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The backstepping technique is greatly effective for the integer-order triangular non-linear

systems. Nevertheless, it is dramatically challenging to implement backstepping

technique in the manipulation of fractional-order permanent magnet synchronous

motors (FOPMSMs), since the fractional derivatives of the composite functions are

deeply complex. In this paper, adaptive neural network (NN) backstepping-based

control scheme for FOPMSMs on the basis of fractional Lyapunov stability criterion is

established. First, we propose a novel adaptive synchronous controller for FOPMSMs by

coupling with NNs and backstepping technique. Then, we present a detailed stability

analysis in terms of FOPMSMs via the proposed controller. Finally, a simulation example is

given to reveal that the proposed controller can effectively eliminate or restrain the chaos

of FOPMSMs, and keep the tracking signals synchronous with the reference signals.

Keywords: adaptive control, backstepping technique, neural network, fractional-order chaotic system, permanent

magnet synchronous motor

1. INTRODUCTION

In late decades, fractional-order non-linear systems (FONSs) [1] have been widely studied, not only
owing to their accurate performance in modeling physical phenomena (e.g., chaos, oscillations,
impulses, diffusions, see [2–5]), but also owing to their successful applications in a variety of fields,
such as chemistry, medicine, biology, electronics, robotics, fuel cells, and so on [6–11]. Stability
analysis [12] is regarded as a fundamental and crucial task in the development of cybernetics.
Recently, more and more scholars have paid attention to stability analysis of fractional-order non-
linear systems [13–16]. It is not exaggerated to say that stability analysis of FONSs along with their
robust control have become a hot and promising research topic.

The researches on the control of chaotic systems are widely concerned due to its valuable
significance in both theoretical and practical aspects [17, 18]. Since Kuroe and Hayashi [19]
originally discovered chaotic phenomenon from the motor drive system in the late 1980’s, chaos
control has been one of the most popular research topics in cybernetics. There are several types
of chaotic motor drivers that capture widespread interests. For instance, DC motor drivers [20],
step motor drivers [21], single-phase induction motor drivers [22], synchronous reluctance motor
drivers [23], switched reluctance motor drivers [24] and so on. The extensive utilization of
permanent magnet synchronous motors (PMSMs) in industries mainly benefits from their merits
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of high speed, high efficiency, high power, low loss and low
temperature rise. Chaotic non-linear systems are very complex
due to the irregular and unpredictable behaviors. A remarkable
feature of chaotic systems is that they are very sensitive to
the initial conditions. The small change of initial state will
lead to great distinction. On the other hand, they have many
other desired properties, such as information processing, secure
communication and mechanical system. However, it may cause
unexpected oscillations and even destroy the system stability.
Therefore, such oscillations should be effectively suppressed. For
this reason, various methods have been developed to stabilize
non-linear chaotic systems, in which fractional order chaos
control has also been focused, such as OGY type [25], feedback
type [26–28], dynamic surface type [29], sliding mode type [30–
33], backstepping type [34, 35], etc.

Neural network (NN) control technique [36, 37] is an
intelligent method for controlling non-linear systems with
uncertainties. Analogizing to fuzzy control approach [38, 39], the
idea of NN control technique is to approximate unknown non-
linear functions by using radial basis function neural networks
(RBFNNs), which is a type of neuron-modeled structure formed
by the computation of some adjustable parameter vectors and
some specific continuous functions. As one of the most powerful
tools to realizing approximation of functions, NN control
technique is popular because it facilitates to control most of
many non-linear systems in which the data are too imprecise
or too complex to construct mathematical modeling. It provides
an available way for the control designs, and it is considerably
applicable in the field of control engineering.

Backstepping technique has engaged much attention due to
its efficient performance in handling mismatched uncertainties
of integer-order non-linear systems [40, 41]. Unfortunately, this
control method has an inherent drawback, namely “explosion
of complexity,” triggered by iteratively differentiating virtual
control inputs [42]. Additionally, it requires complicated analysis
to compute a so-called “regression matrix” [43]. Dawson
et al. [44] pointed out that the size of the regression matrix
displays too large when backstepping technique was applied
to manipulate DC motors in a conventional manner. Such
complexities might be augmented remarkably for fractional-
order non-linear systems.

It is well-known that the design of NN control is rarely
systematic, which is difficult to work for the control of complex
systems. It is also challenging to establish a systematic NN control
theory to solve a series of problems, such as themechanism of NN
control, stability analysis, systematic design, etc. Backstepping
control usually leads to the problem of “complexity explosion”
when it is applied in the processing of unknown functions, so
the methods of adaptive NN control [36], adaptive fuzzy control
[45] and adaptive NN backstepping control [35] are put forward
to address such a problem. These techniques enable systems to
be greatly adaptive and robust obeying the required performance
criteria for the control. However, the control performance is not
desired for the non-linear systems with triangular structures,
and the problem of “complexity explosion” will occur during
the control proceeding. Based on the above discussion, this
paper proposes an adaptive neural network control method of

chaotic fractional-order permanent magnet synchronous motors
using backstepping technique, which can improve the control
performance of non-linear systems.

To deal with the synchronization issue of fractional-
order permanent magnet synchronous motor (FOPMSM) with
triangular structure, we expect to construct an adaptive
NN controller combined with backstepping technique. This
enables every uncertain complex non-linear functions being
approximated by a radial basis function neural network (RBFNN)
during each control step. Themain contributions of this work can
be summarized as follows:

The synchronization control scheme design and the stability
analysis of FOPMSMs are investigated. In order to analyze the
stability of the controlled systems, firstly, some basic results
related to fractional calculus and RBFNN are recalled, including
a fractional differential inequality, which lays the foundation
for the application of the fractional Lyapunov function method.
Meanwhile, it lays a foundation for the stability analysis of
other types of FONSs. Secondly, an adaptive NN backstepping
recursive control method is proposed for a class of uncertain
FOPMSMs. The stability of FOPMSMs is analyzed based on
fractional Lyapunov criterion. NN control technique is employed
when dealing with the approximation of uncertain functions
of FOPMSMs, and the fractional adaptive law is designed
to update the parameters of NNs. The relevant properties of
Mittag-Leffler function and Laplace transform are applied when
the fractional Lyapunov function is defined to implement the
system control. Our proposed control method fully averts the
superfluous terms which are aroused by repeated derivation on
virtual control inputs, and facilitates to overcome the so-called
“complexity explosion” inherent drawback of the traditional
backstepping technique. Finally, we present a numerical example
to verify the main results. The simulation results show that our
method embodies a perfect control effect. This also reveals the
effectiveness of our control algorithm in another way.

The remainder of this work is arranged as below: In section 2,
we recall several fundamental preliminaries of fractional calculus
and RBFNN. Then, a brief overview of a class of FOPMSMs
is provided. In section 3, we propose a RBFNN-based control
scheme in three steps and present stability analysis. In section
4, we illustrate the effectiveness of the proposed synchronous
controller via a simulation example. Finally, in section 5, we
summarize the results of this work and put forward the prospect
for our further investigation.

2. PRELIMINARIES AND MODEL
DESCRIPTION

Some basic concepts, notations and lemmas, involved with
fractional calculus and radial basis function neural network
(RBFNN), need to be stated in this section before used. For
convenience, we adopt the symbol R (resp. Rn, C) to represent
the collection of all real numbers (resp. n-dimensional real
vectors, complex numbers). � ⊆ R

n is always assumed to be
compact. T = [0,+∞) means the time-variable domain. The
notation C1(T,�) stands for the collection of all continuous
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functions from T to � with continuous derivatives. Given a
vector x ∈ R

n, xT denotes its transpose, ‖ x ‖ denotes its
Euclidean norm.

Definition 1 ([8]). Let α ≥ 0. For a given function f :[0,∞) →
R, its α-th order integral is written as

0I
α
ψ f (ψ) =

1

Ŵ(α)

∫ ψ

0

f (η)

(ψ − η)1−α
dη, ψ > 0 (1)

where Ŵ(α) =
∫ +∞
0 sα−1e−sds.

Definition 2 ([8]). Let α ≥ 0. For a given function f :[0,∞) →
R, its α-th order Caputo derivative is expressed by

C
0D

α
ψ f (ψ) =

1

Ŵ(n− α)

∫ t

0

f (n)(η)

(ψ − η)α+1−n
dη, α ≥ 0, ψ > 0

(2)
where α ∈ [n− 1, n), n = 1, 2, · · · .

Definition 3 ([8]). Let α, γ > 0. TheMittag-Leffler function Eα,γ
on C is expressed as

Eα,γ (ζ ) =

∞
∑

k=0

ζ k

Ŵ(αk+ γ )
. (3)

Moreover, taking the Laplace transform on Eα,γ generates

L{tγ−1Eα,γ (−atα)} =
sα−γ

sα + a
. (4)

Lemma 1 ([1]). Let 0 < α < 1, γ ∈ C and ν ∈ R fulfilling the
following:

πα

2
< ν < min{π ,πα} (5)

If |ζ | → ∞, ν ≤ |arg(ζ )| ≤ π , then the following statement holds:

Eα,γ (ζ ) = −

n
∑

j=1

1

Ŵ(γ − αj)ζ j
+ o

(

|ζ |−n−1
)

, (6)

where n is a non-zero natural number.

Lemma 2 ([1]). Let α ∈ (0, 2), β ∈ R. If µ is a constant fulfilling

πα

2
< µ ≤ min{π ,πα}, (7)

then there exists C > 0 such that

|Eα,β (ζ )| ≤
C

1+ |ζ |
, ∀ζ ∈ C (8)

with | arg(ζ )| ∈ [µ,π].

Lemma 3 ([35]). Let z(t) be a smooth function. Then

1

2
C
0D

α
t (z

T(t)z(t)) ≤ zT(t)C0D
α
t z(t) (∀t ∈ T). (9)

Lemma 4 ([34, 46]). Let z = 0 be the equilibrium point of a
FONS, which is given by

C
0D

α
t z(t) = f (t, z(t)), (10)

where f :T × � −→ R is a function with the Lipschitz condition.
Suppose there exist a Lyapunov function V(t, z(t)) and a family of
class-K functions1 ĝi (i = 1, 2, 3) satisfying

ĝ1(‖z(t)‖) ≤ V(t, z(t)) ≤ ĝ2(‖z(t)‖), (11)

C
0D

α
t V(t, z(t)) ≤ −ĝ3(‖z(t)‖) (12)

Then system (10) is asymptotical stable, i.e., lim
t→∞

z(t) = 0.

Next, let us introduce some basic notions and notations about
the radial basis function NN (RBFNN) [43, 47]. The goal of the
control procedure is to establish a adaptive NN control scheme,
which enables the tracking signal x1(t) and the given reference
signal xd(t) are synchronized.

A RBFNN can be formed as

f̂ (z(t)) = θT(t)ϑ(z(t)). (13)

where z(t) = (z1(t), z2(t), · · · , zn(t))
T ∈ C1(T,�) and f̂ are

the input-variable and the output-variable, respectively, θ(t) =

(θ1(t), θ2(t), · · · , θm(t))
T is an adjustable parameter vector,

ϑ(z(t)) = (ϑ1(z(t)),ϑ2(z(t)), · · · ,ϑm(z(t)))
T with ϑj(z(t)) =

(ϑj(z1(t)),ϑj(z2(t)), · · · ,ϑj(zn(t)))
T (j = 1, 2, · · · ,m) being a

continuous function, called the regressor variable. To illustrate
its structure, we refer to Figure 1.

Suppose that all of the continuous functions
ϑ1(z(t)),ϑ2(z(t)), · · · ,ϑm(z(t)) in the above RBFNN are
chosen as Gaussian functions, that is, for j = 1, 2, · · · ,m,

ϑj(z(t)) = exp

(

−
‖z(t)− cj‖

2

σ 2
j

)

,

where cj = [cj1, cj2, ..., cjn]
T is the center vector and σj > 0 is

the width of the Gaussian function ϑj(z(t)). Then the next lemma
is obtained.

Lemma 5 ([35]). Let f :� −→ R be a Lipschitz function. For each
z ∈ C1(T,�) and for each ε > 0, there is a RBFNN fulfilling
Equation (13) and the following property:

sup
t∈T

|f (z(t))− θT(t)ϑ(z(t))| ≤ ε. (14)

1A function ĝ :[0,∞) −→ T is said to belong to class-K if it is strictly increasing,

continuous and ĝ(0) = 0.
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FIGURE 1 | The structure of RBFNN.

It is well-known that non-linear theory has yet
been widely applied in the stability analysis of integer-
order non-linear PMSMs. Yu et al. [48] investigated
a type of classical PMSMs, which are described
as follows:































dω

dt
= σ

(

iq − ω
)

,

diq

dt
= −iq − ωid + γω,

did

dt
= −id + ωiq + ud,

(15)

Yu et al. [48] also studied that when the parameters σ , γ
of a PMSM decrease in a certain range, chaos will appear
in the PMSM. To eliminate chaos in PMSM drive systems,
they treated ud as an adjustable variable, and proposed an
adaptive NN control method based on backstepping control
technique. It is well-known that backstepping technique usually
makes great efforts to the effective control of integer-order
triangular non-linear systems. Nevertheless, it is difficult
to incorporate backstepping control technique into FONSs
because of the complexities of fractional derivatives of
composite functions. Moreover, the applications of FONSs
broadly cover a great deal of fields, such as physics, chemistry,
mathematics, etc., which suggests that the mathematical
structures modeled by FONSs are more accurate and
more practical.

Based on the aforementioned facts, this paper concerns a
class of FOPMSMs. For simplicity, denote ω = x1, iq = x2,
id = x3 in system (15), and extend system (15) into the next

fractional-order form:











C
0D

α
t x1(t) = σ

(

x2(t)− x1(t)
)

,

C
0D

α
t x2(t) = −x2(t)− x1(t)x3(t)+ γ x1(t),

C
0D

α
t x3(t) = −x3(t)+ x1(t)x2(t)+ ud(t),

(16)

where 0 < α < 1, x(t) = [x1(t), x2(t), x3(t)]
T ∈

R
3 is a measurable state-variable, x1(t) ∈ R is an

output-variable, ud(t) ∈ R is an input-variable, σ and
γ are positive constants, both of them represent system
operating parameters.

3. ADAPTIVE NEURAL NETWORK
BACKSTEPPING CONTROL OF FOPMSMS

In this section, we will improve the conventional control method
combined with backstepping technique, by which the chaos
of FOPMSMs realizes to be eliminated or restrained in a
high effective manner. The design process includes three steps.
Each of them will construct a virtual control variable based
on a proper Lyapunov function. At the end, a controller in
real sense will be produced to manipulate FOPMSM. Assume
that xd(t) is a given reference signal. Our goal is to establish
an appropriate controller ud(t), ensuring that the tracking
error e(t) : = x1(t) − xd(t) will ultimately converge to
an arbitrarily small neighborhood of the origin. Next, we
present a recursive backstepping procedure to reach our goal in
three steps:

Step 1: From (16), we obtain

C
0D

α
t e(t) =

C
0D

α
t x1(t)−

C
0D

α
t xd(t)

= σ
(

x2(t)− x1(t)
)

− C
0D

α
t xd(t)

(17)
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The virtual control input α1(e(t), x1(t), xd(t)) is adopted as

α1(e(t), x1(t), xd(t)) = x1(t)−
1

σ

[

k11e(t)+ k21sign(e(t))

− C
0D

α
t xd(t)

]

(18)

where k11 > 0, k21 > 0 are design parameters, sign(·) denotes a
signum function.

Denote α1(t) = α1(e(t), x1(t), xd(t)). Let

e1(t) = x2(t)− α1(t). (19)

Introduce Equations (18) and (19) into Equation
(17) yields

C
0D

α
t e(t) = −k11e(t)− k21sign(e(t))+ σ e1(t). (20)

Multiplying e(t) with Equation (20) generates

e(t)C0D
α
t e(t) = −k21|e(t)| + σ e(t)e1(t)− k11e

2(t)

≤ σ e(t)e1(t)− k11e
2(t)

(21)

Let the Lyapunov function candidate V1(t) be taken as

V1(t) =
1

2
e2(t) (22)

By Lemma 3 and Equation (21), one obtains

C
0D

α
t V1(t) =

1

2
C
0D

α
t e

2(t) ≤ e(t)C0D
α
t e(t)

≤ −k11e
2(t)+ σ e(t)e1(t)

= −κ1V1(t)+ σ e(t)e1(t)

(23)

where κ1 = 2k11 is a positive constant.
Step 2: From Equations (16) and (19), we have

C
0D

α
t e1(t) =

C
0D

α
t x2(t)−

C
0D

α
t α1(t))

= −x2(t)− x1(t)x3(t)+ γ x1(t)−
C
0D

α
t α1(t)

= −x2(t)− x1(t)x3(t)+ γ x1(t)− F1(x1(t))

(24)

where F1
(

x1(t)
)

= C
0D

α
t α1(t) is an unknown function.

To approximate F1
(

x1(t)
)

, we adopt a RBFNN
formulated by

F̂1
(

x1(t), θ1(t)
)

= θT1 (t)ϑ1(x1(t)). (25)

Suppose θ∗1 is the optimal parameter, which is represented as

θ∗1 = argmin
θ1(t)

[

sup
x1(t)

∣

∣

∣
F1
(

x1(t)
)

− F̂1
(

x1(t), θ1(t)
)

∣

∣

∣

]

. (26)

Here, θ∗1 is presented for the purpose of analysis, in other words,
it is not required in the controller design procedure.

Define the parameter estimation error θ̃1(t) as

θ̃1(t) = θ1(t)− θ
∗
1 , (27)

Also, formulate the optimal approximate error
ǫ1
(

x1(t)
)

by

ǫ1
(

x1(t)
)

= F̂1
(

x1(t), θ
∗
1

)

− F1
(

x1(t)
)

, (28)

According to Tong and Li [49], we know that ǫ1
(

x1(t)
)

is
bounded. Therefore,

|ǫ1
(

x1(t)
)

| ≤ ǭ1, (29)

where ǭ1 is a known constant. Consequently,

F̂1
(

x1(t), θ1(t)
)

− F1
(

x1(t)
)

= F̂1
(

x1(t), θ1(t)
)

− F̂1
(

x1(t), θ
∗
1

)

+ F̂1
(

x1(t), θ
∗
1

)

− F1
(

x1(t)
)

= θT1 (t)ϑ1(x1(t))− θ
∗
1 ϑ1(x1(t))+ ǫ1(x1(t))

= θ̃T1 (t)ϑ1(x1(t))+ ǫ1(x1(t)).
(30)

Define the virtual control input by

α2(t) = −x−1
1

[

θT1 (t)ϑ1(x1(t))+ x2(t)− k12e1(t)

−k22sign(e1(t))− σ e(t)
]

+ γ
(31)

where k12 > 0 and k22 > ǭ1 are design parameters.
Implement the following fractional-order adaptation law:

C
0D

α
t θ1(t) = −e1(t)ϑ1(x1(t))− ρ1θ1(t), (32)

where ρ1 is a positive design parameters. Noting that the α-th
order derivatives of constants are equal to 0, by Equation (27), we
immediately get

C
0D

α
t θ̃1(t) =

C
0D

α
t θ1(t). (33)

Put

e2(t) = x3(t)− α2(t). (34)

Then Equations (24), (30), and (31) lead to

C
0D

α
t e1(t) = −x2(t)− x1(t)x3(t)+ γ x1(t)− F1(x1(t))

= −x2(t)− x1(t)x3(t)+ γ x1(t)+ θ̃
T
1 (t)ϑ1(x1(t))

+ ǫ1(x1(t))− θ
T
1 (t)ϑ1(x1(t))

= −x1(t)e2(t)− k12e1(t)− k22sign(e1(t))− σ e(t)

+ θ̃T1 (t)ϑ1(x1(t))+ ǫ1(x1(t)).
(35)
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By multiplying e1(t) with (35), we obtain

e1(t)
C
0D

α
t e1(t) =− x1(t)e1(t)e2(t)− k12e

2
1(t)

− k22|e1(t)| − σ e1(t)e(t)

+ e1(t)θ̃
T
1 (t)ϑ1(x1(t))+ e1(t)ǫ1(x1(t))

≤− x1(t)e1(t)e2(t)− k12e
2
1(t)− σ e1(t)e(t)

+ e1(t)θ̃
T
1 (t)ϑ1(x1(t))+ |e1(t)|ǭ1

≤− x1(t)e1(t)e2(t)− k12e
2
1(t)− σ e1(t)e(t)

+ e1(t)θ̃
T
1 (t)ϑ1(x1(t))

(36)
Adopt the next Lyapunov function candidate V2(t):

V2(t) = V1(t)+
1

2
e21(t)+

1

2
θ̃T1 (t)θ̃1(t) (37)

Applying Lemma 3 and Equation (23), ont gets

C
0D

α
t V2(t) =

C
0D

α
t V1(t)+

1

2
C
0D

α
t e

2
1(t)+

1

2
C
0D

α
t θ̃

T
1 (t)θ̃1(t)

≤ −κ1V1(t)+ σ e1(t)e(t)+ e1(t)
C
0D

α
t e1(t)

+ θ̃T1 (t)
C
0D

α
t θ̃1(t)

= −κ1V1(t)+ σ e1(t)e(t)+ e1(t)
C
0D

α
t e1(t)

+ θ̃T1 (t)
C
0D

α
t θ1(t)

(38)
Substituting Equations (36) and (32) into Equation (38) derives

C
0D

α
t V2(t) ≤ −κ1V1(t)− x1(t)e1(t)e2(t)− k12e

2
1(t)

+ e1(t)θ̃
T
1 (t)ϑ1(x1(t))+ θ̃

T
1 (t)

C
0D

α
t θ1(t)

= −κ1V1(t)− k12e
2
1(t)− x1(t)e1(t)e2(t)

− ρ1θ̃
T
1 (t)θ1(t)

= −κ1V1(t)− k12e
2
1(t)− x1(t)e1(t)e2(t)

− ρ1θ̃
T
1 (t)θ̃1(t)− ρ1θ̃

T
1 (t)θ

∗
1

≤ −κ1V1(t)− k12e
2
1(t)− x1(t)e1(t)e2(t)

−
ρ1

2
θ̃T1 (t)θ̃1(t)+

ρ1

2
θ∗T1 (t)θ∗1

≤ −κ2V2(t)− x1(t)e1(t)e2(t)+H1

(39)

where κ2 = min{κ1, 2k12, ρ1} and H1 =
ρ1
2 θ

∗T
1 θ∗1 are

positive constants.
Step 3: Using Equation (34), one has

C
0D

α
t e2(t) =

C
0D

α
t x3(t)−

C
0D

α
t α2(t)

= −x3(t)+ x1(t)x2(t)+ ud(t)−
C
0D

α
t α2(t)

= −x3(t)+ x1(t)x2(t)+ ud(t)− F2
(

x1(t), x2(t)
)

(40)

where F2
(

x1(t), x2(t)
)

= C
0D

α
t α2(t) is unknown. We approximate

F2
(

x1(t), x2(t)
)

via RBFNN as follows:

F̂1
(

x1(t), x2(t), θ2(t)
)

= θT2 (t)ϑ2(x1(t), x2(t)). (41)

Furthermore, Equation (40) can be reformulated by

C
0D

α
t e2(t) = −x3(t)+ x1(t)x2(t)+ ud(t)− F2

(

x1(t), x2(t)
)

= −x3(t)+ x1(t)x2(t)+ ud(t)− F2
(

x1(t), x2(t)
)

+ F̂2(x2(t), θ2(t))− F̂2(x2(t), θ2(t))

= −x3(t)+ x1(t)x2(t)+ ud(t)+ θ̃
T
2 ϑ2(x1(t), x2(t))

+ ǫ2(x1(t), x2(t))− θ
T
2 ϑ2(x1(t), x2(t)).

(42)
Let the virtual control input be expressed by

ud(t) = −k13e2(t)+ x1(t)e1(t)− k23sign(e2(t))+ x3(t)

−x1(t)x2(t)+ θ
T
2 ϑ2(x1(t), x2(t))

(43)
Design the fractional-order adaptation law as

C
0D

α
t θ2(t) = −e2(t)ϑ2(x1(t), x2(t))− ρ2θ2(t), (44)

where k13 > 0, k23 > ǭ2 (ǭ2 are design parameters with
‖ǫ2(x1(t), x2(t))‖ ≤ ǭ2), ρ2 > 0. Substitute it into Equation (43).
By multiplying e2(t) with Equation (42), we get

e2(t)
C
0D

α
t e2(t) =− k13e

2
2(t)+ x1(t)e1(t)e2(t)− k23|e2(t)|

+ e2(t)θ̃
T
2 ϑ2(x1(t), x2(t))+ e2(t)ǫ2(x1(t), x2(t)).

(45)
Choose the Lyapunov function V3(t) as

V3(t) =
1

2
e22(t)+

1

2
θ̃T2 (t)θ̃2(t)+ V2(t) (46)

Employing Lemma 3 with Equations (39), (44), and (45)
together gives

C
0D

α
t V3(t) =

C
0D

α
t V2(t)+

1

2
C
0D

α
t e

2
2(t)+

1

2
C
0D

α
t θ̃

T
2 (t)θ̃2(t)

≤ −κ2V2(t)− x1(t)e1(t)e2(t)+H1 + e2(t)
C
0D

α
t e2(t)

+ θ̃T2 (t)
C
0D

α
t θ̃2(t))

≤ −κ2V2(t)+H1 − k13e
2
2(t)− ρ2θ̃

T
2 (t)θ2(t)

= −κ2V2(t)+H1 − k13e
2
2(t)− ρ2θ̃

T
1 (t)θ̃1(t)

− ρ2θ̃
T
1 (t)θ

∗
1

≤ −κ2V2(t)+H1 − k13e
2
2(t)−

ρ2

2
θ̃T2 (t)θ̃2(t)

+
ρ2

2
θ∗T2 θ∗2

≤ −κ3V3(t)+H2

(47)
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where κ3 = min{κ2, 2k13, ρ2} and H2 = H1 +
1
2ρ1θ

∗T
2 θ∗2 are

positive constants.

Theorem 1. In system (16), if the control outputs are formulated
by Equations (18), (31), and (43), and the adaptation law is
designed as Equations (32) and (44), then the tracking error
e(t) must tend to a sufficiently small neighborhood of the
equilibrium point.

Proof: Applying (47), one gets

C
0D

α
t V3(t)+ Q̄(t) = −κ3V3(t)+H2 (48)

where Q̄(t) ≥ 0. By the implementation of the Laplace transform
on Equation (48), we obtain

V3(s) =
sα−1

sα + κ3
V3(0)+

H2

s(sα + κ3)
−

M(s)

sα + κ3

=
sα−1

sα + κ3
V3(0)+

sα−(1+α)H2

sα + κ3
−

M(s)

sα + κ3

(49)

whereV3(s) andM(s) are given by the Laplace transform onV3(t)
and Q̄(t), respectively.

By Equations (4), (49), V3(t) can be rearranged as

V3(t) = V3(0)Eα,1(−κ3t
α)+H2t

αEα,1+α(−κ3t
α)

− Q̄(t) ∗ t−1Eα,0(−κ3t
α)

(50)

where ∗ denotes the convolution between functions. Since Q̄(t)
and t−1Eα,0(−κ3t

α) are non-negative,

Q̄(t) ∗ t−1Eα,0(−κ3t
α) ≥ 0.

Additionally, we have

|V3(t)| ≤ |V3(0)|Eα,1(−κ3t
α)+H2t

αEα,1+α(−κ3t
α). (51)

Note that arg(−κ3t
α) = −π , | − κ3t

α| ≥ 0 for any t ≥ 0 and
α ∈ (0, 2). Employing Lemma 2, we deduce that there is a positive
constant C with

|Eα,1(−κ3t
α)| ≤

C

1+ κ3tα
. (52)

It follows from Equation (52) that

lim
t→∞

|V3(0)|Eα,1(−κ3t
α) = 0. (53)

Therefore, for an arbitrary positive constant ε, there exists a
positive constant t1 fulfilling that

|V3(0)|Eα,1(−κ3t
α) <

ε

3
, ∀t > t1. (54)

On the other hand, by employing Lemma 1, we get

Eα,α+1(−κnt
α) =

1

Ŵ(1)κntα
+ o

(

1

|κntα|1+1

)

. (55)

From Equation (55), for an arbitrary ε > 0, there is a positive
constant t2 with

H2t
αEα,α+1(−κ3t

α) ≤
H2

κ3
+
ε

3
, ∀t > t2. (56)

Note that the design parameter can be adjusted with H2
κ3

≤ ε
3 .

Thus, coupling of Equations (51), (54), and (56) yields

|V3(t)| < ε. (57)

In view of Equation (57) and the definition of V3(t), we conclude
that all signals and estimation errors are bounded in the closed-
loop system. Further, the tracking signal e(t) will ultimately tend
toward a sufficiently small neighborhood of the equilibrium point
with radius ε ≥ 1

2 e
2(t) for every t > min{t1, t2}.

Remark 1. Theorem 1 can be extended to the stability analysis of
many other FONSs. Employing fractional-order Lyapunov stability
criterion. we know that if there are two positive constants φ1,
φ2 such that C

0D
α
t V(t) ≤ −φ1V(t) + φ2, where V(t) =

1
2y

T(t)y(t) is a Lyapunov function, then y(t) ∈ R
n is globally

bounded and y(t) ≤
φ2
φ1

holds whenever the time variable t is

sufficiently large.

Remark 2. In practice, the system parameters σ and γ for the
model of FOPMSM are uncertain in general. Thereby, we can
take advantage of the RBFNNs and adopt the corresponding
adaptation law to estimate the unknown system parameters,
analogizing to our proposed estimation formula (25). For the
sake of simplicity, we assume that the system parameters
are constants.

Remark 3. In the proposed adaptive NN backstepping control
scheme, the designed controller determined by Equations (20), (31),
and (43) is apparently simpler than the ones without using NN
backstepping technique. Meanwhile, it is able to avert superfluous
terms aroused by repeated derivation on virtual control inputs.
This is beneficial especially for FONSs, in which there are a
larger amount of complicated terms of fractional derivatives.
For the detail, the readers may refer to Appendix B of the
literature [48].

4. NUMERICAL SIMULATION EXAMPLE

Let us consider the next non-linear FOPMSM by setting σ = 5.6,
γ = 230 and xi(t) = yi(t) (i = 1, 2, 3) in system (16):











C
0D

α
t y1(t) = 5.6(y2(t)− y1(t)),

C
0D

α
t y2(t) = −y2(t)− y1(t)y3(t)+ 230y1(t),

C
0D

α
t y3(t) = −y3(t)+ y1(t)y2(t)+ ud(t).

(58)
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FIGURE 2 | The radial basis functions for RBFNN.

system is proceeded under the initial condition y0 =

(−2,−0.8, 0.6). Given a reference signal yd(t) = sin t. The
chosen parameters k1i (i = 1, 2, 3) should be >0. However, if k1i
are too large, the control gain will increase, which will consume
more control energy. Therefore, in the simulation, the selected
parameters k1i are very small such that the synchronization
control performs perfectly. This also shows the effectiveness of
our control algorithm from another viewpoint. The adaptive
parameters change much faster when the parameters are selected
much larger. Based on the above considerations, The control
parameters are selected as k11 = k12 = 1, k13 = 3, ρ1 = ρ2 =

0.5, then we have κ1 = κ2 = κ3 = 0.5.
In the aforementioned settings, there are

two RBFNNs:
The first one, endowed with the input y1(t),

relies on the Gaussian radial basis functions
expressed by

ϑ1(y1(t)) = exp

[

−
1

2
(y1(t)+ 5)2

]

, ϑ2(y1(t)) = exp

[

−
1

2
(y1(t)+ 3)2

]

,

ϑ3(y1(t)) = exp

[

−
1

2
(y1(t)+ 1)2

]

, ϑ4(y1(t)) = exp

[

−
1

2
(y1(t)− 1)2

]

,

ϑ5(y1(t)) = exp

[

−
1

2
(y1(t)− 3)2

]

, ϑ6(y1(t)) = exp

[

−
1

2
(y1(t)− 5)2

]

,

respectively. The radial basis functions are shown
in Figure 2. The initial condition is taken as
θ1(0) = [1, 1, 1, 1, 1, 1]T ∈ R

6, uniformly distributed
on [−5, 5].

Another RBFNN utilizes y1(t) and y2(t) as its inputs.
Choose the Gaussian radial basis functions to be the same
as that of the previous RBFNN for every input. The
initial condition is fixed as θ2(0) = [1, 1, · · · , 1]T ∈

R
36.

On the basis of the above settings, the drive system of
FOPMSM is simulated as follows:

Firstly, when α = 0.98 and ud(t) = 0, the chaotic
phenomenon of the FOPMSM drive system is tested,
demonstrating that system (58) is not stable, as illustrated
in Figure 3.

Secondarily, we apply the proposed adaptive
RBFNN backstepping method in the control
procedure of chaotic FOPMSM, which is depicted
in Figure 4.

Finally, as a summary, it is evident that the
proposed controller makes an effective effort to
restrain the chaos of FOPMSM drive system, and
it embodies desirable performance during the
signal tracking.

5. CONCLUSION

This work provides a framework to study stabilization control of
chaotic FOPMSMs on the basis of extended Lyapunov stability
criterion. Our results as well as numerical simulations indicate
that when the proposed adaptive NN backstepping-based control
scheme is employed to control chaotic FOPMSMs, it indeed
facilitates to overcome the inherent drawback “explosion of
complexity.” It is demonstrated that chaos and oscillation
may appear apparently in the system when the system is
uncontrolled. Through the control proceeding, the variables
become regular, the chaos oscillation is suppressed, and the
task of signal tracking is perfectly accomplished. The problem
about how to further construct an adaptive NN backstepping
control scheme for generalized FOPMSMs with more input
uncertainties and non-linearities is open, which is one task of our
future works.
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FIGURE 3 | Dynamic behavior of FOPMSM.

FIGURE 4 | The simulation diagrams, (A) The signals y(t) and yd (t), (B) The tracking error, (C) The control input, (D) The parameter norms of RBFNN.
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