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The connection is established between two theories that have developed independently

with the aim to describe quantum mechanics as a stochastic process, namely

stochastic quantum mechanics (SQM) and stochastic electrodynamics (SED). Important

commonalities and complementarities between the two theories are identified,

notwithstanding their dissimilar origins and approaches. Further, the dynamical equation

of SQM is completed with the radiation terms that are an integral element in SED. The

central problem of the transition to the quantum dynamics is addressed, pointing to the

key role of diffusion in the emergence of quantization.

Keywords: stochastic theories, foundations of quantummechanics, stochastic electrodynamics (SED), stochastic

mechanics, quantum fluctuations

1. INTRODUCTION

A whole and diverse series of stochastic theories have been developed with the aim to throw
some light on the nature of the quantum phenomenon [for some representative work see
Fényes [1–16]]. In this paper we pay attention to two theories in particular that have developed
separately with the common purpose of describing the quantum phenomenon as a stochastic
process. On one hand we have stochastic quantum mechanics, SQM (also known as stochastic
mechanics), a phenomenological theory initiated by E. Nelson, and further developed and extended
independently by several groups; a sample of related works is provided in Nelson [2], de la Peña
[3], Guerra [4], Gaveau et al. [5], Nelson [6], de la Peña and Cetto [7], and Nelson [8], and
references therein. On the other hand we have stochastic electrodynamics, SED, a first-principles
theory pioneered by Marshall [11, 12] and Boyer [13] and further developed and completed with
the contributions from a number of other authors, as shown in de la Peña and Cetto [7, 16], de la
Peña et al. [17] Claverie [14], and Santos [15], and references contained therein. A common feature
of these two theories is the explicit introduction of stochasticity as an ontological elementmissing in
the quantum theory, with the aim to address many of the historical—and still current—conceptual
difficulties associated with quantummechanics. It is in a way astounding that the two theories have
lived parallel lives for decades, virtually in isolation from one another.

In both SQM and SED the dynamics of a representative particle of mass m is considered, for
simplicity. In the phenomenological approach of SQM the (statistical) concepts of a flux velocity v
and a diffusive velocity u are introduced on an equal footing, without the need to specify the source
of stochasticity. A generic equation of motion is obtained, which serves to describe the dynamics
of two distinct types of stochastic process, in the Markov approximation: the classical, Brownian-
motion type and the quantum one. The mathematics are simple and straightforward, and their
physical meaning is clear.

The approach of SED, on the other hand, is guided by the hypothesis of the existence of the
(random) zero-point radiation field, ZPF1. This rather more elaborate approach goes through a

1In the atomic, non-relativistic case it is sufficient to consider the electromagnetic vacuum; for other particles different kinds

of vacua may have to be considered. A general formulation embracing all kinds of particles could be envisaged, based on a

fluctuating spacetime; the different vacuum fields would then be manifestations of these primordial fluctuations.
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statistical evolution equation (a generalized Fokker-Planck-type
equation, GFPE) in phase space, to arrive at a description
in x-space, in which the dissipative and diffusive terms are
seen to bring about a definitive departure from the classical
Hamiltonian dynamics. The interplay between these two terms
is what allows the system to eventually reach equilibrium and
thus attain the quantum regime; the dynamics is then described
by the Schrödinger equation, and the operators become a
natural tool for its description. Planck’s constant enters into
the picture through the spectral density of the ZPF, and this
allows to determine uniquely the value of the only free parameter
introduced in SED, as well as in SQM.

The purpose of the present work is to establish the connection
between SQM and SED and, by so doing, to identify the
strengths and limitations of the two theories, as well as certain
commonalities and complementarities between them. With this
aim, we first present the basic elements of SQM leading to the
dynamical law that governs both classical and quantum stochastic
processes in the Markov approximation. Secondly, we briefly
review the statistical treatment followed in SED to arrive at a
description in configuration space, and discuss the conditions
under which the system attains equilibrium and thus reaches the
quantum regime as described by the Schrödinger equation, which
corresponds to the radiationless approximation of SED. The
discussion of the connections between the two theories provides
an opportunity to highlight the role played by diffusion in
quantum mechanics. The more complete dynamical description
provided by SED, which includes the radiative terms, serves in
its turn to complete the corresponding dynamical equation of
SQM. The distinct nature of the diffusive terms allows us to
address the central problem of the transition from the initially
classical dynamics with ZPF, to the quantum one. It is concluded
that this more complete ontology which includes the ZPF as
the source of stochasticity, leads in a natural process to the
quantum description.

2. THE UNDERLYING EQUATIONS OF

STOCHASTIC QUANTUM MECHANICS

Stochastic quantum mechanics is a phenomenological theory
that considers a particle of mass m undergoing a stochastic
motion. It is general enough as to accommodate a range of
physical phenomena in which an underlying stochastic process,
considered in the Markov (second-order) approximation, takes
place. The stochastic nature of the dynamics calls for a statistical
treatment, which is carried out in x-space. The basic kinematic
elements for the description are obtained by applying an average
over the ensemble of particles in the neighborhood of x at times
close to t. By taking the time interval∆t small but different from
zero, two different velocities are obtained, namely the flux (or
systematic) velocity [see e.g., [2, 7]]

v(x, t) = x(t +1t)− x(t −1t)

21t
= D̂cx, (1)

with

D̂c =
∂

∂t
+ v · ∇, (2)

and the diffusive (or osmotic) velocity

u(x, t) = x(t +1t)+ x(t −1t)− 2x(t)

21t
= D̂sx, (3)

with

D̂s = u · ∇ + D∇
2, (4)

and

D = (1x)2

21t
(5)

the diffusion coefficient, assumed to be constant. The symbol (·)
denotes the aforementioned ensemble averaging.

By considering the forward and backward Fokker-Planck
equations for the probability density in x-space ρ(x, t) [see, e.g.,
[18]], and combining them appropriately, it follows that ρ(x, t) is
related to the flux velocity through the continuity equation

∂ρ

∂t
+ ∇ · (ρv) = 0, (6)

and to the diffusive velocity according to

u(x, t) = D
∇ρ

ρ
. (7)

This most important relation confirms the diffusive meaning
of the velocity u.

The two time derivatives (2) and (4), applied to the velocities
(1) and (3), give rise to four different accelerations, thus leading to
a couple of generic dynamical equations, which are, respectively,
the time-reversal invariant generalization of Newton’s Second
Law, and the time-reversal non-invariant equation, namely

m
(

D̂cv − λD̂su
)

= f+, (8a)

m
(

D̂cu+ D̂sv
)

= f−, (8b)

where λ is a free, real parameter, and the net force acting on the
particle f decomposes as f = f+ + f−, such that f− and f+ do
and do not change sign, respectively, under time reversal (notice
that v changes its sign whereas u remains invariant).

Since Equations (8) hold simultaneously and together they
describe the dynamics of the system, it is convenient to
combine them into a single equation. This is readily achieved by
introducing the symbol κ =

√
−λ and multiplying the second

equation by κ ; the result is

D̂κpκ = f κ , (9)

with

pκ = mwκ +
e

c
A, wκ = v + κu, (10)

f κ = f+ + κf−, (11)
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and

D̂κ = D̂c + κD̂s =
∂

∂t
+ 1

m
pκ · ∇ + κ D∇

2. (12)

Equation (9) is the equation of motion appropriate for the
description of an ensemble of electrically charged particles
immersed in an external electromagnetic field A, and subject
to stochastic forces. The Newtonian limit (or equivalently, the
classical Hamiltonian description) corresponds to D = 0 and
hence u = 0, which means no diffusion at all.

For simplicity in the derivations we shall assume no external
electromagnetic field A, so that the momentum is simply pκ =
mwκ and the external force components reduce to

f+ = f = −∇V , f− = 0. (13)

Equations (9)–(12) show that the specific dynamical properties of
the system strongly depend on the sign of the parameter λ, which
in its turn determines whether κ is real or imaginary. Since only
the sign of λ is relevant [its magnitude can be absorbed into the
value of D, as explained in de la Peña et al. and Cetto [17, 19]]
one can take λ = ±1. The value λ = −1 (κ = 1) implies an
irreversible dynamics, of the Brownian-motion type. In contrast,
by setting λ = 1 (κ = −i) one obtains after some algebra the
Schrödinger-like equation

− 2mD2
∇

2ψ(x, t)+ V(x)ψ(x, t) = 2imD
∂ψ(x, t)

∂t
, (14)

and its complex conjugate, where ψ(x, t) is a complex function
such that

ρ(x, t) = |ψ(x, t)|2 (15)

and

v = iD

(∇ψ∗

ψ∗ − ∇ψ
ψ

)

, u = D

(∇ψ∗

ψ∗ + ∇ψ
ψ

)

, (16)

whence

w = v − iu = −2iD
∇ψ
ψ

. (17)

3. THE UNDERLYING EQUATIONS OF

STOCHASTIC ELECTRODYNAMICS

3.1. The Generalized Fokker-Planck

Equation
We recall that the equation of motion of SED for a (non-
relativistic) particle of mass m and electric charge e is the
Langevin equation, also known in SED as Braffort-Marshall
equation [7, 14, 15],

mẍ = f (x)+mτ
...
x + eE0(t), (18)

where τ = 2e2/3mc3, and f = −∇V . The (random)
electromagnetic ZPF is usually taken in the dipole approximation
and is therefore represented by E0(t). With the momentum
defined as

p = mẋ, (19)

Equation (18) transforms into

ṗ = f +mτ
...
x + eE0(t). (20)

Since the dynamics of the system becomes stochastic due to the
ZPF, its evolution can only be described in statistical terms. We
therefore follow a standard procedure [see de la Peña et al. [17];
section 4.2] that leads to the following generalized Fokker-Planck
equation (GFPE) for the phase-space distribution Q(x, p, t),

L̂Q =
(

L̂c + e2L̂r

)

Q = 0, (21)

where

L̂c =
∂

∂t
+ 1

m
∇ · p+ ∇p · f (22)

and

L̂r = ∇p ·
(mτ

c2
...
x − D̂

)

. (23)

The operator L̂c contains the classical (i.e., conservative and
nondiffusive) Liouvillian terms, and L̂r the radiative and diffusive
terms, the latter being represented by the integro-differential
operator D̂ . To lowest order in e2, this operator takes the form

D̂ =
t
ˆ

−∞

dt′ϕ(t − t′)∇p′ , (24)

where

ϕ(t) = 2h̄

3πc3

ˆ ∞

0
dωω3 cosωt (25)

denotes the ZPF covariance, and p′ = p(t′) evolves toward p(t)
under the action of L̂. Notice that it is through this diffusive term
that Planck’s constant appears in the description.

3.2. Evolution Equations in Configuration

Space
From Equation (21) follows the equation of evolution in x-space
for any dynamical variable G(x, p) of interest without explicit
time-dependence, by left-multiplying the equation by G and
integrating over the momentum space. The local mean value of
G is

〈G〉x ≡
1

ρ

ˆ

dpG(x, p)Q(x, p, t), (26)

where ρ = ρx = ρ(x, t) =
´

dpQ(x, p, t) stands for
the probability density. Here we consider only the results
corresponding to G = 1 and G = p. In the first case, a direct
integration of Equation (21) over p gives the continuity equation
for ρ,

∂ρ

∂t
+ ∇ · j = 0, j = ρv, (27)

with v = v(x, t) the flux (or current) velocity,

v = 1

m
〈p〉x. (28)
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For G = p one gets, using (19) and summing over
repeated indices,

∂

∂t
mvρ +m2∂j

〈

ẋjẋ
〉

x
ρ −

〈

f
〉

x
ρ = R, (29)

with

R = mτ 〈...x〉x ρ − e2〈D̂〉xρ (30)

containing the radiative and diffusive terms, which are of the
order of e2.

As is shown in detail in de la Peña et al. [17] (Chapter 4) and
de la Peña et al. [20], the left-hand side of Equation (29) can be
transformed into the Schrödinger-like equation

− 2η2

m
∇

2ψ(x, t)+ V(x)ψ(x, t) = 2iη
∂ψ(x, t)

∂t
(31)

with ψ(x, t) a complex function such that

ρ(x, t) = |ψ(x, t)|2, (32)

η a free (undetermined) parameter, and

v(x, t) = 1

m
Re

(−2iη∇ψ

ψ

)

= − iη

m

(

∇ψ

ψ
− ∇ψ∗

ψ∗

)

. (33)

It is important to note that neither the left-hand side of (29) nor
the resulting Equation (31), contain any element that is explicitly
related with the ZPF nor with radiation reaction. In fact it is
just through the balance eventually achieved between the average
energy lost by radiation reaction and that gained from the ZPF

(the two terms deriving from the action of L̂r , Equation 23),
that the value of the parameter η is determined. It is thus found
that [17, 20]

η = h̄/2, (34)

which transforms (31) into the true Schrödinger equation; the
term on the right-hand side of Equation (29) represents the
radiative corrections. We shall come back to this crucial point
in section 5.4.

4. CONNECTING SED WITH SQM

4.1. Comparing the Dynamical Equations
To explore the connection between the two theories we start by
noticing that (33) relates the flux velocity with the real part of the
complex vector (−ih̄∇ψ)/ψ , while the corresponding imaginary
term, on its part, gives the velocity vector

u(x, t) = − 1

m
Im

(−ih̄∇ψ

ψ

)

= h̄

2m

(

∇ψ

ψ
+ ∇ψ∗

ψ∗

)

= h̄

2m

∇ρ

ρ
. (35)

These expressions coincide precisely with those obtained for the
two velocities of SQM, namely Equation (16), if the diffusion
coefficient appearing in these equations is assigned the value

D = h̄

2m
.

In SED—as in quantum mechanics—v and u represent local
ensemble averages; the SQM expressions (1) and (3) represent
averages over the ensemble of particles in the neighborhood of
x, which is a different way of saying the same.

In terms of these velocities, the full SED Equation (29) reads

m
∂vi

∂t
− mvi

(

2m

h̄
u · v + ∇ · v

)

+m

(

2m

h̄
u ·

〈

ẋẋi
〉

x
+ ∇ ·

〈

ẋẋi
〉

x

)

= fi +
1

ρ
Ri. (36)

For clarity we introduce the tensor Tij, given by the (local)
correlation between the i-th and j-th components of the vector ẋ,

Tij = −2m

h̄

(〈

ẋiẋj
〉

x
− vivj

)

= −2m

h̄

(〈

ẋiẋj
〉

x
− 〈ẋi〉x

〈

ẋj
〉

x

)

, (37)

so that Equation (36) takes the form

m

(

∂vi

∂t
− Tijuj −

h̄

2m
∂jTij + vj∂jvi

)

= fi +
1

ρ
Ri. (38)

Barring the radiative corrections, represented by the last term,
this dynamical equation reduces to

m

(

∂vi

∂t
− Tijuj −

h̄

2m
∂jTij + vj∂jvi

)

= fi. (39)

The SQM dynamical equation (8a), in its turn, reads explicitly

m

(

∂vi

∂t
+ vj∂jvi − uj∂jui − D∂j∂jui

)

= fi (40)

in the absence of an external field, when Equation (13) holds. This
coincides with the (non-radiative) dynamical equation of SED,
Equation (39), with Tij given by

Tij = ∂jui. (41)

Hence, by inserting (41) into (38) we obtain an extended equation
for SQM that includes the radiative contributions represented
by Ri,

m

(

∂vi

∂t
+ vj∂jvi − uj∂jui − D∂j∂jui

)

= fi +
1

ρ
Ri. (42)

On the other hand, the SQM Equation (8b) leads after one
integration to the continuity equation, which is equivalent to the
SED Equation (27).

In this form the connection between SQM and SED is

established. The theories are seen to complement one another:

while SQM offers the advantage of naturally incorporating from

the beginning the couple of velocities v and u to describe

the dynamics due to an (unidentified) stochastic source, SED

recognizes the ZPF as the determining ingredient that serves to
precise the origin of the (quantum) fluctuations, and introduces
Planck’s constant into the ultimate quantum description. The
specific value of D constitutes a postulate in SQM, since in this
theory the nature of the stochastic source remains unidentified.
Things change when making the connection of SQM with SED,
since in the latter theory the ZPF with energy per mode h̄ω/2, is
the natural carrier of h̄.
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4.2. Evidence of Diffusion in Quantum

Mechanics
A significant hint of the direct connection of SED and SQM

with quantum mechanics follows by observing that the quantum
momentum operator is directly related with the velocity wκ for
κ = −i (Equation 17),

p̂ψ = −ih̄∇ψ = (v − iu)ψ . (43)

This result reveals that both velocities v and u are a natural part
of quantum mechanics, even if v is rarely used [see however
Ballentine [21], and u remains virtually ignored]. In terms of
these velocities, the (quantum) expectation value of the squared
momentum reads

〈

p̂
2
〉

= m2
〈

v2 + u2
〉

, (44)

and the quantum variance

σ 2
p̂
=

〈

p̂
2
〉

−
〈

p̂
〉2

(45)

is given by

σ 2
p̂
= σ 2

mv + σ 2
mu, (46)

where the variance of a generic vector b(x, t) is given by σ 2
b =

〈b2〉 − 〈b〉2, with 〈·〉 =
´

dx (·) ρ(x, t).
Since

σ 2
u =

〈

u2
〉

=
ˆ

dx ρ(x, t) u2(x, t) > 0, (47)

momentum dispersion is unavoidable in quantum mechanics—
the single exception being the free particle in a p-eigenstate,
in which case the position dispersion is infinite. A well-known
manifestation of this is the Heisenberg inequality1x1p ≥ h̄/2.

Another distinctive and persisting manifestation of the
diffusive velocity u is the so-called quantum potential,

VQ = −h̄2
(

∇2√ρ
)

/2
√
ρ = −1

2

(

mu2 + h̄∇ · u
)

. (48)

This energy contribution totally due to fluctuations is of
paramount importance in determining much of the quantum
behavior; we recall that it plays a central role in Bohm’s
interpretation of quantum mechanics [22].

Along the present discussion we have met the confluence of
both theories, SQM and SED, with quantum mechanics, through
the equivalence of their statistical nature as being described
by the Schrödinger equation. But there is more, since results
such as (43)–(46) furnish convincing evidence that, along with
the Schrödinger equation, the whole Hilbert-space formalism is
involved in such correspondence.

5. THE MECHANISM OF THE

CLASSICAL-TO-QUANTUM TRANSITION

5.1. Radiation and Diffusion
Let us now pay attention to the radiative contributions,
represented by the term e2L̂rQ in the GFPE (21). For this purpose
we multiply this equation by any constant of motion G(x, p) = ξ

and integrate over p. The terms associated with the classical
Liouvillian, L̂cξ , cancel out automatically, and only the two
terms associated with L̂rξ remain. For equilibrium to be reached,
these terms must eventually balance each other. By resorting to
Equations (24) and (25), one obtains for the balance condition

−
〈...
x · g

〉

x
= h̄

π

ˆ ∞

0
dωω3

ˆ t

−∞
dt cosω(t− t′)

〈

∇p′ · g
〉

x
, (49)

with g(x, p) = ∇pξ (x, p) and p′ = p(t′), t′ < t.
Although the equality in (49) holds only under equilibrium,

each side of it can be analyzed separately for all times. It is clear
that the two terms reflect different dynamical properties of the
system. Whereas, initially (at t = −∞, when particle and ZPF

start to interact and there is no diffusion) the radiation term (left-
hand side) obviously dominates over the diffusive one (right-
hand side), with time the diffusion of the momentum increases
due to the action of the ZPF. Thus, while the system starts
from a non-equilibrium condition, the two dynamical processes
allow it to converge toward a balance regime in which the ξ are
indeed constant.

Fundamental to the analysis is the factor∇p′ ·g, which is at the
core of the mechanism of evolution toward the balance regime.
This coefficient signals the effects on g(x, p), of the diffusion of
the particles activated by the ZPF through its direct action on the
momentum p. In classical mechanics, the quantity ∇p′ · g can be
expressed in terms of a Poisson bracket involving g at time t and
p at time t′,

∂gi

∂p′j
=

[

x′j, gi
]

. (50)

The Poisson bracket represents an abridged description of the
Hamiltonian evolution, controlled by the classical Liouvillian Lc;
in this case the dynamics is purely deterministic. By contrast,
the dynamics contained in Equation (49) is controlled by the
entire Liouvillian, and is therefore deterministic in a statistical
sense only. This means that although the motion of each
particle follows deterministic rules, the fact that it is acted upon
by a stochastic field makes the evolution of the ensemble of
particles statistically deterministic, hence not amenable to a purely
Hamiltonian description. The conforming (modified) Newton
equations of motion are of a nature akin to that discussed in
section 2 and reflected in Equation (9), which appropriately
incorporates the effects of diffusion. As a consequence, the right-
hand side of Equation (49)—and with it the entire equation—
ceases to obey Hamiltonian laws as soon as the diffusion enters
into force.

In conclusion, although initially the dynamics is controlled
by Hamiltonian laws, as the interaction develops diffusion
eventually takes control. At this point Equation (49) acquires
validity, signaling the passage to classical+ZPF physics in the
balance regime. The new laws, which are statistical in nature by
virtue of the action of the ZPF, coincide with those of quantum
mechanics. This means that the Poisson brackets have been
replaced by their corresponding commutator. The presence of h̄
in the commutator provides an important clue—although rarely
appreciated if at all in its daily use: it is a direct result of the
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crucial role played by the ZPF in the dynamics, and evinces the
transition from initially conventional classical to classical+ZPF
physics, and eventually to SED in the balance regime, i.e., to
quantum physics. That this qualitative change stems from an
underlying physical mechanism of transition mastered by the
ZPF, may sound natural to some, radical to others; in fact, it
is both. Interestingly, however, a qualitative change due to a
transition from an initially classical dynamics into one which is
fundamentally quantum in nature, has already been observed in
experiments with open photonic systems [23].

5.2. Two Brands of Stochastic Processes
In the general approach to SQM as briefly discussed in section 2
[and more extensively in, e.g., [3, 17, 19]], the description of the
dynamics involves the undetermined coefficient λ that can take
the values +1 or −1, thereby opening the way to the study of
two essentially different dynamics. Indeed, this parameter defines
the sign of an acceleration related to the diffusion that is to be
either added or subtracted to the drift-related acceleration (as
shown in Equation 8a), so that the dynamical laws differ from one
another, and from the classical (Newtonian) law, due precisely to
the diffusive terms. In the referred works and as discussed above,
it is shown that the selection λ = −1 corresponds to Brownian
motion, whereas λ = 1 leads to quantum mechanics (through
the Schrödinger equation). The close relationship between SQM

and SED shows that, despite their dissimilarities, both stochastic
processes share certain laws, such as Equations (9–13).

A natural question that emerges from the previous discussion
is, how is it that the transition to quantum mechanics occurs
in the SED system but not in the case of Brownian motion,
which is the most characteristic classical stochastic process?
There are several physical features that distinguish the two
stochastic processes, a first obvious one being the scale. Whereas,
Brownian systems are normally microscopic or macroscopic in
size, the quantum ones are of atomic or subatomic size, and
many orders of magnitude more sensitive to the relatively high
intensity of the stochastic background—in this case the ZPF—
which induces significant fluctuations on the dynamical variables
of the system. This difference in the response is so noticeable
that one of the first quantum rules to be established (already
during 1927) were the Heisenberg uncertainty relations, which in
the present understanding express properties of causal stochastic
motions, rather than the familiar “inherent” indeterminism. But
of course the most important difference refers to the source
of the stochasticity, which in the Brownian system is a white
noise, free of any self-correlation, whereas in the quantum case
it is, according to our description, an intense colored field (due
to its ω3-spectrum) with important spatial and temporal self-
correlations. In fact, as has been shown in the relevant literature
[see de la Peña et al. [17] and references therein], it is the
radiation field endowed with these high correlations that can be
identified as the source of the (statistical) wavelike behavior of
quantum particles.

5.3. Precising the Ontology of Quantum

Mechanics
The question of whether the dynamics of a system can
transit from classical to quantum may result misleading or

baffling if taken loosely. A legitimate answer requires that the
starting theory contain already the ontological elements proper
of quantum mechanics. Now, the miscellany of conceptual
problems and difficulties that beset conventional quantum
mechanics, when closely looked at, point toward the possibility
of a common origin, namely some critical component that
has been left aside. Here we are proposing to consider the
zero-point radiation field as the key missing element in the
quantum ontology, and the transition, therefore, not from plain
classical physics but from classical-plus-zero-point-radiation-
field physics to quantum physics. As seen from the above analysis,
this more complete ontology leads in a natural process to the
quantum description.

Equation (31), along with Equations (43–46), imply that once
the balance (or quantum) regime is established, the dynamical
variables can legitimately be treated via the corresponding usual
operators in Hilbert space. This perspective stands in contrast
with the historical one, in which the founders of the theory felt
compelled to introduce operators (in their matrix representation)
to account for the observed facts—just as Newton’s law of
gravitation was proposed to save the phenomenon—without
any acknowledgment (nor knowledge) of the role played by the
underlying cause, the theoretical weight of which remained—and
still remains—largely unrecognized, adding its part to the opacity
of quantum mechanics.

The perspective to be drawn from these results is that the
ZPF not only plays a significant role in explaining quantum
indeterminism as the result of an induced stochasticity, but
that its presence provides the basis for an explanation of the
quantum behavior of matter altogether. [A more extensive
discussion and substantiation of these matters is presented in de
la Peña et al. [17]].

A note about the reverse transition from quantum to classical
seems appropriate at this point. It is usual to consider classical
physics as a limiting case of the quantum description, attained
e.g., by allowing h̄ to go to zero, with the argument that in this
limit all operators commute. This is however a formal transition;
the fundamental difference in the nature of the classical-vs-
quantum dynamics demands a more in-depth consideration of
this apparently simple “change of scale.”

5.4. Some Words About the Radiative

Corrections
Equation (42) is the dynamical law of both SED and SQM,
including the radiative corrections to second order in
e. This more complete description allows one to obtain
several important results pertaining to the realm of quantum
electrodynamics (in the non-relativistic approximation), such
as the formulas for the Einstein coefficients, which determine
in particular the lifetimes of atomic states. The corresponding
calculations and results can be seen in de la Peña et al. [17]
and references therein. In the context of the present work, the
most interesting application has been the determination of the
diffusion coefficient D of SQM.

We recall that according to the SED Equation (49), a balance
must be achieved in the quantum regime between the radiative
and dissipative effects on the dynamics. In particular, for
ξ = p2/2m + V , Equation (49) represents the energy-balance
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condition, meaning that the mean power absorbed by the particle
from the ZPF is compensated by the mean power radiated by the
former. While the radiation reaction term contains parameters
deriving from (classical) electrodynamics only, Planck’s constant
enters into the second term through the spectral energy density
of the ZPF. A detailed calculation of the two terms shows that it
is precisely this balance condition what fixes uniquely the value
of the free parameter η used in section 3.2, and hence of the
diffusion coefficient D in terms of h̄.

6. FINAL REMARKS AND

CONSIDERATIONS

For several decades already, two theories have coexisted which
arrive at quantummechanics from an (assumed) classical context
that includes stochasticity as an essential ingredient. Historically
they were developed by different and virtually independent
clusters of researchers, with little intersection. Hence their
coexistence has been more than peaceful. Also their philosophies
are quite distant, SQM having been conceived of as a Brownian-
type theory for the particle subject to a white noise from an
unidentified source. By contrast, SED has been developed as a
statistical description for the particle subject to the ZPF with a
colored spectrum. As shown here, the two theories complement
each other and both lead to the Schrödinger equation after
appropriate workings; thus, in the global scenario quantum
mechanics emerges from a classical+stochastic context. Leaving
aside the theoretical body here developed, one could ask, why so?

The reason for the success of such parallel constructs is
traced to the role played by diffusion. In SQM the velocity
u is introduced from the very start as a dynamical variable
that encapsulates the diffusive effect of the random force on
the particle motion. Both the diffusive velocity u and the flux
velocity v are of course statistical concepts, and together with the
ensuing four accelerations they modify Newton’s Second Law in
an essential way. Also SED starts by considering the appropriate

statistical description by means of the GFPE, which ensues from
the (stochastic) Langevin-type equation—equally modifying the
Second Law in an essential way.

In this work we have established the equivalence between the
equations of motion derived in SED—a fundamental theory—
and those of SQM—a phenomenological theory. One may say
that SQM becomes thus explained by SED, and completed
by it. This is reinforced by recalling that the value of the
diffusion constant D = h̄/2m—a free postulate in SQM, which
has no natural place for Planck’s constant—is derived from
a consideration of the radiative terms of SED, as explained
in section 5.4.

A final important point is that the coherence between the
SQM and SED theories unravels in the former the presence of
an undulatory element, which it lacks of in its usual strictly
corpuscular treatments [by Nelson and followers; see Nelson
and Guerra [2, 4]]. This provides a natural answer to the well-
known objection against SQM by Wallstrom [24, 25], who deems
the known derivations incorrect, based on the argument that
they require an ad hoc (wave-like) quantization condition on the
velocity potential (the gradient of which gives the velocity v) in
order to derive Schrödinger’s equation; of course such condition
appears artificial in a strictly corpuscular framework, but it
acquires a natural place in a theory that embodies a radiation field
as its substantial source of stochasticity.
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