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In this paper, we propose a new class of set-valued coherent risk measures called the

set-valued weighted value at risk. Firstly, the “regulator” version is independent of other

market scenarios. The second version, which is called the market extension, is related

to different market scenarios. The proofs of the properties of both versions are given,

and equivalent representations are provided that enable us to compute the values of

both versions of set-valued weighted value at risk. Finally, we offer examples to illustrate

various features of the theoretical constructions of the set-valued weighted value at risk.
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1. INTRODUCTION

Weighted value at risk for one-dimension random variables may be one of the most popular
coherent risk measures (see [1]). Artzner et al. [2] initially introduced the first coherent risk
measure by proposing four axioms. Cherny [1] showed that weighted value at risk possesses some
desirable properties that are not shared by Expected Shortfall. For further details on Expected
Shortfall, we refer the reader to Föllmer and Schied [3]. Weighted value at risk first appeared in
Kusuoka [4]. Acerbi [5, 6] called it the spectral risk measure.

Jouini et al. [7] demonstrated that a set of set-valued risk measures are suitable for evaluating
multivariate risks in market models with transaction costs/bid-ask spreads. Additional set-valued
risk measures have since been introduced and studied (see [8–13], and the references therein).

Hamel et al. [11] introduced set-valued average value at risk, and reasons for using set-
valued functions as risk measures have been further addressed from both financial and
mathematical perspectives (see [14–17]), and the reference there in).

In this paper, we will extend the traditional weighted value at risk to a set-valued
version for multivariate random variables. Therefore, we demonstrate their core properties
and provide an alternative representation for computing their values. The first version is
called “regulator weighted value at risk” since it does not take trading opportunities into
account. The second version is called “the market extension” since it relates to a specific
market scenario. These two versions are set-valued coherent risk measures. Then, we derive
a benchmark when introducing set-valued weighted value at risk that can reflect the risk
tolerance of the trader/regulator; see Remark 2.2 below. Finally, we offer examples to
illustrate various features of the theoretical constructions of the set-valued weighted value
at risk.

The remainder of this article is organized as follows. Section 2 introduces a primal and an
equivalent representation of set-valued weighted value at risk, including the “regulator” and “the
market extension” cases. The essential properties of both cases are then proven. In section 3,
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examples are given to illustrate the theoretical construction of the
set-valued weighted value at risk.

2. SET-VALUED WEIGHTED VALUE AT RISK

2.1. The Regulator Case
Let (�, F, P) be a probability space and d ≥ 1 be a positive
integer. A multivariate random variable is an F-measurable
function X :� → Rd for d ≥ 2. Here, d = 1 represents a
one-dimension random variate. Denote by L0

d
:= L0

d
(�, F, P)

the linear space of the equivalence classes (with respect to the
probability P) ofRd-valued random variables. An elementX ∈ L0

d

has components X1, · · · ,Xd in L0 := L01. Denote by (L0
d
)+ the

set of Rd-valued random variables with P almost surely non-
negative components and by L1

d
:= L1

d
(�, F, P) the linear space

of all X = (X1, · · · ,Xd) ∈ L0
d
with

∫
�
XidP < +∞, 1 ≤

i ≤ d. We also define E[X] = (EX1, · · · ,EXd)
T for X ∈ L1

d
,

the transpose of row vector (EX1, · · · ,EXd). Define (L1
d
)+ =

L1
d
∩ (L0

d
)+. If d = 1, we write L0, L0+ and L1+ for L01, (L0

d
)+

and (L1
d
)+, respectively. For α ∈ Rd, the symbol diag(α) denotes

the d × d matrix with the components of the vector α as
entries on its main diagonal and zero entries elsewhere. x+

stands for max(x, 0) for x ∈ R [see [18–21]] and the reference
therein).

The next definition offers an essential representation for set-
valued weighted value at risk, which is an extension of the scalar
case given by Cherny [1] to the set-valued case. It involves a
linear subspace M ⊆ Rd, called the space of eligible assets,
which we adopt from Hamel et al. [11]. We will also employ
a benchmark level, which is one of the novelties of this article;
see Remark 2.2 below. A natural choice for M is M = Rm ×

{0}d−m, 1 ≤ m ≤ d, i.e., the first m of d assets are eligible
as deposits (see [7, 11, 22]). We denote M+ = M

⋂
Rd
+,

where Rd
+ stands for the class of elements in Rd with non-

negative components. We assume that M+ is non-trivial, i.e.,
M+ 6= {0}.

Generally speaking, a scalar multivariate risk measure is any
mapping from L0

d
to R. A set-valued risk measure is any mapping

ρ from L0
d
to a class of subsets of Rd. ρ(X) is interpreted as a

set of acceptable margins of portfolio X (see [23–27]) and the
reference therein).

Definition 2.1 Let θ ∈ (0, 1) and µ := (µ1, · · · ,µd) be a
probability on [θ , 1]d. For X ∈ L0

d
, the set-valued weighted value

at risk at X with respect to µ is defined as

WVaRµ(X) :=

{∫

[θ ,1]d
diag(α)−1E[Z]µ(dα)− z;

Z ∈ (L1d)+,X+ Z− z ∈ (L0d)+, z ∈ Rd
}
∩M,

(2.1)

where
∫
[θ ,1]d diag(α)

−1E[Z]µ(dα) − z :=[∫
[θ ,1]

1
αi
E[Zi]µi(dαi) −zi]

d
i=1 := (

∫
[θ ,1]

1
α1
E[Z1]µ1(dα1) −

z1, · · · ,
∫
[θ ,1]

1
α1
E[Zd]µd(dαd) − zd)

T for Z = (Z1, · · · ,Zd) ∈

(L1
d
)+ and z = (z1, · · · , zd) ∈ Rd.

Remark 2.1 If µ is a Dirac measure at some α ∈ (0, 1]d, that
is, µ({α}) = 1, then Definition 2.1 reverts to the definition of
the set-valued regulator average value at risk of Hamel et al. [11]
(Definition 2.1) because the benchmark level θ can be small
enough. Moreover, in Example 3.2 below, we show that the
WVaRµ is better suited to the change in the market than the
regulator average value at risk of Hamel et al. [11].

Remark 2.2 The financial interpretation of the benchmark
level θ is as follows. Initially, it stems from the confidence
level 1 − α of value at risk. Given a confidence level
1 − α ∈ (0, 1), the value at risk at X ∈ L0 is defined as
VaR1−α(X) := inf{t ∈ R; P(X > t) ≤ α}. From a practical
perspective, in reality, the parameter 1 − α can be very close
to but cannot be 1. Thus, α can be very close to but cannot be
zero, which motivates the introduction of the benchmark level
θ , which reflects the risk tolerance of the investor/regulator
in terms of probability. See Basel Committee [28–31] for the
reasonability of the benchmark level. Therefore, the benchmark
level θ can be very close to zero but cannot be exactly zero.
Examples 3.1 and 3.2 below take this perspective into account.

Remark 2.3 In definition 2.1, the intersection with M has the
following interpretation. To cancel the risk of portfolio X, we
would like to obtain a set of all margins when measuring the
risk of portfolio X. Intersecting with the set M, WVaRµ(X)
shows both the valid margins and the aggregated margins, which
aggregates the valid margins from the d-dimension to the m-
dimension. The other (d−m)-dimension ofWVaRµ(X) should be
zero. Aggregating themargin has plenty of financial explanations.
For example, each element of the vector represents the amounts
in a specific currency. Suppose thatm different currencies should
be taken into consideration. For the regulator, there is no need
to ask for a d-dimensional margin. They could aggregate d
elements of themargin intom elements that representm different
currencies. When considering the margin needed by a company
with different departments, this idea is also reasonable. The
decision-maker of a company may simply want to figure out the
sum of the margins of different departments. More details can be
found in Jouini et al. [7].

The next proposition provides another equivalent
representation ofWVaRµ under the conditionM = Rm×{0}d−m,
which is easier to compute than (2.1).

Proposition 2.1 Let M = Rm × {0}d−m (hence M+ = Rm
+ ×

{0}d−m). The set-valued weighted value at risk takes the following
equivalent representation:

WVaRµ(X) =

([
inf
zi∈R

{∫

[θ ,1]

1

αi
E[(−Xi + zi)

+]µi(dαi)− zi

}]m

i=1

+ Rm
+

)
× {0}d−m

for X = (X1, · · · ,Xd) ∈ L0
d
.

Proof Considering a component of the portfolio, we know that
the two conditions Zi ∈ L1+ and Xi + Zi − zi ∈ L0+ are
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equivalent to Zi ≥ (−Xi + zi)
+ for 1 ≤ i ≤ d. Therefore,

{
∫
[θ ,1]

1
αi
E[Zi]µi(dαi)− zi; Zi ∈ L1+,Xi + Zi − zi ∈ L0+, zi ∈ R} is

equal to infzi∈R{
∫
[θ ,1]

1
αi
E[(−Xi + zi)

+]µi(dαi)− zi} + R+. After
intersecting with the setM, we have that

WVaRµ(X) =

([
inf
zi∈R

{∫

[θ ,1]

1

αi
E[(−Xi + zi)

+]µi(dαi)− zi

}]m

i=1

+ Rm
+

)
× {0}d−m. (1)

Proposition 2.1 is proved.

The next proposition will show that whenM = Rm × {0}d−m,
the set-valued weighted value at risk is exactly a set-valued
coherent risk measure in the sense of Jouini et al. [7].

Proposition 2.2 Let M = Rm × {0}d−m. Then, the function
X −→ WVaRµ(X) meets the listed properties:

(a) Positive homogeneity: for any X ∈ L0
d
and any s > 0,

WVaRµ(sX) = sWVaRµ(X).
(b) Subadditivity: for any X1,X2 ∈ L0

d
, WVaRµ(X

1 + X2) ⊇

WVaRµ(X
1)+WVaRµ(X

2).
(c) M-translation invariance: for any X ∈ L0

d
and any u ∈ Rm,

WVaRµ(X+ ū) = WVaRµ(X)− ū, where ū = u× {0}d−m.
(d) Monotonicity with respect to (L0

d
)+: for any X

1,X2 ∈ (L0
d
)+

with X2 ≥ X1, which means that X2 − X1 ∈ (L0
d
)+, we have

WVaRµ(X
2) ⊇ WVaRµ(X

1).
(e) It satisfies thatWVaRµ(X)+M+ = WVaRµ(X) for X ∈ L0

d
.

Particularly,WVaRµ(0) is a convex cone.

Proof (a) For X = (X1, · · · ,Xd) ∈ L0
d
and s > 0,

WVaRµ(sX) =([
inf
zi∈R

(
−zi +

∫

[θ ,1]

1

αi
E
[
(zi − sXi)

+
]
µi(dαi)

)]m

i=1

+ Rm
+

)
× {0}d−m

=

([
inf
zi∈R

(
−zi + s

∫

[θ ,1]

1

αi
E

[( zi
s
− Xi

)+]
µi(dαi)

)]m

i=1

+ Rm
+

)
× {0}d−m

=

([
s inf
zi∈R

(
−
zi

s
+

∫

[θ ,1]

1

αi
E

[( zi
s
− Xi

)+]
µi(dαi)

)]m

i=1

+ Rm
+

)
× {0}d−m

=

([
s inf

zi
s ∈R

(
−
zi

s
+

∫

[θ ,1]

1

αi
E

[( zi
s
− Xi

)+]
µi(dαi)

)]m

i=1

+ Rm
+

)
× {0}d−m

= sWVaRµ(X).

(b) For X1 = (X1
1 , · · · ,X

1
d
), X2 = (X2

1 , · · · ,X
2
d
) ∈ L0

d
,

WVaRµ(X
1 + X2) =

([
inf
zi∈R

(
−zi +

∫

[θ ,1]

1

αi
E
[(
zi − X1

i − X2
i

)+]
µi(dαi)

)]m

i=1

+ Rm
+

)
× {0}d−m

⊇

([
inf

z1i +z2i =zi∈R

(
−zi +

∫

[θ ,1]

1

αi
E
[(
z1i − X1

i

)+

+
(
z2i − X2

i

)+]
µi(dαi)

)]m
i=1

+ Rm
+

)
× {0}d−m

=

([
inf
z1i ∈R

(
−z1i +

∫

[θ ,1]

1

αi
E
[(
z1i − X1

i

)+]
µi(dαi)

)]m

i=1

+ Rm
+ +

[
inf
z2i ∈R

(
−z2i +

∫

[θ ,1]

1

αi
E
[(
z2i − X2

i

)+]
µi(dαi)

)]m

i=1

+ Rm
+

)
× {0}d−m

=WVaRµ(X
1)+WVaRµ(X

2).

(c) For u = (u1, · · · , um) ∈ Rm,

WVaRµ(X+ ū) =
([

inf
zi∈R

(
−zi +

∫

[θ ,1]

1

αi
E
[
(zi − ūi − Xi)

+
]
µi(dαi)

)]m

i=1

+ Rm
+

)
× {0}d−m

=

([
inf
zi∈R

(
−(zi − ūi)+

∫

[θ ,1]

1

αi
E
[
(zi − ūi − Xi)

+
]
µi(dαi)− ūi

)]m

i=1

+ Rm
+

)
× {0}d−m

=WVaRµ(X)− ū.

(d) Given X1 = (X1
1 , · · · ,X

1
d
), X2 = (X2

1 , · · · ,X
2
d
) ∈ L0

d
with

X2 − X1 ∈ (L0
d
)+, we have (zi − X2

i )
+ ≤ (zi − X1

i )
+ for each

zi ∈ R, 1 ≤ i ≤ d. Hence,

inf
zi∈R

(
−zi +

∫

[θ ,1]

1

αi
E
[(
zi − X2

i

)+]
µi(dαi)

)

≤ inf
zi∈R

(
−zi +

∫

[θ ,1]

1

αi
E
[(
zi − X1

i

)+]
µi(dαi)

)
.

Therefore,

[
inf
zi∈R

(
−zi +

∫

[θ ,1]

1

αi
E
[(
zi − X2

i

)+]
µi(dαi)

)]m

i=1

≤

[
inf
zi∈R

(
−zi +

∫

[θ ,1]

1

αi
E
[(
zi − X1

i

)+]
µi(dαi)

)]m

i=1

.
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Consequently,

([
inf
zi∈R

(−zi +

∫

[θ ,1]

1

αi
E
[(
zi − X2

i

)+]
µi(dαi)

)]m

i=1

+ Rm
+

)
× {0}d−m

⊇

([
inf
zi∈R

(
−zi +

∫

[θ ,1]

1

αi
E
[(
zi − X1

i

)+]
µi(dαi)

)]m

i=1

+ Rm
+

)
× {0}d−m,

which implies thatWVaRµ(X
2) ⊇ WVaRµ(X

1).
(e) It is not difficult to verify that WVaRµ(X) + M+ =

WVaRµ(X) and thatWVaRµ(0) is a convex cone.

2.2. The Market Extension
The weighted value at risk from Definition 2.1 does not take
into account the investment preferences of investors. Therefore,
we define its market extension by replacing (L0

d
)+ with a

general closed convex cone K containing (L0
d
)+ (see [7] or [8]

for further motivation).

Definition 2.2 Let K̃ be a closed convex cone that contains (L1
d
)+

and K be a closed convex cone that contains (L0
d
)+. The extended

version of the set-valued weighted value at risk is defined as

WVaRextµ (X) :=

{∫

[θ ,1]d
diag(α)−1E[Z]µ(dα)− z;

Z ∈ K̃,X+ Z− z ∈ K, z ∈ Rd

}
∩M.

In the proof of Proposition 2.1, through the same argument,
we present the following proposition, which provides another
equivalent representation ofWVaRextµ (·).

Proposition 2.3 Let M = Rm × {0}d−m. WVaRextµ has the
following equivalent representation:

WVaRextµ (X) =

([
inf
zi∈R

(∫

[θ ,1]

1

αi
E
[
(−Xi + zi)

+
]
µi(dαi)− zi

)]m

i=1

+ C

)
× {0}d−m

where C is a closed convex cone that contains Rd
+.

The next proposition will show that when M =

Rm × {0}d−m, WVaRextµ is exactly a set-valued coherent
risk measure in the sense of Jouini et al. [7].

Proposition 2.4 Let M = Rm × {0}d−m. Then, the function
X −→ WVaRextµ (X) satisfies the following properties:

(a) Positive Homogeneity: for each X ∈ L0
d
and each s > 0,

WVaRextµ (sX) = sWVaRextµ (X).

(b) Subadditivity: for each X1,X2 ∈ L0
d
, WVaRextµ (X1 + X2) ⊇

WVaRextµ (X1)+WVaRextµ (X2).

(c) M-translation invariance: for each X ∈ L0
d
and each u ∈ Rm,

WVaRextµ (X+ ū) = WVaRextµ (X)− ū, where ū = u×{0}d−m.

(d) Monotonicity with respect to K: for any X1,X2 ∈ K and
X2 �K X1, which means that X2 − X1 ∈ K, we have
WVaRextµ (X2) ⊇ WVaRextµ (X1).

(e) For each X ∈ L0
d
, the set WVaRextµ (X) ⊂ M is convex

and satisfies that WVaRextµ (X) + CM = WVaRextµ (X), where
CM := C

⋂
M and C is as in Proposition 2.3. In particular,

WVaRextµ (0) is a convex cone that satisfies CM ⊆ WVaRextµ (0)

andWVaRextµ (0)
⋂

−CM = {0}.

Proof: (a) For X ∈ L0
d
and s > 0, we have

WVaRextµ (sX) =

{∫

[θ ,1]d
diag(α)−1E[Z]µ(dα)− z; Z ∈ K̃, sX

+ Z− z ∈ K, z ∈ Rd

}
∩M

=

{∫

[θ ,1]d
diag(α)−1E[Z]µ(dα)− z;

Z

s
∈ K̃, s(X+

Z

s
−

z

s
) ∈ K,

z

s
∈ Rd

}
∩M

=

{
s

(∫

[θ ,1]d
diag(α)−1E

[
Z

s

]
µ(dα)−

z

s

)
;

Z

s
∈ K̃,X+

Z

s
−

z

s
∈ K,

z

s
∈ Rd

}
∩M

=sWVaRextµ (X).

(b) For X1,X2 ∈ L0
d
,

WVaRextµ (X1)+WVaRextµ (X2)

=

{∫

[θ ,1]d
diag(α)−1E[Z1]µ(dα)− z1

+

∫

[θ ,1]
diag(α)−1E[Z2]µ(dα)− z2 ;Z1,Z2 ∈ K̃,X1

+ Z1 − z1 ∈ K,X2 + Z2 − z2 ∈ K, z1, z2 ∈ Rd

}
∩M

⊆

{∫

[θ ,1]d
diag(α)−1E[Z1 + Z2]µ(dα)− (z1 + z2) ;

Z1 + Z2 ∈ K̃,X1 + X2 + Z1 + Z2 − (z1 + z2) ∈ K, z1

+ z2 ∈ Rd

}
∩M

=

{∫

[θ ,1]d
diag(α)−1E[Z]µ(dα)− z; Z ∈ K̃,X1 + X2 + Z

− z ∈ K, z ∈ Rd

}
∩M

=WVaRextµ (X1 + X2).
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(c) It is straightforward.

(d) WVaRextµ is K-monotone because for Y ∈ K, we

have Y + K ⊆ K, and therefore, WVaRextµ (X − Y) ={∫
[θ ,1]d diag(α)

−1E[Z]µ(dα)− z; Z ∈ K̃,X+ Z− z ∈ Y+ K, z

∈ Rd
}
∩M ⊆ WVaRextµ (X).

(e) It is straightforward. Proposition 2.4 is proved.

3. EXAMPLES

In this part, we give two examples of computing WVaRµ. In the
rest of the paper, we will consider a finite financial market, that
is, we assume that (�, F, P) is a finite probability space. Namely,
let |�| = N, F = 2�, P = (p1, p2, ..., pN) with

∑N
n=1 pn = 1

and P({ωn}) = pn, n = 1, 2, ...,N. Here, N is a strictly positive
number, and the probability measure P is given by N.

The first example is motivated by Hamel et al.
[11] (Example 3.1).

Example 3.1 Suppose that the elements of a portfolio are d = 2
and M = R2 (hence all the initial portfolios are eligible). In a
binarymodel withN = 2 and P = (0.4, 0.6), the potential income
is given by

X(ω1) = (12,−20)T , X(ω2) = (4,−6)T .

We set the benchmark level θ = 0.01 and let µ1 = µ2 := ν.
If ν is set to be uniformly distributed on [θ , 1], that is, for Borel
measurable set A ⊂ [θ , 1],

ν(A) :=

∫

A
f (x)dx,

where f (x) = 1
1−θ

for θ ≤ x ≤ 1. By a simple calculation, we
have that

WVaRµ(X) = (−4, 20)T + R2
+.

If we let ν be a (discrete) probability law with ν({0.01}) =

ν({0.02}) = 0.5, then calculation shows that

WVaRµ(X) = (−4, 20)T + R2
+

again. For the first and second assets, the margins that the
manager/regulator needs for compensating the risk are at least
4 units and−20 units, respectively.

In the above example, the value ofWVaRµ(X) is equal to that
of AV@R

reg
α (X), the set-valued regulator average value at risk (see

[11], Definition 2.1 and Example 3.1), where α = (0.01, 0.02)T .
The next example will show that the values of WVaRµ(X) and
AV@R

reg
α (X) are not necessarily the same and that WVaRµ(X)

is better suited to a market featuring extreme events than is
AV@R

reg
α (X).

Example 3.2 Let all the input parameters and the potential
incomes of X be as in Example 3.1 except for the probability law

P and the probability measure µ. Here, we set P = (0.99, 0.01).
If ν is set to be uniformly distributed on [θ , 1], then

WVaRµ(X) = (−11.628, 20)T + R2
+.

If ν is again a (discrete) probability law with ν({0.01}) =

ν({0.02}) = 0.5, then,

WVaRµ(X) = (−6, 20)T + R2
+.

In contrast to the above example, the probability measure
µ concerning the confidence levels does affect the risk
measure because the minimal margin to cancel the risk for a
manager/regulator covers the worst case only for the second asset,
which is−20 units.

On the other hand,

AV@R
reg
α (X) = (−4, 20)T + R2

+,

where α = (0.01, 0.02)T , which is the same as in Example 3.1.
From the above two examples, we observe that when all the

input parameters remain the same except for the change in
the (binary) probability law P from (0.4, 0.6) to (0.99, 0.01),
the minimal risk-compensating portfolio of WVaRµ(X) changes
from (−4, 20) to (−11.628, 20) and (−6, 20), respectively,
whereas theminimal risk-compensating portfolio ofAV@R

reg
α (X)

remains unchanged, which is (−4, 20). Thus, we conclude
that WVaRµ(X) can reflect the change in the market, that is,
the change in the (binary) probability P, whereas AV@R

reg
α (X)

cannot. In the case of P = (0.99, 0.01), the event with probability
0.01 could be regarded as an extreme event compared with the
other event with probability 0.99. Therefore, we conclude that
WVaRµ is better suited to a market featuring extreme events than
is AV@R

reg
α .

4. CONCLUSIONS

In this paper, we proposed two new classes of set-valued
coherent risk measures: the “regulator” version and “market”
version. Their essential properties are discussed, and equivalent
representations are given. Moreover, the coherency of the set-
valued weighted value at risk is characterized. These newly
introduced set-valued risk measures complement the study of
set-valued risk measures. Examples are also presented that show
that set-valued weighted value at risk is better suited to a market
featuring extreme events than is AV@R

reg
α .
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