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In the present article, we have presented a theoretical study on the swimming of

migratory gyrotactic microorganisms in a non-Newtonian blood-based nanofluid via an

anisotropically narrowing artery. Sutterby fluid model is used in order to understand

the rheology of the blood as a non-Newtonian fluid model. This fluid pattern has the

ability to show Newtonian and non-Newtonian features. The mathematical formulation

is performed via continuity, temperature, motile microorganism, momentum, and

concentration equation. The series solutions are obtained using the perturbation scheme

up to the third-order approximation. The resulting solutions are discussed with the

help of graphs for all the leading parameters. The graphical results are also presented

for non-tapered, diverging, and converging artery. We further discuss the velocity,

temperature, swimming microorganism and temperature distribution. Moreover, the

variation of impedance and the impact of wall shear stress are discussed and presented

through the graphs.

Keywords: Sutterby fluid, wall shear stress, motile microorganism, anisotropically tapered artery, nanoparticles,

perturbation solutions

INTRODUCTION

Throughout the previous decade, nanofluids have gained essential importance due to their
extensive fields of applications especially in the biomedical sciences. Different theoretical and
experimental studies have been presented based on the formulation of nanofluids [1–4]. Nanofluids
are beneficial in improving the thermo-physical features i.e., thermal diffusivity, convection,
and conductivity of the governing fluid. In biomedical science, nanofluids are helpful for the
bacteriostatic activity, nano-drug delivery, labeling of cancerous tissues, magnetic resonance
imaging (MRI), localized therapy, cancer therapeutics, production of ferrofluids and magnetic
resonance imaging, etc. Further, they are also beneficial in nano-cryosurgery. Ferrofluids can be
utilized as contrast agents for MRI and are helpful in cancer detection. In this case, the ferrofluids
are made up of iron oxide nanoparticles and are recognized as superparamagnetic iron oxide
nanoparticles (SPIONs). Recently, the localized delivery of cancer medicine to the cancer patient
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at the affected part. With the help of the heat transfer
process, it can also be used for detergency. Because of these
significant applications, different authors examined the behavior
of nanofluids in different situations. Bég and Tripathi [5]
presented a Mathematica simulation of the bioengineering
model with the help of peristaltic configuration and nanofluids.
Tripathi and Bég [6] analyzed the drug delivery systems
using a peristaltic flow of nanofluids and presented the exact
mathematical solutions. Kothandapani and Prakash [7] explored
the behavior of a heat source on an MHD non-Newtonian
hyperbolic tangent nanofluid model in an asymmetric tapered
conduit. El-Dabe et al. [8] discussed the influence of slip in mild
stenosis tapered artery using peristaltic simulation. Akbar [9]
addressed the blood flow with thermal conductivity in a non-
tapered stenosis artery filled with blood. She further discussed
the shape properties of the nanoparticles. Abbas et al. [10]
presented a blood flow model using nanofluids and explained
the applications of drug delivery and magnetic field phenomena.
Akbar [11] studied the metal-based nanomaterials suspended in
the blood propagating via a tapered stenotic artery and explained
the applications of Nanomedicines. Bhatti et al. [12] discussed
the heat transfer properties and the applications of the blood
clot model with variable viscosity. They considered the two-
phase model with peristalsis. Bhatti et al. [13] also discussed
the behavior of titanium magneto-nanoparticles suspended in
Sisko fluid. Some more essential studies on the blood flow and
nanofluids can be found from Shit et al. [14], Riaz et al. [15],
Ijaz and Nadeem [16], and Abdelsalam and Bhatti [17] and in the
references therein.

The macroscopic movement of the fluid as a result of the
spatial variation of density over an area causes additive mobility
in the swimming microorganisms known as bioconvection.
The self-driven motile microorganisms tend to improve the
base fluid in a particular direction producing a bio-convective
stream. The moving microorganisms are divided into various
types i.e., chemotaxis or oxytactic, gyrotactic microorganisms,
and negative gravitaxis. The nanoparticles are not self-driven
as compared with motile microorganisms, and their motion
is due to the impact of the Brownian motion and the
thermophoresis effect. Bioconvection in the nanofluids is
anticipated to be feasible if the concentration of nanoparticles
is small and as a result it won’t be able to produce an
essential enhancement in the base fluid viscosity. Bioconvection
in the presence of nanoparticles was initially considered in
Kuznetsov and Avramenko [18, 19]. Later, Kuznetsov [20]
presented the suspension of nanoparticles with gyrotactic
microorganisms using the Buongiorno’s theory. Bég et al. [21]
investigated the bioconvection flow with nanofluids through
a porous medium numerically. Akbar [22] considered the
bioconvection flow through a symmetric channel filled with
nanoparticles and presented a bio nano-engineering model.
Bhatti et al. [23] also inspected the behavior of a varying
magnetic field and clot blood model using Jeffrey fluid
model with nanoparticles and microorganisms. Ahmed et al.
[24] considered the magnetized laminar flow of nanofluid
and gyrotactic microorganisms through a non-Darcy porous
medium. Chakraborty et al. [25] researched the extrinsic

magnetic influence and bioconvection flow with nanoparticles
with convective boundary conditions. Few important studies
on the motile gyrotactic microorganisms and nanofluids can be
found in Shahid et al. [26], Waqas et al. [27], Waqas et al. [28],
and Sohail et al. [29].

From the above survey, it is observed that blood flow
in the presence of nanoparticles has been discussed, but no
attention has been devoted to discussing the simulation of motile
gyrotactic microorganisms and nanoparticles suspended in the
blood propagating through an anisotropically tapered artery.
In most of the aforementioned studies, work has been done
with nanoparticles propagating through tapered artery, however,
no one considered the presence of gyrotactic microorganism
in blood. Mathematical modeling has been performed on the
basis of temperature, momentum, concentration and motile
microorganism equations followed by an approximation
in wavelength being long with and inertia-free flow. The
Homotopy perturbation scheme is employed to obtain the
series results. The governing equations are nonlinear and
coupled and the exact solutions are not possible, whereas some
other numerical/analytical methods [30–32] are beneficial to
solve these kinds of problems. All the outcomes are presented
graphically and plotted against the leading parameters. The
behavior of temperature, velocity, concentration, and motile
microorganism profile have been considered. Furthermore,
wall shear and variation of impedance are also investigated
and presented graphically. According to the results, it is
found that the flow behavior through converging, diverging
and non-tapered arteries are uniform throughout the
whole channel.

MATHEMATICAL MODELING

We consider a tube having finite length “L” filled with nanofluids
and motile gyrotactic microorganisms. We present here the
theoretical model of the swimming of nanoparticles with
motile gyrotactic microorganisms in non-Newtonian blood flow
propagating in an anisotropically tapered artery. A Sutterby
fluid model is used to represent the rheology of the blood. The
governing fluid is incompressible and having constant density.
Let (r, θ , z) be the cylinderical polar coordinates while z lies
along the axis, whereas r, θ are considered along the radial
and circumferential direction (see Figure 1). We consider the
temperature and concentration at the wall of the tube as T1 and
C1, respectively. The anisotropically tapered stenosed artery with
time-variant stenosis is geometrically defined as

R(z)

R0
=















τ (t)
[

ξz + R0 −
δ cos9
L0

(

11− 94
3L0

(z − d)

+ 32
L20
(z − d)2 − 32

L30
(z − d)3

)]

; d ≤ z ≤ 3
2L0,

τ (t) (1+ ξz) ; otherwise

(1)

where R(z) denotes the tapered arterial segment and the artery
radius with composite stenosis, t the time, L0 the stenosis length,
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FIGURE 1 | Flow structure.

δ is the stenosis height, R0 is the normal artery radius in the non-
stenotic zone, 9 is the tapering angle, and ξ = tan9 shows the
slope of the tapered vessel i.e.,

9 =







< 0, converging artery
= 0, non-tapered artery
> 0, diverging artery

(2)

The time-variant, τ (t), is defined as

τ (t) = 1+
α (1− cosωt)

eαωt
, (3)

where α is constant and ω is the radial frequency of the
forced oscillation.

The equations governing the flowmodel can then be written as

∇ · Ṽ = 0, (4)

ρf

(

∂Ṽ

∂t
+ Ṽ · ∇Ṽ

)

= −∇ · p+ ∇2 · Ṽ

+
[

ρfTe (1− C1) (T − T1)

−
(

ρp − ρf
)

Te (C − C1)

− (n− n1) 2
(

ρm − ρf
)]

g, (5)

where Ṽ = [U,V] are the components of velocity, T is the
nanofluid temperature, T1 is the reference temperature, p is

the pressure, 2 is the average volume of a microorganism,
n is the concentration of microorganisms, ρf is the density
basefluid at the reference temperature, ρp is the nanoparticles’
density, ρm is the density of microorganisms, g is the
gravity vector, Te is the base fluid volumetric coefficient of
thermal expansion, and µ the viscosity of the suspension (the
suspension contains the nanoparticles, microorganisms, and
base fluid).

The temperature equation reads as

(ρc)f

(

∂T

∂t
+ Ṽ · ∇T

)

= ∇ ·
(

kf∇T
)

(6)

+ (ρc)p

[

DB∇C · ∇T +
DT

T1
∇T · ∇T

]

,

where DT and DB, kf , (ρc)f and (ρc)p are the thermophoretic
diffusion and Brownian coefficient, thermal conductivity,
volumetric heat capacities for the nanofluid and
nanoparticles, respectively.

The concentration equation with no chemical reaction
reads as

(

∂C

∂t
+ Ṽ · ∇C

)

= DB∇
2C +

DT

T1
∇T · ∇T, (7)

The conservation of microorganisms’ reads as

(

∂n

∂t
+ Ṽ · ∇n

)

+
bWc

C0 − C1
∇ (n · ∇C) = −Dmo∇

2n, (8)

where b is the chemotaxis constant, Wc is the maximum cell
swimming speed, and Dmo is the diffusivity of microorganisms.

The stress tensor for Sutterby fluid reads as

S =
µ

2

[

sinh−1Bς

Bς

]m

A1. (9)

where A, B are material constants and

ς =

√

trac A2
1

2
, (10)

A1=grad V+
(

grad V
)T
.

The boundary conditions are given by

∂u

∂r
=

∂T

∂r
=

∂C

∂r
=

∂n

∂r
= 0, at r = 0

u = 0,T = T1,C = C1, n = n1, at r = R(z) (11)
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The non-dimensional quantities are defined as

r̂ =
r

R0
, ẑ =

z

R0
, v̂ =

L0

Uaδ
v, R̂ =

R

R0
, p̂ =

R20
UaL0µ

p,T

= (1− θ)T1 + T0,

C = (1− φ)C1 + C0, n = (1− χ) n1 + n0, δ̂ =
δ

R0
, L̂

=
L

L0
, ξ̂ =

L0ξ

R0
. (12)

whereUa is the averaged velocity over a section of the whole tube.
Substituting with Equation (12) into the governing

mathematical model assuming the case of mild stenosis
and creeping flow yields (after dropping the hat)

∂p

∂r
= 0, (13)

∂p

∂z
=

1

r

∂

∂r
[rSrz]+ Tgθ + Ngφ − Rbχ , (14)

1

r

∂

∂r

(

∂θ

∂r
r

)

+
∂θ

∂r

[

Tb
∂8

∂r
+ Tt

(

∂θ

∂r

)]

= 0, (15)

1

r

∂

∂r

(

∂φ

∂r
r

)

+
Tt

Tb

1

r

∂

∂r

(

∂θ

∂r
r

)

= 0, (16)

1

r

∂

∂r

(

∂χ

∂r
r

)

= Pl

[

∂χ

∂r

∂φ

∂r
+
(

2̄ + χ
) ∂2φ

∂r2

]

, (17)

and

Srz =

[

1− β

(

∂u

∂r

)2
]

(

∂u

∂r

)

, (18)

whereas for Newtonian fluid the results can be achieved by
taking β = 0.

The parameters used above are defined as

β =
mB2U2

a

6R20
,Tb =

DB (C0 − C1) (ρc)p

kf (ρc)f
,

Tt =
DB (T0 − T1) (ρc)p

kfT1(ρc)f
,

Ng = −
Teg

(

ρp − ρf
)

R20 (T0 − T1)

µUa
,

Pl =
bWc

Dmo
, 2̄ =

n1

n0 − n1
,

Tg =
TegρfR

2
0 (1− C1) (T0 − T1)

µUa
,

Rb =
(n− n1) 2

(

ρm − ρf
)

gR20
µUa

. (19)

In the above equation, Tg is the local temperature Grashof
number, Ng is the local particle Grashof number, Rb is the
bioconvection Rayleigh number, Tb is the Brownian motion

parameter, Tt is the thermophoresis parameter, Pl is the Peclet
number, 2̄ is a constant, and β is the fluid parameter.

The boundary conditions read.

u′ = 0, θ ′ = 0,φ′ = 0,χ ′ = 0, at r = 0,

u = 0, θ = 0,φ = 0,χ = 0, at r = R. (20)

SERIES SOLUTIONS

The solutions of Equations (13) to (17) can be obtained using a
Homotopy perturbation method. And thus, the Homotopy Ps for
Equations (13) to (17) are defined as

Ps (ū, ζ ) = (1− ζ ) [ℓ (ū) − ℓ (ū0)]

+ ζ

[

ℓ (ū) − 3β
∂2ū

∂r2

(

∂ ū

∂r

)2

−
β

r

(

∂ ū

∂r

)3

+ Tg θ̄ + Ng φ̄ − Rbχ̄ −
∂p

∂z

]

, (21)

Ps
(

θ̄ , ζ
)

= (1− ζ )
[

ℓ
(

θ̄
)

− ℓ
(

θ̄0
)]

+ ζ

[

ℓ
(

θ̄
)

+ Tb
∂φ̄

∂r

∂θ̄

∂r
+ Tt

(

∂θ̄

∂r

)2
]

, (22)

Ps
(

φ̄, ζ
)

= (1− ζ )
[

ℓ
(

φ̄
)

− ℓ
(

φ̄0
)]

+ ζ

[

ℓ
(

φ̄
)

+
Tt

Tb

1

r

∂

∂r

(

∂θ̄

∂r
r

)]

, (23)

Ps (χ̄ , ζ ) = (ζ − 1) [ℓ (χ̄0) − ℓ (χ̄)]

+ ζ

[

ℓ (χ̄) − Pl
∂

∂r

(

(

χ̄ + 2̄
) ∂φ̄

∂r

)]

, (24)

where ζ ∈ [0, 1]the embedding parameter.
The linear operator reads as

ℓ =
∂2

∂r2
+

1

r

∂

∂r
, (25)

and the initial guesses read as

w̄0 = θ̄0 = φ̄0 = χ̄0 =
r2 − R2

c2
, (26)

where c (6= 0) is a constant.
The above initial guess is chosen in such a way that the

following initial guess satisfied the linear operator as given in
Equation (25) as well as satisfy all the governing boundary
conditions as given in Equation (20).

Defining the following expansions

ū = ū0 + ζ ū1 + ζ 2ū2 + . . . , (27)

θ̄ = θ̄0 + ζ θ̄1 + ζ 2θ̄2 + . . . ., (28)

φ̄ = φ̄0 + ζ φ̄1 + ζ 2φ̄2 + . . . ., (29)

χ̄ = χ̄0 + ζ χ̄1 + ζ 2χ̄2 + . . . ., (30)

Frontiers in Physics | www.frontiersin.org 4 April 2020 | Volume 8 | Article 95

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Bhatti et al. Swimming of Motile Gyrotactic Microorganisms

FIGURE 2 | Velocity curves for multiple values of (A) β, (B) Tt, (C) Tb.

FIGURE 3 | Temperature curves for multiple values of Tb, Tt.

FIGURE 4 | Concentration curves for multiple values of Tb,Tt.

Using the series expansions in Equations (27–30) in the
Homotopy equations [see Equations (21) to (24)], we get the set
of linear differential equations, after comparing the powers of ζ .
By applying the property of Homotopy perturbation method, i.e.,
ζ → 1, we get

u = ū = ū0 + ū1 + ū2 + . . . , (31)

θ = θ̄ = θ̄0 + θ̄1 + θ̄2 + . . . ., (32)

φ = φ̄ = φ̄0 + φ̄1 + φ̄2 + . . . ., (33)

χ = χ̄ = χ̄0 + χ̄1 + χ̄2 + . . . ., (34)

The final results for all the governing equations are obtained as

u (r) = u0 + r2u1 + r4u2 + r5u3 + r6u4 + · · · , (35)

θ (r) = θ0 + r3θ1 + r4θ2 + r5θ3 + r6θ4 + · · · , (36)

φ (r) = φ0 + r3φ1 + r4φ2 + · · · , (37)

χ (r) = χ0 + r2χ1 + r4χ2 + r6χ4 + · · · . (38)

where un, θn,φn,χn, with n = 1, 2, 3 . . . are the constants which
can be found using the calculations through a computational
software Mathematica 10.3v.

The flux Q can be determined as

Q =

R
∫

0

2ru (r, z) dr. (39)

Q =
℘

f (z)
, (40)
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FIGURE 5 | Motile microorganism curves for multiple values of (A) Tt and Tb,

(B) Pl .

where ℘ = −
dp
dz
.

The impedance can be determined as

λ =
1

Q

∫

0

℘dz, (41)

The wall shear stress is calculated as.

Srz =
1

2
℘R

∣

∣

∣

∣

r=R

. (42)

DISCUSSION

We have discussed the graphical behavior of all the leading
parameters for the temperature, velocity, motile microorganism
and concentration profiles. The effects of wall shear stress and
the variation of impedance are also investigated to see the
behavior of blood during the swimming of microorganisms and
the movement of nanoparticles. With the aid of said perturbation
scheme, we obtained the third order approximation against each
profile. All the numerical computations have been performed
using computational software Mathematica. Figures 2–7 are
plotted for different profiles with all the emerging parameters
i.e., Peclet number Pl, height of stenosis δ, angular frequency ω,
fluid parameter β , local temperature Grashof number Tg , local
particle Grashof number Ng , bioconvection Rayleigh number Rb,
thermophoresis parameterTt , and BrownianmotionTb. All three
cases i.e., diverging, converging, and non-tapered artery, have
been plotted with the help of Equation (2).

Figure 2 presents the behavior of the velocity profile against
the fluid parameter β , thermophoresis parameter Tt , and

FIGURE 6 | Wall shear stress for multiple values of (A) Tt and Tb, (B) Tg and Ng, (C) δ and ω, (D) Ry .
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FIGURE 7 | Impedance profile for various values of (A) β; Black line: β = 0,

Red line: β = 1. (B) Ry ; Black line: Ry = 0, Red line: Ry = 12. (C) Tt; Black

line: Tt = 0.2, Red line: Tt = 2. (D) Tb; Black line: Tb = 0.1, Red line: Tb = 1.

Brownian motion parameter Tb. In order to understand the
behavior of hemodynamics in a specific artery or lesion, it is
necessary to have a knowledge of blood velocity within the flow
pattern. The hemodynamic velocity in the artery is not the same
at all the points [33]. We can see from Figure 2A that the
distribution of velocity at the center of the channel is maximum
while it attains a minimum value when it gets close to the wall.
Further, we can notice that in the case of non-Newtonian fluid,
β = 4, the velocity of the blood diminishes. However, we can
see a turning point between r ∈ (0.6, 0.8) the artery where the
velocity turns opposite as compared with the core of the channel
and decreases as it gets closer to the wall of the artery. The
significant change in the velocity gradient among different points
in the artery exists because of the friction forces that play an
essential role among the fluid at the walls and the flowing fluid.
The friction forces occur because of the viscosity features. The
viscosity represents the resistance to the flow, and it attains a
minimum value if the trivial force on the fluid layer generates a
velocity higher than that layer associated with the adjoining layer,
and the converse is true [34, 35]. Figure 2B shows the behavior
of the thermophoresis parameter Tt on the velocity profile. It is
noticed from this figure that by enhancing the thermophoresis
parameter, the nanoparticles start moving quickly and tends to
repel from the hotter to a colder area. But it doesn’t affect the
velocity of the fluid. However, it causes resistance in the velocity
of the fluid. Brownian motion plays a simultaneous role with
thermophoresis. However, both parameters similarly affect the
velocity profile (see Figure 2C). Brownian motion occurs due to
the collision of suspended particles in random direction in the
working fluid. Higher values of Brownian motion reveals that the
particles collide very quickly which causes the resistance in the
motion of the base fluid.

Figures 3, 4 are plotted for temperature and concentration
distributions for multiple values of Tt and Tb. In Figure 3, we
can see that the temperature profile rises with the increment
in Tt and Tb. The enhancement of both parameters tends
to repel the particles quickly. Therefore, the particles start
moving from one region to the other area (i.e., hotter to colder
part). Both parameters produce a force i.e., thermophoretic
force and random movement of suspended particles which
resist the fluid motion and as result the temperature profile
increases. Figure 4 shows that the concentration profile that
is shown to be inversely proportional to the temperature
profile. By increasing both parameters, the concentration
profile tends to diminish remarkably. Figure 5 is plotted
to judge the variation of motile microorganisms with Pl,
Tt , and Tb. It can be noticed from Figure 5A that the
motile microorganisms ’distribution rises due to the strong
influence of the Brownian motion parameter. However, a
converse behavior has been observed for the thermophoresis
parameter. In Figure 5B, we can see that the Peclet number
produces resistance in the motile microorganism profile.
By increasing Peclet number, it is noticed that advection
propagation transport in more dominant as compared
with diffusion propagation rate, which suppress the motile
microorganism profile.
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Figure 6 shows that the behavior of wall shear stress, that has
been plotted using Equation (42), with δ, ω, Tg , Ng , Rb, Tt , and
Tb. The wall shear stress is an essential part of the blood flow,
and it can be described as the fluid flowing over the surface of
the conduit artery. From Equation (42) we can see that wall shear
stress is directly proportional to the velocity gradient close to the
wall of the artery. That shows how quickly the velocity of the fluid
is when propagating from one point on the artery wall to another
point adjacent to the point in the perpendicular direction of the
wall. However, low wall shear stress belongs to low velocities,
accordingly, the higher residence time of the fluid closer to the
wall. And as a result, this velocity gradient close to the wall
is known as the wall shear rate. We can see from Figure 6A

that wall shear stress is reduced due to the strong influence of
the thermophoresis parameter, however, an inverse behavior has
been noticed with a variation of Tb. In Figure 6B, we can see
that local temperature Grashof number and local particle Grashof
number suppress the wall shear stress remarkably. However,
we noticed that the height of the clot enhances the wall shear
stress, whereas the angular frequency tends to diminish the wall
shear stress as shown in Figure 6C. In Figure 6D, we found
that bioconvection Rayleigh number doesn’t affect the wall shear
stress significantly and the effect is minimal.

Figure 7 is schemed to judge the variation of impedance
distribution for multiple values of β , Rb, Tt, and Tb. Figure 7A is
sketched for impedance vs. height of the clot for various values of
the fluid parameter. We can see from this figure that impedance
profile rises with an increase in the height of the clot, whereas
it decreases simultaneously due to an enhancement in the fluid
parameter. In Figure 7B, the effect of bioconvection Rayleigh
number is shown incrementally decreasing. Further, it is noticed
that an increase in the angular frequency ω implies to a decrease
in the impedance profile. Also, it is seen in the whole domain that
the thermophoresis parameter tends to suppress the impedance
profile, as shown in Figure 7C. In Figure 7D, the impedance
profile rises due to the strong influence of the Brownian motion
parameter. However, it is seen that the impedance profile tends
to reduce with an increment in time.

CONCLUDING REMARKS

A theoretical study on the swimming of nanoparticles
with motile gyrotactic microorganisms in non-Newtonian

blood flow propagating in an anisotropically tapered artery
has been presented. Sutterby fluid model is presented to
understand the rheology of the blood. The mathematical
modeling is formulated using continuity, temperature,
motile microorganism, momentum and concentration
equation. The Homotopy perturbation method is applied
to obtain the series solutions. All the graphical results
are presented for diverging, converging, and non-tapered
artery. The main results from the present study has been
summarized below:

i. The non-Newtonian effects tends to resist in the
fluid motion.

ii. Thermophoresis and Brownian motion parameter oppose
the fluid motion.

iii. Temperature profile increases as the artery changes
from converging to diverging shape with an
increase in the thermophoresis parameter and
Brownian motion.

iv. The concentration profile tends to diminish due
to the strong impact of Brownian motion and
thermophoresis parameter.

v. The Peclet number significantly opposes the motile
microorganism profile.

vi. Thermal Grashof number opposes the wall shear stress
profile and similar behavior is observed due to an increment
in nanoparticle Grashof number.

vii. The shear stress at the wall is reduced due to an
increment in the height of stenosis and the bioconvection
Rayleigh number.

viii. The impedance profile decreases due to with an
increase in bioconvection Rayleigh number, fluid
parameter, and thermophoresis parameter, whereas
it increases with an increase in the Brownian
motion parameter.
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