)
0 +C1a

(nh)
1 +C2a

(nh)
2 +C3a

(nh)
3 +C4a

(nh)
4 +C5a

(nh)
5 ,
(140)

where the various coefficients a
(nh)
i are given as products of

T-matrix elements involving three PCTC and three PVTC
transitions [see [223] for details]. These T-matrix elements have
been calculated by means of the HHmethod [225]. The resulting

coefficients a
(nh)
i are listed in Table 7.

First of all, if we restrict ourselves to LO (namely, setting
all Ci = 0), using h1π = (2.7 ± 1.8) × 10−7, one obtains
az = −(3.2 ± 2.1) × 10−8, a value that is not compatible with
the reported experimental value. Therefore, large contributions

from NLO terms are expected. The values of a
(nh)
0 become more

negative at NLO. At present, we only have the combination
C1 + C2 + 2(C4 + C5) = (49 ± 2) · 10−7, therefore we
cannot proceed any further. Assuming, for example, C2 = 10 ×
10−7, we would obtain a contribution to az from this term of
≈ +2.26 × 10−8. Therefore, this observable is very sensitive
to the LECs Ci, and can be used to fit a linear combination
of Ci that is independent of the combination appearing in Epp
scattering. Calculations at N2LO are planned. However, we recall
that one should also include the PVTC 3N interaction terms
for completeness.

6.4. The En-p and En-d Spin Rotation
The spin rotation of neutron traversing a slab of matter in a plane
transverse to the beam direction induced by the PVTC potential

is given by

dφ(nX)

dz
(141)

= 2πρ

(2SX + 1) vrel
Re
∑

mnmX

ǫmn
(−)〈pẑ;mn,mX |VPVTC|pẑ;mn,mX〉(+) ,

where ρ is the density of hydrogen or deuterium nuclei for X = p
or d, |pẑ;mn,mX〉(±) are the n-X scattering states with outgoing-
wave (+) and incoming-wave (−) boundary conditions and
relative momentum p = p ẑ taken along the spin-quantization
axis (the ẑ-axis), SX is the X spin, and vrel = p/µ is the
magnitude of the relative velocity,µ being the n-X reduced mass.
The expression above is averaged over the spin projections mX ;
however, the phase factor ǫmn = (−)1/2−mn is ±1 depending
on whether the neutron has mn = ±1/2. We consider the n-
p and n-d spin rotations for vanishing incident neutron energy
(measurements of this observable are performed using ultracold
neutron beams). In the following, we assume ρ = 0.4 × 1023

cm−3. The rotation angle depends linearly on the PVTC LECs, as
higher-order weak corrections are negligible. We write

dφ(nX)

dz
= h1π a

(nX)
0 + C1 a

(nX)
1 + C2 a

(nX)
2 + C3 a

(nX)
3 + C4 a

(nX)
4

+C5 a
(nX)
5 + h0V b

(nX)
1 + h1V b

(nX)
2 + h2V b

(nX)
3

+h1A b
(nX)
4 + h2A b

(nX)
5 , (142)

where the a
(nX)
i for i = 0, . . . , 5 and b

(nX)
i for i =

1, . . . , 5 are numerical coefficients. The coefficient a
(nX)
0 receives

contributions from different chiral orders, in particular

a
(nX)
0 = a

(nX)
0 (LO)+ a

(nX)
0 (NLO)+ a

(nX)
0 (N2LO) . (143)

The values of these coefficients for the n-p case and the cut-
off value 3 = 500 MeV are listed in Table 8. From that
table, it is possible to appreciate the chiral convergence for the

coefficients a
(np)
0 . The NLO correction is∼ 10% of the LO result.

In this case, the N2LO contribution vanishes since the LEC h1π
in V

(2)
PVTC(TPE) multiplies the operator (τ1z + τ2z). The En-p spin

rotation is sensitive to all the LECs except for the LECs C4 and h
1
A

multiplying again the isospin term (τ1z+ τ2z); in particular, there
is a large sensitivity to C5 and h2A, which multiply the isotensor
terms of the PVTC potential.

Regarding the En-d spin rotation, the coefficients, as reported
in Table 9, are calculated by using only the NLO PVTC potential.
We note the large sensitivity to h1π (this fact is well-known [202,
226]), and to the LEC’s C2 and C3.

At present there are no measurements of these quantities,
however their experimental knowledge could be very useful in
isolating certain combinations of LECs.

6.5. EDM of Light Nuclei
The EDM operator D̂ is composed by two parts,

D̂ = D̂PCTC + D̂PVTV. (144)
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TABLE 7 | Values of the coefficients a
(nh)
i entering the 3He(En,p)3H longitudinal asymmetry calculated for the χEFT NLO PVTC potential described in section 3.4 and the

N3LO PCTC potential derived in Machleidt and Entem [5] at vanishing neutron beam energy.

a
(nh)
0 (LO) a

(nh)
0 (TOT) a

(nh)
1 a

(nh)
2 a

(nh)
3 a

(nh)
4 a

(nh)
5

−0.1178 −0.1444 0.0061 0.0226 −0.0199 −0.0174 −0.0005

The PVTC potential has been regularized as in Equation (86) adopting the value 3C = 500 MeV for the cutoff parameter. The PCTC potential has been regularized with the same value

of the cutoff parameter. For a
(nh)
0 we give explicitly its cumulative value at LO and at NLO in the first and second column, respectively.

TABLE 8 | Values of the coefficients entering the expression of the En -p spin rotation in units of Rad m−1 calculated for the χEFT N2LO PVTC potential described in

section 3.4 and the N4LO PCTC potential derived in Entem et al. [18] at vanishing neutron beam energy.

a
(np)
0 (LO) 1.227 a

(np)
1 0.257 b

(np)
1 1.653

a
(np)
0 (NLO) 0.137 a

(np)
2 0.178 b

(np)
2 −0.181

a
(np)
0 (N2LO) 0.000 a

(np)
3 0.106 b

(np)
3 1.882

a
(np)
0 (TOT ) 1.364 a

(np)
4 0.000 b

(np)
4 0.000

a
(np)
5 −0.949 b

(np)
5 4.456

The PVTC potential has been regularized as in Equation (86) adopting the value 3C = 500 MeV for the cutoff parameter. The PCTC potential has been regularized with the same value

of the cutoff parameter. For a
(np)
0 we give explicitly the contribution of the different orders, the sum of the three contributions is given in fourth row.

TABLE 9 | The same as in Table 8 but for the En -d spin rotation and using the

χEFT NLO PVTC potential and the N3LO PCTC potential derived in Machleidt and

Entem [5].

a
(nd)
0 2.179

a
(nd)
1 −0.010
a
(nd)
2 −0.160
a
(nd)
3 0.191

a
(nd)
4 0.064

a
(nd)
5 0.000

D̂PCTC is the electric dipole operator derived from the current
JPCTC given in Equation (87), after using the long wavelength
approximation and the continuity equation [227], explicitly

D̂PCTC = e
∑

i

1+ τz(i)
2

ri , (145)

where e > 0 is the electric unit charge, τz(i) and ri are the z
component of the isospin and the position of the i-th particle.
This operator implicitly takes into account also the main part
of the two-body PCTC currents. The D̂PVTV contribution comes
from the PVTV current at LO given in Equation (96) and it reads

D̂PVTV =
1

2

∑

i

[
(dp + dn)+ (dp − dn)τz(i)

]
σ i , (146)

where dp and dn are the EDM of proton and neutron, respectively
and σ i is the spin operator which act on the i-th particle.
As discussed in section 3.5.1 and in de Vries et al. [143] and
Bsaisou et al. [73] the D̂PVTV should also include contributions
from transition currents at N2LO. These are not considered in
this review.

The EDM of an A nucleus can be expressed as

dA = 〈ψA
+|D̂PVTV|ψA

+〉 + 2 〈ψA
+|D̂PCTC|ψA

−〉
≡ dAPVTV + e dAPCTC , (147)

where |ψA
+〉 (|ψA

−〉) is defined to be the even-parity (odd-parity)
component of the wave function. In general, due to the smallness
of the LECs, the EDM depends linearly on the PVTV LECs

dAPVTV = dpap + dnan (148)

dAPCTC = ḡ0a0 + ḡ1a1 + ḡ2a2

+ C̄1A1+C̄2A2+C̄3A3+C̄4A4+C̄5A5+1̄a1, (149)

where the ai for i = 0, 1, 2, Ai for i = 1, . . . , 5, a1, and ap, an
are coefficients independent on the LEC values (all coefficients
except ap and an have the unit of a length). For the deuteron,
d2PVTV is dominated by one-body components, proportional
to the neutron and proton EDM. The coefficients ap and an
multiplying the intrinsic neutron and proton EDM, as already
pointed out first in Yamanaka and Hiyama [228] and then in
Bsaisou et al. [66], are given by,

an = ap =
(
1− 3

2
PD

)
, (150)

where PD is the percentage of D-wave present in the deuteron
wave function. d2PCTC, in the case of the deuteron, receives
contribution only from the LECs ḡ1, 1̄, C̄3, and C̄4. The
coefficients calculated with the χEFT N2LO PVTV potential
described in section 3.5 and the N4LO PCTC potential derived
in Entem et al. [18] are reported in Table 10. The cutoff for
both the PCTC and PVTV potentials has been chosen to be
3C = 500 MeV. The coefficients a1, A3, and A4 agree well
with the power counting expectation in Equation (37). The
slight suppression of a1 compared with the naive estimate
a1 ∼ 1 is in very good agreement with the perturbative pion
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TABLE 10 | Values of the coefficients entering the expression of the deuteron

EDM calculated for the χEFT N2LO PVTV potential described in section 3.5 and

the N4LO PCTC potential derived in Entem et al. [18].

an(ap) 0.939

a1 [fm] 0.200

A3 [fm] 0.013

A4 [fm] −0.013
a1(NLO) [fm] −0.894
a1(N

2LO) [fm] +0.590
a1(TOT) [fm] −0.304

The PVTC potential has been regularized as in Equation (86) adopting the value3C = 500

MeV for the cutoff parameter. The PCTC potential has been regularized with the same

value of the cutoff parameter. For a1 we give explicitly the contribution of the different

orders, the sum of the two contributions is given in the last row.

power counting [70]. The LO perturbative pion calculation of
a1 agrees with the value in Table 10 at the 20% level [70].
Results obtained in chiral EFT with N2LO PCTC potentials
[66], and with “hybrid” approaches [143, 228] based on chiral
PVTV and phenomenological PCTC potentials, also agree well
with the results reported in Table 10. The contribution of
the three-pion coupling a1 is a bit more problematic. We
find in this case that the contribution of the N2LO term
is of the order of ∼ 60% of the NLO term. We will
discuss the issue of these large N2LO corrections more in
detail below.

Depending on the source of CP violation at the quark level,
the deuteron EDM can be dominated by different LECs. For
sources such as quark chromo-EDMs and four-quark operators
4, for which ḡ1 is induced without any chiral suppression, the
pion-exchange contribution proportional to ḡ1 is expected to
dominate the deuteron EDM. For sources such as quark EDMs
or the Weinberg operator, however, the deuteron EDM is well-
approximated by the sum of the nucleon EDMs. For the θ-term,
the pion-exchange contributions are expected to be minor as
well. Given measurements of the deuteron and nucleon EDMs,
one can, therefore, identify the underlying source of CP violation
[70, 229].

As regarding the 3H and 3He EDMs, the results are
summarized in Table 11. The coefficients a0 and a1 are again
a bit smaller than the O(1) expectation. Note that the value
for a0 reported in Table 10 is approximately 50% smaller
than that reported in Bsaisou et al. [66]. This difference can
be traced back to the contribution of the TPE, which was
not included in that work. Performing the calculations at
LO, namely including only the OPE term, the a0 coefficient
results to agree with that reported in Bsaisou et al. [66].
The values of the numerical coefficients are mostly equal in
modulus between 3H and 3He except ap and an. The coefficients
associated to isovector terms have the same sign while all
the others are opposite. Again the contribution of the N2LO
potential term to a1 is significant, about 60%. This issue is
discussed below.

Let us now consider in more detail the issue of the NLO and
N2LO contributions to a1. We have seen that in all cases the
N2LO correction to a1 is of the order of 60%, a bit larger than

TABLE 11 | The same as in Table 10 but for the 3H and 3He EDM.

3H 3He

an −0.033 0.908

ap 0.909 −0.033
a0 [fm] −0.053 0.054

a1 [fm] 0.158 0.158

a2 [fm] −0.119 0.119

A1 [fm] 0.006 −0.006
A2 [fm] −0.010 0.010

A3 [fm] −0.008 −0.008
A4 [fm] 0.013 0.013

A5 [fm] −0.022 0.022

a1(NLO) [fm] −0.941 −0.929
a1(N

2LO) [fm] +0.598 +0.591
a1(TOT) [fm] −0.343 −0.339

expected. Explicitly, the coefficient a1 can be written as [75]

a1 = a1(NLO)+ a1(N
2LO) , (151)

a1(NLO) = a1(0)+ a1(3N) , (152)

a1(N
2LO) = c1a1(1)+ c2a1(2)+ c3a1(3) , (153)

where a1(0) comes from the NLO potential V
(0)
PVTV (3π) given

in Equation (93) and a1(3N) from the 3N potential given in

Equation (95). The N2LO terms come from V
(1)
PVTV (3π), where

the LECs c1, c2 and c3 appear. The values for the various
components of coefficient a1 for different nuclei are reported in
Table 12. To calculate the values reported in Tables 10, 11, the
following values were adopted: c1 = −1.10 GeV−1, c2 = +3.57
GeV−1, and c3 = −5.54 GeV−1 as reported in Hoferichter et al.
[219] and Hoferichter et al. [230]. The large N2LO corrections
are caused by the large values of these LECs8. For more detail,
see [75]. For the trinucleon systems, the values of a1(3N) give
a correction to a1(NLO) of the order of ∼ 25%, which is in
line with the chiral perturbation theory prediction because these
contributions appear at the same order.

Similarly to the deuteron EDM, the trinucleon EDMs can
be dominated by different terms. As the isoscalar interaction
proportional to ḡ0 and C̄1,2 now gives a sizable contribution,
the trinucleon EDMs are noticeably different from the nucleon
EDMs for the QCD θ-term, the quark chromo-EDMs, the four-
quark operators 4, and potentially the Weinberg operator and
the four-quark operators 6. These EDMs therefore provide
complementary information to the deuteron and nucleon EDMs.
Combined measurements of all these EDMs would allow one to
unravel various BSM models of new CP violation [71].

8Notice that the values of the LECs ci obtained from the pion-nucleon amplitude

at NLO, which would be appropriate for V
(1)
PVTV , are considerably smaller in

magnitude. We, however, decided to adopt the larger values to be consistent with

the employed PCTC potential.
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TABLE 12 | Values of the various components of coefficient a1 as given in

Equation (151) in units of e fm for the different nuclei.

2H 3
H

3
He

a1(0) [fm] −0.894 −0.751 −0.749
a1(3N) [fm] − −0.190 −0.180
a1(1) [fm GeV] 0.120 0.098 0.098

a1(2) [fm GeV] −0.119 −0.110 −0.109
a1(3) [fm GeV] −0.207 −0.198 −0.196

The coefficients have been evaluated using the N4LO PC potential derived in Entem

et al. [18] and using a cutoff parameter of value 3C = 500 MeV.

7. CONCLUSIONS AND PERSPECTIVES

In this paper we have discussed the current status of the PVTC
and PVTV nuclear interactions using the traditional approach
based on phenomenological boson exchange models and as well
as utilizing the modern frameworks of pionless and chiral EFT.
The study of PVTC signals in nuclei is interesting since it
derives from the non-leptonic weak interactions between quarks.
Furthermore, a solid understanding of the manifestation of
PVTC interactions at the nuclear level would give us confidence
in the analysis of the more exotic PVTV case and other BSM
nuclear observables. In fact, PVTV observables provide very
valuable information since they are sensitive to interactions
originating from the θ-term in the SM and even to more exotic
mechanisms appearing in BSM theories.

As discussed in this review, the theoretical understanding of
the PVTC and PVTV interactions is already rather advanced.
Interactions in χEFT have been developed up to N2LO. The
convergence of the χEFT appears to be problematic only for the
contributions proportional to the ππNN LECs ci, due to the large
values of those coefficients as measured in πN scattering [219].
Given that the LECs c2,3,4 are largely driven by the 1(1232)
[231], one may expect a better convergence in a formulation of
chiral EFT that includes the 1 as an explicit degree of freedom.
Furthermore, large Nc analysis may help in reducing the number
of contact LECs. Also Lattice QCD calculations start to give
valuable information [132, 232].

We have also reported the results of the theoretical
calculations of several observables performed using the potentials
derived within the χEFT framework. The PVTC observables
considered include (i) the longitudinal asymmetry in En-p
radiative capture, (ii) the longitudinal asymmetry in proton-
proton elastic scattering, (iii) the longitudinal asymmetry in
the 3He(En, p)3H reaction, and (iv) the spin rotation of a
neutron beam passing through a hydrogen and deuterium gas.
As an example of a PVTV observable, we have studied the
EDMs of some light nuclei. The main motivation to study
these observables is that for such light systems, the theoretical
analysis can be carried out without invoking any uncontrolled
approximations. Thus, comparison with the experimental data
can be performed unambiguously. The analyses of PVTC and
PVTV observables using meson exchange models can be found
in other review articles [34, 39, 131] and are not reported here.

As discussed previously, there exists a first measurement
of the parameter aγ of the radiative neutron capture on
the proton Enp → dγ . The large error derives from the
smallness of this parameter which makes this measurement
very challenging [209]. This observable is directly connected
to the LO pion-nucleon PVTC coupling constant aγ ∼ h1π .
However, as we have seen, the theoretical estimate of the
proportionality coefficient has been obtained with a relatively
large theoretical uncertainty due to sizeable cancellations
between different contributions. Therefore, to infer information
from this observable, it will be necessary to make progress in both
the experimental and theoretical analyses.

Other important information is brought forth by the three
measurements at different energies of the Ep-p longitudinal
asymmetry. This observable is sensitive to h1π via the TPE
component of the PVTC potential and also to other LECs.
In fact, owing to the isospin quantum numbers T = 1,
Tz = 1 of the p-p system, the LO contribution vanishes.
Moreover, at NLO (N2LO), this observable depends on two
(three) combinations of the LECs. Unfortunately, only two of the
performed measurements give independent information. These
two data have not been obtained with enough accuracy, so the
constraints to the (combinations of) LECs which can be obtained
are not so stringent [42, 46], as discussed in section 6.2. For this
observable the wave functions are easily obtained. However, the
vanishing of the LO contribution makes the χPT convergence
more uncertain. On the other hand, it would be very useful to
have more accurate experimental measurements.

Very recently, a measurement of the En-3He longitudinal
asymmetry at the SNS facility was reported [222]. For this
A = 4 system it is possible to perform accurate calculations
of the wave functions, and therefore this observable can
give valuable information in particular on the LECs Ci. A
complete calculation, however, should also include the PVTC 3N
interaction terms.

Regarding the spin rotation observables, no experiments to
measure the En-p and En-d spin rotation angles, which could
provide useful information on some of the contact term LECs,
are planned at present. The experimental detection of a non-
vanishing En-p spin rotation would be rather important for
two reasons: i) the theoretical treatment of the two-nucleon
system does not present any difficulty numerically, while ii) this
observable is sensitive to the LO term and therefore the chiral
expansion of the potential is well under control, as discussed
in section 6.4. Regarding the En-d spin rotation, the same is
not completely true since, as discussed in section 3.4 one has
to include also the PVTC 3N interaction terms which start to
appear at N2LO. This is an interesting extension of χEFT which
will be considered in the future. From the experimental point
of view, we note that there is an existing experiment trying to
measure the En-4He spin rotation at NIST [233]. Some years ago
there was a measurement of the longitudinal asymmetry in Ep-4He
scattering, but this experiment was performed at a rather high
energy of the proton beam (46 MeV) [234] and this makes the
theoretical treatment very difficult and impossible without some
approximations. From the theoretical point of view, recently
there has been a rapid progress in solving accurately the A = 5
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nuclear problem. In particular, the solution of A = 5 Faddeev-
Yakubovsky equations [235, 236] has allowed a first study of
the En-4He spin rotation [237]. Also accurate applications using
the so called “No-Core-Shell-Model with Continuum” technique
have been reported [238, 239]. Therefore, we expect that, once
the experimental value for the En-4He spin rotation becomes
available, it can be readily analyzed in the χEFT, pionless, and
DDH frameworks.

To have the possibility to pin down all the LECs (6 LECs
at NLO and 5 more at N2LO) more experimental information
will be necessary in any case. In particular, an interesting
possibility would be to measure PVTC observables in the
A = 3 system, such as the longitudinal asymmetry of Ep-d
elastic scattering and the photon asymmetry in En-d radiative
capture. For both reactions, the theoretical treatment would be
straightforward, once the PVTC 3N force has been taken into
account. Experimental activities for the A = 3 systems were
already attempted some years ago [240] (see also [39]). After
the success of the recent PVTC observable measurements in
A = 2 and A = 4 systems discussed previously, a successful
experimental investigation of A = 3 observables appears
to be possible. Actually, the measurement of the longitudinal
photon asymmetry in En-d radiative capture is currently being
planned [241]. Therefore, a new campaign of measurements
of PVTC observables in the A = 3 systems, in addition to
the measure of the En-4He spin rotation, would furnish enough
information to fix (at least, some of) the LECs of the potentials in
the different frameworks.

It would be clearly very interesting to take into account
also PVTC measurements in medium-mass and heavy-systems.
In particular, it is worth to mention that there exist fairly
accurate measurements of the gamma angular asymmetry in
19F gamma decay and the gamma circular polarization in 18F
gamma decay [242–244]. The mixing induced by the PVTC
interaction in the matrix elements can be calibrated by the
corresponding analog β decays of Ne isotopes [242]. Despite the
large number of nucleons involved, the theoretical analysis can
still be reliably performed. Calculations for these transitions have
been performed only using the DDH interaction [37, 245].

Regarding the PVTV observables, the measurement of EDMs
of particles is the most promising observable for studying
CP violation beyond CKM mixing matrix effects. Currently,
there are proposals for the direct measurement of EDMs of
electrons, single nucleons and light nuclei in dedicated storage
rings [77, 78, 81, 82, 246]. This new approach plans to reach
an accuracy of ∼ 10−16 e fm, improving the sensitivity in
particular in the hadronic sector. Any measurement of a non-
vanishing EDM of this magnitude would provide evidence of
PVTV beyond CKM effects [52, 55–57]. However, a single
measurement will be insufficient to identify the source of
PVTV, only the availability of the measurement of EDM of
various light nuclei such as 2H, 3H, and 3He can impose
constrains on all the LECs. Other light nuclear EDMs have
been discussed in Yamanaka [208] and Yamanaka et al. [247].
EDMs of heavy diamagnetic systems provide very important
information as well, but such systems are too large for chiral EFT
calculations.

Other observables sensitive to PVTV effects are the
transmission of polarized neutrons through a polarized
target [248, 249]. In particular, for heavy nuclei the
PVTV effects can be enhanced by factors as large as
106 [250, 251], see also [252]. In order to exploit this
enhancement, some experiments are being planned, such
as the NOPTREX experiment at RIKEN [253, 254]. Also
polarized nucleon—polarized deuteron scattering has been
proposed as a way to detect PVTV signals [226, 255]. Finally,
searching for large P- and T-violations in polarized β-decay of
8Li via measurement of the triple vector correlation is under
consideration [256]. Clearly, it would be important to be able to
detect a non-zero PVTV signal in all these experiments in order
to pin down the values of all the LECs.

From the theoretical point of view, calculations of the EDM
of 2H, 3H, and 3He can be performed very accurately, including
taking into account the contributions of the PVTV 3N force.
The robustness of the calculation has been checked by evaluating
the EDMs of the nuclei to different chiral orders in the PCTC
potential. The discrepancy between the use of the N2LO and
the N4LO PCTC potential has been found to be approximately
5% [75].

Currently, the only missing ingredient is the two-body PVTV
N2LO currents [73, 143]. Once this problem is solved, one
can achieve a fully consistent calculation of the EDM of light
nuclei up to N2LO. There are also plans to perform theoretical

studies of PVTV observables in En-Ep and En-Ed scattering in order
to have independent and complementary information about
PVTV effects.

The PVTV χEFT interaction developed in the previous
sections depends on 11 coupling constants that need to
be determined by comparing with experimental data. As
already pointed out by many authors [65, 68, 69] and
discussed in section 3.2.1, the LECs ḡ2, C̄3, C̄4, and C̄5 are
suppressed for all CP-violation sources. However, for certain
sources, this suppression is not too severe. For example,
in Bsaisou et al. [66], an analysis of the nuclear EDM in
the minimal left-right scenario is presented in which the
Lagrangian terms with LECs C̄3 and C̄4 appear at N2LO.
In any case, since the CP-violation sources are not known,
the only way to determine them is to fit all possible
LECs and compare the results with predictions for various
scenarios.

Most of the observables discussed so far were obtained (or
they are planned to be studied) at low energies, where also
the pionless EFT framework is valid. The advantage of this
framework is related to the fact that the resulting potentials
depends on only five LECs. Then, assuming the validity of
the large Nc analysis [47, 49], the number of dominant LECs
could be further reduced. This new paradigm is advocated
for the PVTC case in Gardner et al. [39]. For this case,
only two LECs are expected to be dominant, the other three
demoted to be subleading. Unfortunately, the photon asymmetry
of Enp → dγ depends on the subleading LECs (this could
explain its relative smallness) and therefore cannot be used to
give information on the two leading LECs. Moreover, only the
low energy Ep-p longitudinal asymmetry measurement may be
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used to test if this hierarchy is realized in Nature (the other
measurement is taken at too high energy to be used in the
pionless EFT framework). The other observable which can give
valuable information is the En-3He longitudinal asymmetry, for
which the experimental result was just published. However,
no theoretical calculations of this observable performed in the
framework of pionless EFT are available at present. Additional
information could be obtained by calculations of these LECs
using Lattice QCD, presently in progress. Regarding the PVTV
observables in pionless EFT, here the large Nc analysis predicts
that only one of the LECs should be dominant, the other four
being suppressed. However, this picture is partially obscured
by the fact that the magnitude of the five contact LECs would
depend very much on the particular type of the CP-violating
source.

In conclusions, the study of PVTC and PVTV observables is
an active area of research that provide important tests of the SM
and hopefully future evidence for BSM physics.
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