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Theoretical studies have shown that cooperation can be promoted by the so-called

“network reciprocity,” where cooperation can coexist with defection via the compact

cooperative clusters. However, such studies often assume that players have no chance

to exit from the game even if the situation is extremely bad for them, which is in sharp

contrast with the real-life situations. Here, we relax this assumption by giving players the

right to choose between one of two states, active (participate in the game) and inactive

(exit from the game). We define this assumption as win-stay-lose-leave rule. This new

rule motivates a winner whose payoff is larger than the average payoff of its neighbors

to stay in its current state, thus retains its current advantage compared to its neighbors.

Conversely, a loser is pushed to leave from its current state which in turn increase its

chance to obtain a higher payoff while in inactive state. Specifically, we incorporate exit

cost into consideration by assuming that anyone who decides to exit from the gamemust

pay a cost γ . Extensive numerical simulation show that if the exit cost is intermediate

(neither too high or too small), a full cooperation plateau is achieved, where cooperation

evolves with the support of enhanced network reciprocity. In fact, inactive players can

only exist at the boundary of cooperative clusters, which creates a crucial buffer area

for the endangered cooperators. As a consequence, the joint effect of this protective film

composed of inactive players and cooperative clusters forms the foundation of enhanced

network reciprocity.

Keywords: cooperation, prisoner’s dilemma game, win-stay-lose leave, network reciprocity, exit cost

1. INTRODUCTION

Within the framework of evolutionary game theory, cooperation has been widely studied both
experimentally and theoretically [1–4]. Conflict between what is best for an individual and what is
best for the group is at the core of this overreaching problem. The application of statistical physics
methods, such asMonte Carlo simulation, phase transition, percolation theory, pair approximation
and others, have proven its effectiveness at studying this issue [5–7]. As clarified in the cited
literature, cooperation can exist in a sea of defectors via the so-called “network reciprocity”
mechanism in square lattice, where cooperators can form compact clusters spontaneously to
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support each other [8]. Although square lattice is a simple
network structure, it captures the essential properties
of human interaction, and hence is frequently used to
explore the evolution of cooperation. It is noteworthy
that the interactions on square lattice are limited to
nearest neighbors, but this propriety is not optimal for the
maintenance of cooperation [9–11]. Therefore, different network
typologies and different evolutionary rules were proposed
as cooperation promoting mechanisms [12, 13], as well as
some social factors, like reputation [14–17], age structure [18],
aspiration [19–21], reward and punishment [22–27], adaptive
networks [28–31], to name but a few (see references [3, 6] for a
comprehensive understanding).

Although network reciprocity has been widely studied, it was
usually assumed that players have to play with their opponents
in each round of the game, which is in sharp contrast with
real-life situations. For example, an individual tends to cut
down all of its social ties to protect itself when faced with
severe epidemic, and then gradually restores its social ties
when the epidemic under control; a company staff with low
salary is likely to look for another position for the purpose
of higher salary. Motivated by these facts, here we relax a
standard assumption by allowing players a possibility of exit
from the game, and investigate how this new rule affects the
evolution of cooperation. Specifically, players whose payoff is
larger than the average payoff of their neighbors tend to stay in
their current state to maintain their current advantage, whereas
losers are willing to leave its current state for the purpose
of getting another, possibly higher, payoff. Besides, in order
to investigate the influence of exit cost on the evolution of
cooperation, we assume that a player who wants to exit from
the game must pay a cost γ and become inactive, while still
getting a random payoff. Importantly, our win-stay-lose-leave
rule takes place only when the imitation process is finished, and
in this sense, it provides another chance for a player to revise
its strategy.

Following the win-stay-lose-leave rule, we can obtain a payoff-
correlated state transition patterns. Particularly, inactive players
that refuse to play the current game with its opponents obtain
a random payoff and can not be imitated by others. Thus,
state-changing behavior is independent of reproductive behavior
in our model. This is in contrast with voluntary participation
mechanism [7, 32–36], where each strategy can be imitated by
others. As we will show, when the exit cost is intermediate,
inactive players at the boundary between cooperators and
defectors act as a sort of insulators, which not only helps
cooperation to relieve the exploit pressure of defection, but
also supports the expansion of cooperation. When the exit
cost is low, i.e., free exit situation, cooperation is wiped
out by inactive players and defectors because of the strong
advantage of being in the inactive state. For large exit cost,
cooperation and defection can coexist due to the protective role
of inactive players.

The rest of this paper is organized as follows. In section 2, we
first present the details of our model and then give the simulation
results in section 3. Lastly, we summarize the main results and
discuss its potential implications.

2. MODEL

The prisoner’s dilemma game (PDG) is set on a square lattice
of size L ∗ L with periodic boundary conditions. In the original
version of PDG, mutual cooperation yield reward R, mutual
defection results with punishment P. If one player cooperates
and the other defects, the former one gets sucker’s payoff, S, and
latter one receives the temptation to defect, T. These payoffs
satisfy the relationships T > R > P > S and 2R > P + S.
This setup captures the essential social dilemma between what
is best for the individual and what is best for the collective. To
simplifying the model but without losing generality, we use the
weak prisoner’s dilemma game [8], with parameters set as T = b,
R = 1, P = S = 0.

The simulation procedures are performed in agreement with
asynchronous updating rule. Initially, each player is designed
either as a cooperator (sx = C = 1) or defector (sx = D = 0) with
equal probability. At each time step, a randomly selected player
x acquires its payoff px by interacting with its active neighbors.
Next, player x decides whether or not to update its strategy in
a probabilistic manner by comparing its payoff px with player
y, who is selected randomly among active neighbors of player
x and gets its payoff py in the same way. The strategy updating
probability Py→x is determined by the following equation:

Py→x =
1

1+ exp[(px − py)/K]
, (1)

Where K represents noise, without loss of generality, we set K =

0.1 in this paper [6, 9].
When a player ends its imitation process, it will consider

whether or not to play with its opponents in the future. We
therefore define a win-stay-lose-leave rule to determine players’
state in the next round of the game. Each player is assigned as
active initially, and as game proceeds it may change its state
adaptively according to the environment. Based on previous
work [19], the environment is defined as:

p =

∑kx
y=1 py

kx
, (2)

where the sum runs over all neighbors of player x, and kx
denotes its degree. If a player wins over the environment,
it will stay in its current state, otherwise it will change.
It is worth noting that the state-changing process does not
change the strategy of a player. This process is summarized in
Figure 1A.

In reality, player may choose to exit the game because its
performance is extremely bad or it wants to pursue a higher
possible payoff. Considering the fact that the maximum payoff
among pairwise interactions is b and the degree of each node
in the square lattice is four, we assume that an inactive player’s
payoff is random and lies in the interval of U[0, 4b]. At the
same time, we also consider exit cost γ ∗ b, which is related
to temptation to defect b. It is obvious that for γ = 0,
the free exit situation occurs, and the inactive player can get
a possibly higher payoff, which makes the inactive state the

Frontiers in Physics | www.frontiersin.org 2 April 2020 | Volume 8 | Article 133

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Shen et al. Exit Option

FIGURE 1 | (A) The diagram of state transition. Active nodes can imitate and reproduce, whereas inactive nodes cannot. During imitation process, players will

compare its current payoff with the environment. If satisfied, it will stay in its current state, otherwise it will change to another state. (B) The diagram of simulation

procedure. Suppose the node with green box decides to change its strategy (here, it will choose defection in the next round) through imitation process. After that, it

decides to update its state. If satisfied, it stays in active state, otherwise it become inactive. In the next step, this inactive node does not play the game with its

opponent and the imitation process cannot unfold.

most favorable. When γ > 0, the players are not inclined to
choose inactive state because of its lower payoffs. Especially, the
larger the value of γ , the stronger the willingness of a player
to stay in active state. For simplicity, we assume the largest
value of γ equals to 10. We also investigate the performance
of cooperation with increasing values of γ and find that there
is no significant difference regarding the cooperation level.
It is also noteworthy that our model cannot return to the
traditional PDG even when the exit cost is +∞. High exit
cost leads to a low payoff of inactive players, which inevitably
pushes the inactive players to become active. However, some
unsatisfied active players will still choose to become inactive
because of our rules, and the system will go into dynamical
stable state, where the inactive nodes can be maintained at a
level of 4%.

The strategy updating process and the state updating process
form a full Monte Carlo simulation (MCS) procedure. In order
to make our model more clear, we also present the main steps
in Figure 1B. Results are obtained within the 103 full MCS over
the total 5× 104 steps, which is sufficient for reaching stationary
states. Besides, in order to avoid the finite network size effect
and to get accurate results, the environment size was varied from
L = 400 to L = 1, 000. For each set of parameter values, the final
results are obtained by averaging 20 independent runs.

3. RESULTS

Our win-stay-lose-leave rule may lead some players to become
inactive during the evolutionary dynamics, where inactive nodes

Frontiers in Physics | www.frontiersin.org 3 April 2020 | Volume 8 | Article 133

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Shen et al. Exit Option

are very similar to vacant nodes [37–41]. We thus calculate the
average cooperation rate fC as ρ−1

∗ L−2
∗

∑
x sx, where ρ

is the population density and is determined by the number of
active players in each round of the game. In traditional PDG,
cooperation can be supported by single network reciprocity,
where cooperation never dominates the whole network and dies
out at b = 1.0375 [6, 42]. It is thus intuitive to explore how our
rule will affect the evolution of cooperation by comparing it with
the traditional case.

We first present the phase diagram in dependence on the
temptation to defect b and the exit cost γ in Figure 2. We show

FIGURE 2 | Full b− γ phase diagram of the spatial prisoner’s dilemma game

in the presence of exit option. Solid lines denote continuous phase transitions,

while dashed lines denote discontinuous phase transitions.

that small exit cost leads cooperation to go extinct nomatter what
value of b is applied. However, if the exit cost exceeds a certain
value, cooperation can coexist with defection and even dominate
the whole population among the active players. Specifically,
when the network reciprocity is strong (i.e., b < 1.04), as the
exit cost increases, cooperation can subvert defection via first-
order phase transition from absorbing D phase to absorbing
C phase. Whereas, when the network reciprocity is weak (i.e.,
b > 1.05), we find that there is an optimal exit cost γ , at
which the flourishing cooperation is achieved. This results differs
from traditional prisoner’s dilemma game, as there cooperation
never dominants in the case of strong reciprocity and dies out at
b = 1.0375. It is also worth mentioning that large network size
is needed for the correct evolutionary stable solutions, too small
network size may leads to incorrect results, as we presented in
Figure 3. Based on the above phenomenon, we conclude that the
inactive players have strong influence on cooperation dynamics,
and make the phase diagram to exhibits diverse features. In what
follows, we additionally analyze these interesting results.

Figure 4 shows the spatial evolutionary snapshots from a
prepared initial state: a sizable domain of cooperators (red) is
inserted into a sea of defectors (blue). Since exit option may leads
some players to become inactive, we use white to denote the
inactive players. Before presenting our analytical results, we first
review the case of traditional PDG at weak reciprocity as shown in
the top row of Figure 4. Obviously, in the absence of exit option,
cooperative clusters that are scattered and diluted are easily
exploited and finally wiped out by defectors. On the contrary,
when the exit option is considered, the situation is considerably
different. From the second to the bottom row of Figure 4, the exit
cost γ equal to 0, 3, and 10, respectively. When the exit is free,
γ = 0, both cooperators and defectors are unsatisfied with their
performance, and thus exit is their best option. As shown in the
second row of Figure 4, both cooperative and defective clusters
are diluted by the inactive players. In this sense, free exit weakens
the effect of network reciprocity, cooperation disappears, and the
system is left with defectors and inactive players. For intermediate

FIGURE 3 | Time courses of the evolution of cooperation for lattice size L equal to 100 (left), 400 (middle), and 1,000 (right). During the simulations, large network size

is needed, otherwise cooperation will become extinct due to the fluctuations. With the increase of network size, fluctuations become weaker, making results

independent of the network size. The temptation to defect b is set to 1.095, and the exit cost γ is fixed as 3.
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FIGURE 4 | Evolutionary snapshots reveal how inactive players affect the cooperative dynamics. Top row presents the traditional case, where the exit option is

excluded from the model. To illustrate the role of inactive players on the evolutionary dynamics, the exit cost γ were set to 0, 3, and 10 from the second to the bottom

row. From left to right, snapshots are obtained at different MC steps. Cooperators, defectors, and inactive players are denoted by red, blue, and white, respectively.

The parameter combinations are b = 1.07, K = 0.1, L = 200.

exit cost (i.e., γ = 3), we find that the inactive players can
only exist at the boundary of cooperative clusters, which means
that the inactive players not only prevent the direct invasion of
defectors but also promote the formation of cooperative clusters.
Finally, cooperation evolves with the support of this enhanced
network reciprocity. For large exit cost (i.e., γ = 10), although
exit is the most expensive action, a few unsatisfied players around
the cooperative clusters are still willing to exit the game. Finally,
cooperators are insulated by this protective film and coexist with
defectors in the whole system.

It is instructive to further examine the time courses of the
fraction of cooperators and the fraction of inactive players
starting from a random initial condition for a given b, respectively
(Figure 5). The parameters are the same as in that of Figure 4.
We use black, red, and green to denote the case of free exit,
intermediate exit cost, and large exit cost. For free exit, we
observe that the fraction of inactive players increases with
its evolution and maintains at 70%. In this case, the super

sparse property of the networked individual breaks the network
reciprocity and cooperation quickly goes extinct. However, when
the exit is costly, the situation is considerably different. When
the exit cost is at a intermediate level, the fraction of inactive
players increases from a low value, peaks, and then decreases to 0.
This self-organized patterns establish an optimal environment for
cooperation to spread and eventually to reach a full cooperation
phase. For large exit cost (γ = 10), the fraction of inactive players
evolve in a way similar to the intermediate exit cost case, but the
peak is smaller and these inactive players can be maintained at a
certain level. The fraction of cooperation thus can be maintained
because of the effect of protective film composed by the inactive
players. These results reveal that the role of inactive states is very
similar to the vacant nodes. Namely, if the population density
is too high, defection can easily invade cooperation, whereas
if the population density is too low, vacant nodes prohibit
the formation of cooperative clusters. The optimal population
density is closely related to the percolation threshold [40, 41].
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FIGURE 5 | (Left) Time courses of the frequency of cooperation (ρc). (Right) Time courses of the frequency of the inactive players (ρE ). The parameters are the same

as in Figure 2. To distinguish different values of exit cost, we use black, red, and green to denote the case of γ = 0, γ = 3, and γ = 10, respectively.

Evolutionary outcomes are determined by the species fitness,
where the fittest survive. Here, the boundary payoffs of each
strategy determine the evolutionary trend in network games, and
we thus report the average payoff of the boundary cooperators,
boundary defectors, and their neighbors in Figure 6. We use red
(wine) to denote the boundary cooperator (C) [the neighbors of
a boundary cooperator (NC)], and blue (dark blue) to represent
the boundary defector (D) [neighbors of a boundary defector
(ND)]. From left to right, the exit cost γ were taken at 0, 3, and
10. In addition, the top and bottom row depict the probability
density and the cumulative probability of the average payoff.
In probability density figures, the area enclosed by the curve
and the interval of some average payoff value represents the
probability that the average payoff falls into this interval. In
cumulative probability figures, cumulative probability means the
probability that the average payoff is less than or equal to a
fixed average payoff. For free exit, regardless of cooperation or
defection, the average payoff of its neighbors is higher than
players’, and at the same time, the average payoff of cooperation
is smaller than of the defection. Put differently, cooperation
is always at the disadvantaged position in the evolutionary
dynamics, resulting with extinction of cooperation. The situation
of intermediate exit cost decreases a defector’s average payoff and
the neighbor’s average payoff of a cooperator, and at the same
time, it increases the cooperator’s average payoff. In this case,
the difference between the cooperator’s average payoff and its
neighbors’ average payoff becomes much smaller and the gap
between the cooperator’s and defector’s average payoff becomes
much larger. Cooperation thus has a small probability to choose
an inactive state and can easily expand its territory. The situation
of large exit cost greatly reduces the average payoff of a defector’s
neighbors, motivating defectors to stay active. At the same
time, cooperator’s average payoff and defector’s average payoff
are further increased, but its difference become smaller again,
cooperation can be maintained but it cannot expand its territory
as this difference in is enough only to support its survival.

4. CONCLUSION

To conclude, in this paper, we relax the condition that a
player must play the game with its opponents in each round
of the game by introducing win-stay-lose-leave rule. Following
this rule, player can choose between staying active (playing
the game) and becoming inactive (exiting the game) in each
round of the game after their imitation process ends. This
new rule enables a winner to stay in its current state and to
push a loser into leaving its current state. Through numerical
simulations, we find that a full cooperation plateau can be
achieved for intermediate exit cost, in which inactive players can
only exist in the boundary of cooperative clusters, thus creating
a crucial buffer area separating them from defectors and further
promoting the expansion of cooperative clusters. For free exit
case, too much inactive players go against the formation of
cooperative clusters and further weaken the network reciprocity,
enabling the extinction of cooperation. In large exit situation,
a small number of players still want to exit from the game,
forming a protective film and enabling cooperation to survive.
Besides, we also check which players are most inclined to choose
inactive state as shown in Figure 6. We find that for free exit case,
cooperators choose inactive state more frequently compared with
defectors; for intermediate exit case, defectors choose inactive
state, and cooperators have small probability to choose inactive
state; for large exit cost case, defectors have larger probability to
choose active state compared with cooperators. These findings
again corroborate our main conclusions and give an enhanced
understanding about for the above results. We also show the
inactive states are very similar to the role of empty sites, which
are shown to be crucial for the evolution of cooperation [37–39].
Our results thus provide a deep understanding about the effect of
exit cost on the evolution of cooperation from the viewpoint of
network reciprocity.

Finally, herein we only consider the simple square lattice
to investigate the performance of our model. Heterogeneous
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FIGURE 6 | Exit option changes the evolutionary trend. From top to bottom, we present the probability density and the cumulative probability of the average payoff,

respectively. We also use red (wine) to denote boundary cooperators (C) [neighbors of a boundary cooperator (NC)] and blue (dark blue) to represent a defector (D)

[neighbors of a boundary defector (ND)]. From left to right, the exit cost γ equal to 0, 3, 10, respectively.

networks are considered to be the optimal structure for
cooperation to survive due to the existence of hub nodes,
which if occupied by cooperators inevitably influence their
neighbors to choose cooperation too [11, 13, 43]. If we implement
our model in heterogeneous networks, it would be interesting
to explore the win-stay-lose-leave rule effect on hub node,
especially in the context of possible weakening of the hub
node role. Additionally, if we only give the exit option to
hub nodes or mass nodes, we could consider how would that
affect cooperation.
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