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This review presents some of the challenges in constructing models of atomic nuclei

starting from theoretical descriptions of the strong interaction between nucleons. The

focus is on statistical computing and methods for analyzing the link between bulk

properties of atomic nuclei, such as radii and binding energies, and the underlying

microscopic description of the nuclear interaction. The importance of careful model

calibration and uncertainty quantification of theoretical predictions is highlighted.
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1. INTRODUCTION

The ab initio approach to describe atomic nuclei and nuclear matter is grounded in a theoretical
description of the interaction between the constituent protons and neutrons. The long-term goal
with this course of action is to construct models to describe and analyze the properties of nuclear
systems with maximum predictive power. It is of course well-known that the elementary particles
of the strongly interacting sector of the Standard Model are quarks and gluons, not protons and
neutrons. However, since the relevant momentum scales of typical nuclear structure phenomena
are low enough to not resolve the internal degrees of freedoms of nucleons, it is reasonable
to model the nucleus as a collection of strongly interacting and point-like nucleons. This idea
has inspired significant efforts aimed at developing algorithms and mathematical approaches
for solving the many-nucleon Schrödinger equation in a bottom-up fashion and with as few
uncontrolled approximations as possible (see e.g., references [1–10]), as well as a multitude of
theoretical descriptions of the interaction between nucleons, at various levels of phenomenology
(see e.g., references [11, 12], and references [13–15]) for comprehensive reviews on (chiral) effective
field theory (EFT) methods. Reference [16] also offers a historical account of various approaches to
understand the nuclear interaction.

Currently, ab initiomodeling of atomic nuclei faces two main challenges:

• We have limited knowledge about the details of the interaction between nucleons, which in turn
limits our ability to predict nuclear properties.

• Given a microscopic description of the interaction between nucleons inside a nucleus, a
quantum-mechanical solution of the nuclear many-body problem is exacerbated by the curse
of dimensionality.

There is however continuous progress on both frontiers, and attempts at quantifying
the uncertainty of model predictions are beginning to emerge in the community. Rapid
algorithmic advances in combination with a dramatic increase in available computational
resources make it possible to employ several complementary mathematical methods for
solving the nuclear Schrödinger equation. We can nowadays generate numerical representations
of microscopic many-nucleon wavefunctions, for selected medium-mass and heavy-mass
nuclei, with a rather impressive precision. Although several observables remain beyond the
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reach of state-of-the-art models, e.g., most properties associated
with highly collective states, we can still describe certain classes
of observables rather well, such as total ground-state binding
energies and radii, and sometimes low-energy excitation spectra.
We are thus capable of analyzing experimentally relevant nuclei
directly in terms of a quantum mechanical description of the
interaction between its constituent nucleons. Indeed, the list of,
sometimes glaring, discrepancies between theory and experiment
furnish some of the most interesting nuclear physics questions at
the moment (see e.g., references [17–23]). Many of these efforts
are aimed at understanding the nuclear binding mechanism, the
location of the neutron dripline, the existence of shell-closures
and magic numbers in exotic systems, and the emergence of
nuclear saturation.

State-of-the-art theoretical analyses of experimental data
indicate a large and non-negligible systematic uncertainty in the
description of bulk nuclear observables (see e.g., reference [24]).
Given the high-precision of modern many-body methods, much
of this uncertainty can be traced to the description of the
interaction potential. Although there exists ab initio models
that describe nuclei rather well, albeit in a limited domain,
it is less clear why other models sometimes fail. Indeed,
the NNLOsat interaction potential [25] reproduces several key
experimental binding energies and charge radii for nuclei up
to mass A ∼ 50 [23, 26–28], while the so-called 1.8/2.0
(EM) interaction potential [29, 30] reproduces binding energies
and low-energy spectra up to mass A ∼ 100 [26, 31–35]
while radii are underestimated. The origin of the differences
between these potentials is unknown. It is of course the role of
nuclear theory to close the gap between theory and experiment
by developing and refining the theoretical underpinnings of
the model. But given the complex nature of atomic nuclei,
there is significant value in trying to quantify, or estimate,
the detailed structure of the observed theoretical uncertainty.
This might provide important clues about where we should
focus our efforts. There exists well-defined statistical inference
methods that can provide additional guidance, and several
ongoing projects are currently focused on applying statistical
computing methods in the field of ab initio modeling. The
topic of uncertainty quantification in nuclear physics has
been discussed at a series of workshops on Information and
Statistics in Nuclear Experiment and Theory (ISNET). Recent
developments in this field are documented in the associated
focus issue published in Journal of Physics G [36]. A second
focus issue has just been announced, and the first few papers are
already published.

In sections 2 and 3 of this paper I will review a selection
of recent results and often applied methods for calibrating
ab initio models. In sections 4 and 5 I will discuss some
of the recently emerging strategies for making progress using
statistical computing and Bayesian inference methods. The
aim is to provide an overview of selected accomplishments
in the field of statistical inference and statistical computing
with ab initio models of atomic nuclei. Hopefully, this
paper can serve as a brief introduction to practitioners
who wish to learn about ongoing developments and possible
future directions.

As a final remark, in this paper I will try to consistently
use the word model when referring to any current method
for theoretically describing the properties of atomic nuclei,
including descriptions that claim to be building on more
fundamental underpinnings, such as EFT. One can certainly
make a finer distinction between models, EFTs, and theories. As
outlined in reference [37]; theories provide a unified framework,
categorization, and the joint language used for discussions; EFTs
capture physics at a given momentum scale; and models can be
used to study aspects of a theory, increase understanding, and
provide intuition.

2. AB INITIO MODELS OF NUCLEAR
MANY-BODY SYSTEMS

An ab initio model is here defined as a description that is based
on a state |9〉 that solve the many-nucleon Schrödinger equation

[T̂ + V̂(Eα)]|9〉 = E|9〉. (1)

In this schematic representation, T̂ is the total kinetic energy
operator for the A-nucleon system, V̂(Eα) is the potential energy
operator for the interaction between the nucleons, and E is
the total energy of the system in the state represented by |9〉.
The potential operator term depends on a set of parameters
Eα that governs the strengths of the various interaction pieces
in the potential. In the context of EFT, these parameters are
often referred to as low-energy constants (LECs). Given a
particular expression for the potential V̂ , with numerical values
for the parameter vector Eα, and a mathematical method to solve
Equation (1) for e.g., the state |9〉 with lowest energy, it is
in principle possible to quantitatively compute the expectation
value for any observable Ô with respect to this state, e.g., its
charge radius. Of course the trustworthiness of the result and its
level of agreement with experimental data can vary dramatically
between different models, i.e., combinations of potentials and
many-body methods.

I will denote an ab initio model with M(Eα, Ex). It is defined as
the combination of a definite expression for the potential V̂(Eα),
and a method for solving the Schrödinger equation. The vector
Ex is a set of control inputs that specify all necessary settings,
such as nucleon numbers, which observable to compute, values
of the fundamental physical constants, and algorithmic settings
for the mathematical method used for solving Equation (1). Once
a set of numerical values for Eα has been determined, a subset of
the control inputs Ex of the model can be varied to make model
predictions, preferably at some physical setting, for e.g., exotic
nuclei where we cannot easily make measurements. Provided
that the form of the potential operator V̂ and relevant physical
constants remain the same, and the model parameters Eα were
calibrated carefully, it is of course possible to transfer the vector Eα
between ab initio models based on different methods for solving
the many-nucleon Schrödinger equation. This is also in line with
a physical interpretation of the parameters Eα that elevate them
to a status beyond being simple tunable parameters inherent to
a specific model with the sole purpose of achieving a good fit to
calibration data. This will be discussed further in section 3.
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One of the most exciting developments in nuclear theory
is that we nowadays have access to a range of methods for
solving Equation (1) with very high numerical precision for
selected isotopes and observables. This gives us the opportunity
to compare model predictions with experimental data to
learn more about the elusive structure of the interaction
between nucleons. However, such an analyses require careful
statistical interpretation of the theoretical results. In particular a
sensible estimate of the uncertainty associated with a theoretical
prediction. Indeed, only with reliable theoretical errors is it
possible to infer the significance of a disagreement between
experiment and theory, which in turn may hint at new physics.

2.1. Chiral Potentials and the Strong
Interaction Between Nucleons
On a fundamental level, the atomic nucleus is a quantum
mechanical and self-bound system of interacting nucleons. In
turn these particles are composed of three quarks whose mutual
interactions are described well by the Standard Model of particle
physics. As such, starting from the Standard Model it should
be possible to account for all observed phenomena also in
atomic nuclei, besides possible signals of beyond Standard Model
physics. However, to theoretically understand the emergence
of nuclei from the Standard Model is an open problem, and
linking the quantitative predictions of atomic nuclei to the
dynamics of quarks and gluons is a central challenge in low-
energy nuclear theory. Although, viewing the atomic nucleus
as a (color-singlet) composite multi-quark system is not the
most economical choice. Indeed, the strong interaction, which
is the most important component for nuclear binding and
well-described by quantum chromodynamics (QCD), is non-
perturbative in the low-energy region inhabited by atomic nuclei.
Non-perturbative Monte Carlo sampling of the quantum fields
of QCD amounts to a computational problem of tremendous
proportions. This strategy, referred to as lattice QCD, is
expected to require at least exascale resources for a realistic
analysis of even the lightest multi-nucleon systems. Without
any unforeseen disruptive technology, this approach will not
provide an operational method for routine analyses of nuclei.
For the cases where numerically converged results can be
obtained, lattice QCD offers a unique computational laboratory
for theoretical studies of QCD in a low-energy setting (see e.g.,
references [38, 39]).

The description of nuclei should nevertheless build on
QCD, or the Standard Model in general. A turning point in
the development of QCD-based descriptions of the nuclear
interaction came when EFTs of QCD [40] arrived also to many-
nucleon physics [41]. An EFT formulates the dynamics between
low-energy degrees of freedom, e.g., nucleons and pions, in
harmony with some assumed symmetries of an underlying
theory, e.g., QCD, and any high-energy dynamics, e.g., quark-
gluon interactions, are integrated out of the theory. The resulting
chiral effective Lagrangian models the low-energy interactions
between two or more nucleons in terms of pion exchanges
between nucleons and the high-energy dynamics is incorporated
as zero-ranged contact interactions. This approach introduces

several model parameters referred to as low energy constants
(LECs). They were denoted with Eα above, and play a central
role during the model calibration discussed below. The notion
of high- and low-energy scales in EFT requires the presence of
at least two scales in the physical system under study. An EFT
formally exploits this scale separation to expand observables in
powers of the low-energy (soft) scale over the high-energy (hard)
scale, and in chiral EFT the resulting ratio is often denoted

Q = max[mπ , k]

3b
(2)

where, in the case of chiral EFT, the soft scales are mπ and k, the
pion mass and a typical external momentum scale, respectively.
The hard scale is denoted 3b and is set by the e.g., the nucleon
massMN . Depending on the system under study, one can always
try to exploit existing scale separations to construct other kinds
of EFTs in nuclear physics, e.g., pion-less EFT [42], vibrational
EFT [43], or chiral perturbation theory (the prototypical EFT of
QCD) [44]. In the following, I will only discuss results from ab
initiomodels based on chiral EFT, i.e., a pion-full EFT, but many
of the methods can be generally applied.

In chiral EFT, the nuclear interaction potential V is analyzed
as an order-by-order expansion in terms of Qν and organized
following the principles of an underlying power counting (PC).
Terms at a higher chiral expansion-orders ν should be less
important than terms at a lower orders. Potentials expanded to
higher orders are expected to describe data better. Higher chiral
orders contain more involved pion exchanges and polynomial
nucleon-contacts of increasing exponential dimension, and
therefore more undetermined model parameters Eα to handle
during the calibration stage. To provide some detail about the
chiral potentials: the leading-order (LO) typically consists of the
familiar one-pion exchange interaction plus a nucleonic contact-
potential. The structure of the contact potential, and the exact
treatment of sub-leading orders vary depending on the PC.
Still, typical chiral potentials include at most contributions up
to a handful of chiral orders, e.g., next-to-next-leading order
(NNLO) and next-to-next-to-next-to-leading order (N3LO), and
the total number of LECs, i.e., undetermined model parameters,
range between ∼10 and 20, sometimes a few more, at such
chiral orders. Several important contributions to the two-, three-,
and four-nucleon interactions at higher orders in the chiral
expansion have also been worked out [45–50]. At N5LO, a new
set of 26 contact LECs appear, bringing the total number of
contacts to 50. Some of the unique advantages of chiral EFT
descriptions of the nuclear interaction are the natural emergence
of two-, three-, and many-nucleon interactions [51–55], the
consistent formulation of quantum currents, e.g., with respect to
electroweak operators [56–62], and a clear connection with the
pion-nucleon Lagrangian which makes it possible to link nuclei
with low-energy pion-nucleon scattering processes [63]. For a
detailed account of chiral EFT potentials (see references [13–15]).

To ensure steady progress toward a realistic ab initio model
for atomic nuclei, we need to critically examine and evaluate the
quality and predictive power of different theoretical approaches
and model predictions. To this end it is crucial to equip all
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quantitative theoretical results with uncertainties, and this is
where another advantageous aspect of EFT comes into play. It
promises to deliver a handle on the systematic uncertainty of a
theoretical prediction. Indeed, on a high level the EFT expansion
for an observableO can be written

O = O0

∞
∑

ν=0

cνQ
ν , (3)

where O0 is the first term in the above expansion, and cν are
dimensionless expansion coefficients. Here, and in the following,
the LO result (O0) was pulled out in front of the sum to set
the overall scale. One could equally well use the experimental
value forO or the highest-order calculation to set the scale of the
observable expansion. If we are dealing with an EFT, one should
expect the expansion coefficients to be of natural size such that
predictions at successive chiral orders are smaller by a factor of
Q. See also references [64, 65] for discussions on how to assess
the convergence of data. In an actual calculation, the order-by-
order description of O is truncated at some finite order k, which
induces a truncation error δk in the prediction. The underlying
EFT description then, in principle, allows us to determine the
formal structure of the truncation error

δk = O0

∞
∑

ν=k+1

cνQ
ν . (4)

This type of handle on the theoretical uncertainty in
a prediction is not present in purely phenomenological
descriptions of the nuclear interaction, such as the Argonne
V18 potential [11] or the CD-Bonn potential [12]. Despite all
of the promised advantages of chiral EFT, it should be pointed
out that much work remains to be done regarding the analysis
and theoretical underpinnings of chiral EFT, in particular the
formulation of a PC that, arguably, fulfills the field theoretic
requirements for an EFT of QCD (see e.g., references [66–
73]), for various views on this topic. Indeed, one cannot yet
confidently claim that the uncertainty estimates in ab initio
predictions of nuclear observables based on proposed chiral
EFT interactions are linked to missing physics at the level of
the effective Lagrangian. The details of the PC, regularization
approach, and chosen maximum chiral order k in Equation (3),
are some of many possible choices that give rise to the rich
landscape of different chiral interactions in nuclear theory.
Although there is a flurry of activity, and far from clear which is
the best way to proceed, there is tremendous overarching value
to organize the model analysis according to the fundamental
ideas and expectations of EFT, most importantly the promise of
order-by-order improvement.

3. MODEL CALIBRATION

The goal of model calibration is to learn about the parameter of
the model using a pool of calibration data. This can mean many
different things depending on the situation, and in this section I
will discuss a few representative model calibration examples from
ab initio nuclear theory.

Assume that we have a model M(Eα; Ex) that consists of
a method for solving the Schrödinger equation and some
theoretical description of the nuclear interaction, e.g., a particular
interaction potential from chiral EFT, and we do not know the
permissible values for Eα. The vector Eα = [α1,α2, . . . ,αN] denotes
the N physically relevant and adjustable calibration parameters
of model M, and the vector Ex denotes the set of control inputs.
The adjustable parameters of interest will typically correspond
to the LECs of the nuclear interaction potential, and the vector
Ex will contain e.g., proton- and neutron-numbers, observable
type, or some kinematical setting. In principle the model might
contain additional adjustable parameters that for some reasons
can be considered as constants. For instance, we typically do
not consider the pion mass as a calibration parameter, although
the variation of such fundamental properties can also play an
important role (see e.g., references [74, 75]). The choice of
many-body method will depend on which class of observables
is targeted, either during prediction or calibration. For instance,
coupled-cluster theory will perform very well for nuclei in the
vicinity of closed shells and Faddeev integration will be able
to access the positive energy spectrum of the three-nucleon
Hamiltonian. Throughout, I will implicitly assume that themodel
is realized only on a computer, i.e., M is defined through some
computer code, and there is no stochastic element present in the
output. This means that each time themodel is evaluated with the
same input and settings, we will basically get the same result.

To calibrate the parameters, suppose that we have a set
of n experimental observations compiled in a data vector
D = [z1, z2, . . . , zn]. They correspond to particular settings
Ex1, Ex2, . . . , Exn of the control variables, to produce model outputs
for e.g., ground-state energies for light nuclei or scattering cross
sections at selected scattering momenta. We can link the data
points to the model outputs via the following relation

zi = M(Eα, Exi)+ δ(Exi)+ εi. (5)

This expression relates the reality of measurement with our
model, and includes a so-called model discrepancy term δ, that
depends on the control variable Exi. The measurement error is
denoted with εi. In cases where the measurement is accompanied
with zero uncertainty, something that is highly unlikely of course,
the model discrepancy term represents the entire difference
between the model and reality. The theoretical discrepancy δ is
not physics per se, but should rather be interpreted as a random
variable of statistical origin, informed via domain knowledge.

The model discrepancy term can be partitioned into at least
three terms

δ(Exi) = δinteraction(Exi)+ δmany−body(Exi)+ δnumerical(Exi), (6)

and they represent the neglected or missing physics in the
theoretical description of the nuclear interaction, neglected or
missing many-body correlations in the mathematical solution of
the many-body Schrödinger equation, and any numerical errors
arising due to algorithmic approximations in the implementation
of the computer model, respectively. We are currently most
interested in understanding δinteraction in situations where we,
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to a good approximation, can neglect δmany−body and δnumerical.
Thus, in most of the literature, the dominant part of the
model discrepancy originates from the chiral EFT description
of the nuclear interaction. It should be pointed out that the
discrepancy term of the many-body method can be quite large
for many types of observables. However, ab initio methods
are often applied wisely, and there exists plenty of domain
knowledge regarding which many-body methods that are best
suited for different kinds of observables. Yet, it is not easy to
set bounds on this discrepancy a priori. Comparison between
several complementary ab initio models provides important
validation [76–78]. Although challenging, it would be of great
value to quantify the many-body discrepancy more carefully.
Finally, the last term in Equation (6) is currently not the
dominant part of the discrepancy, provided that the computer
code has been benchmarked.

Two related questions immediately arise: (i) what is the impact
of the discrepancy term δ(Exi) on the inference about the model
parameters Eα? and (ii) what happens if we neglect all sources of
model discrepancy during model calibration?

Let us consider the second question, since it is easier and also
sheds light on the first one. Ignoring δ(Exi) in Equation (5) leaves
us with the following expression

zi = M(Eα, Exi)+ εi. (7)

This is the conventional starting point in nuclear model
calibration. If one also assumes that the measurement errors εi
have finite variance, then the principle of maximum entropy
dictates that the likelihood of the data is normally distributed.
For independent errors, this leads to the canonical expression for
the likelihood

P(D|Eα,M, σ ) =
n

∏

i=1

1√
2πσi

exp

{

− (zi −M(Eα, Exi))2
2σ 2

i

}

=
[

n
∏

i=1

1√
2πσi

]

exp







−1

2

n
∑

j=1

(zj −M(Eα, xj))2
σ 2
j







=
[

n
∏

i=1

1√
2πσi

]

exp

{

−1

2
χ2(Eα)

}

.

(8)

Here, the notation P(X|Y) denotes the probability density
function (pdf) of X conditioned on Y . The structure of the
likelihood remains the same for correlated measurement errors,
although one must employ the full covariance matrix instead
of only the diagonal terms σ 2

j to represent the variance of the

data. Model calibration in ab initio nuclear theory is typically
formulated as amaximum likelihood problem. This boils down to
finding the optimal, or best-fitting, parameters Eα⋆ that minimize
the exponent in Equation (8). We are thus facing a mathematical
optimization (minimization) problem

Eα⋆ = arg min
Eα∈�

, χ2(Eα), (9)

of finding the point that fulfills χ2(Eα⋆) ≤ χ2(Eα) for all Eα ∈ �,
where � represents the parameter domain. In general, this is an
intractable problem unless we have detailed information about
Eα or that the parameter domain is discrete and contains a finite
number of points. In reality, we are trying to find localminimizers
to χ2(Eα), i.e., points Eα⋆ for which χ2(Eα⋆) ≤ χ2(Eα) for all Eα ∈ �

close to Eα⋆.
For ab initio models, optimization of the likelihood function

typically proceeds in several steps [11, 12, 79–82]. First, the
parameters, i.e., the LECs in chiral EFT, are calibrated such
that the model optimally reproduces nucleon-nucleon scattering
phase-shifts from published partial-wave analyses [83, 84]. This
typically yield model parameters confined to some narrow
range of values. Although each scattering phase-shift only
depends on a limited subset of the entire vector of model
parameters Eα, this stage still benefits from using mathematical
optimization algorithms, such as the derivate-free algorithm
called pounders [85, 86]. In a next step, the results from the
phase-shift optimization serves as the starting point for a second
round of parameter optimization where all model parameters
are varied to best reproduce thousands of nucleon-nucleon
scattering cross sections up to scattering energies in the vicinity
of the pion-production threshold.

Minimizing the χ2 in Equation (8) for nucleon-nucleon
interaction potentials with respect to nucleon-nucleon scattering
data1 has been the workhorse of model calibration in nuclear
theory for decades2. Since long, the figure of merit for a nuclear
interaction potential has been the χ2-per-datum value. If this
value is close to unity for some particular parameterization
Eα⋆, then the corresponding potential is dubbed to be “high-
precision.” This is beginning to change. Only for models M,
where the model-discrepancy is in fact negligible this approach
can be justified. Otherwise, chasing a low χ2 leads down the
path of significant over-fitting, with unreliable predictions as a
consequence. For the calculation of nucleon-nucleon scattering
phase shifts and cross sections it is valid to ignore δmany−body and
δnumerical since the corresponding equations are can be solved
more or less numerically exactly. However, since we clearly
cannot claim to have a zero-valued δinteraction term, the χ2-per-
datum with respect to nucleon-nucleon scattering data is not the
optimal measure to guide future efforts in nuclear theory. Before
and during the development of ab initiomany-bodymethods and
EFT principles, when it was very unclear how to understand the
concept of model discrepancy in nuclear theory, it was certainly
more warranted to benchmark nuclear potentials based solely on
a straightforward χ2 value.

State-of-the-art interaction potentials also contain three-
nucleon force terms. Although some of the parameters in
chiral EFT are shared between two- and three-nucleon terms,
there exists a subset of parameters inherent only to the three-
nucleon interaction. Such parameters must be determined using
observables from A > 2 systems. Arguably, all parameters

1A recent compilation of scattering data that is typically employed for this is

provided in reference [84].
2The χ2 function employed for nucleon-nucleon scattering data is slightly more

involved to encompass partially correlated measurements (see e.g., [87]).
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of a chiral potential should be optimized simultaneously to
a joint dataset D. The easiest approach is to employ also
e.g., the binding energies and charge radii of 3,4He and 3H.
Unfortunately, there exists a universal correlation between the
binding energies of 3H and 4He, the so-called Tjon line [88].
Also the radii and binding energies exhibit a strong correlation.
Altogether, this reduces the information content of this data.
Fortunately, it was demonstrated in reference [89] that the beta
decay of 3H can add valuable, although limited [90], information
about the parameters in the three-nucleon interaction, and
this has been employed in several works, as indicated by the
long list of citations of reference [89]. Recently, selected three-
nucleon scattering observables have been added to the pool of
calibration data [91, 92], however not routinely since it is still
computationally quite costly to evaluate the ab initio models for
such observables. There are indications that it is necessary to
include also data from nuclei heavier than 4He to learn about the
parameters in ab initiomodels. This is discussed in section 3.2.

Ignoring the δinteraction discrepancy terms during model
calibration can have serious consequences. Most importantly,
this reduces the LECs to tuning parameters without any physical
meaning. Indeed, in the strive to replicate the data at any cost,
the numerical values can be driven far away from the true
values of the model. At some point, continued tuning of the
parameters induces over-fitting and the model will pick up on the
noise in the data. Naturally, this leads to poor predictive power.
With increasing amounts of data, the optimization process will
converge with increasing certainty to false values for Eα. A
pedagogical introduction to the statistics of model discrepancies
and a physics example is provided in reference [93].

A total model discrepancy, according to Equation (6), was
included in ab initio model calibration for the first time in
reference [80]. The parameters in a set of chiral interactions at
LO, NLO, and NNLO were optimized using nucleon-nucleon,
and pion-nucleon scattering data. The terms in the three-nucleon
interaction were simultaneously informed using bound-state
observables from A = 2, 3 nuclei. The details of the analysis and
results can be found in the original paper. The discrepancy terms
were interpreted as uncorrelated errors and added in quadrature
with the data uncertainties, leading to a slight modification of the
corresponding χ2 function

χ2 =
n

∑

j=1

(zj −M(Eα, xj))2
σ 2
data, J

+ σ 2
interaction,j + σ 2

many−body,j
+ σ 2

numerical,j

.

(10)
The interaction discrepancy was constructed from the EFT

assumption that the external momenta flowing through the
interaction diagrams scale as some power corresponding to
the truncation of the chiral expansion, in accordance with
Equation (4). The intrinsic scale of this error was solved for self-
consistently by requiring that the χ2-per-datum should approach
unity providing that the model error is correctly estimated. This
implicitly assumes a correct estimate of the number of statistical
degrees of freedom. Something that cannot be easily estimated
for non-linear χ2 functions [94].

To summarize, although the inclusion of model discrepancies
is preferred, it is not without problems. To blindly include a term
δ(Exi) to capture model discrepancies in the process of model
calibration can lead to statistical confounding between Eα and a
general discrepancy function δ(·) [93]. This means that the model
parameters and the discrepancy term are not identifiable and we
only recover a some joint pdf for the two components. Indeed,
for any Eα there is a δ(·) given by the difference between model
and reality. To make progress requires us to specify some a priori
ranges for Eα and/or δ(·). Or in the language of Bayesian inference,
we need to specify the prior pdf for the model parameters and the
theory uncertainties. This is partly related to approaches where
one augments the χ2 function with a penalty term to constrain
the values of the model parameters (see e.g., reference [95]). For
EFT descriptions of the nuclear interaction one can argue that
the LECs should maintain values of order unity, if expressed
in units of the breakdown scale, and the discrepancy could
follow the pattern of Equation (4). To adequately represent the
discrepancy term in nuclear models is ongoing research, and
it appears advantageous to reformulate model calibration as a
Bayesian inference problem, see section 4.

3.1. Hessian Error Analysis
At the optimum parameter point Eα⋆, a Taylor expansion of the χ2

function to second order gives

χ2(Eα⋆ + 1Eα) ≈ χ2(Eα⋆)+
1

2
(1Eα)TH(1Eα),

where Hij =
∂2χ2(Eα)
∂αi∂αj

∣

∣

∣

∣

Eα=Eα⋆

,
(11)

where H denotes a Hessian matrix, the inverse of which
is proportional to the covariance matrix for the model
parameters [96]. Contracting the parameter-Jacobian of any
model prediction with this covariance matrix yields the standard
error propagation result of the parameter uncertainties. For
the conventional χ2 function, the parameter covariances reflect
the impact of the experimental uncertainties on the precision
of the optimum and predicted observables. Sometimes, this is
referred to as statistical uncertainties, which is a bit confusing
since all uncertainties are statistical in nature. See Figure 1

for an example result of applying a parameter covariance
matrix to obtain the joint pdf for the 4He ground-state energy
and the 2H point-proton radius, two important few-nucleon
observables. This particular result is taken from reference [80],
where in fact a model discrepancy term δ(·) was incorporated
during the optimization, thus in this particular case the
covariances reflect more than just the measurement noise. See
e.g., references [97–102] for details about statistical error analysis
and illuminating examples of forward error propagation in ab
initio nuclear theory.

To extract the covariance matrix requires computation of
the second-order derivatives of the χ2 function with respect
to the model parameters. The general process of numerically
differentiating an ab initiomodel with respect to Eα is significantly
simplified, and numerically much more precise, with the
use of automatic differentiation (AD) [80]. This corresponds
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FIGURE 1 | Joint distribution for the ground-state energy of 4He (x-axis) and

the point-proton radius of 2H (y-axis) for (A) the chiral potential NNLOsim and

(B) the chiral potential NNLOsep (see reference [80]). Contour lines for the

distributions are shown as black solid lines, while blue dotted (red dashed)

contours are obtained assuming a linear (quadratic) dependence on the LECs

for the observables.

to applying the chain rule of differentiation on a function
represented as a computer code. It relies on the principle that
any computer code, no matter how complicated always executes
a set of elementary arithmetic operations on a finite set of
elementary functions (exponentiation, logarithmization, etc). To
implement AD requires modification of the original computer
code, e.g., operator overloading via third-party libraries. Once
implemented, AD also enables application of more advanced
derivative-based optimization algorithms and Markov chain
Monte Carlo methods [103] with the computer model M.
An alternative, and derivative-free approach, to computing the
Hessian matrix for forward error propagation is to employ
Lagrange multipliers [104]. This method is more robust, but also
more computationally demanding to carry out. From a practical
and computational perspective, if one considers to use Lagrange
multipliers, one should also look into performing a Bayesian
analysis (see section 4).

3.2. Selecting Calibration Data
It is preferable to use data corresponding to observables that are
computationally cheap to evaluate, and if possible with model
settings corresponding to low δ(Ex)many−body discrepancies. One
should also strive to include data with highly complementary
information content that constrain a maximum amount of
linearly independent combinations of model parameters.

The conventional approach to calibrate ab initio models is to
use only data from A . 4 nuclei, as was discussed above. It
was observed in reference [25] that the additional inclusion of
ground-state energies and charge radii of selected carbon and
oxygen isotopes dramatically increases the predictive power of
models for bulk properties of nuclei up to the medium-mass
nickel region (see Figure 2). This calibration strategy led to the
construction of the so-called NNLOsat interaction. The strategy
to include data from selected A > 4 nuclei was also used in
the construction of the Illinois 3NF presented in reference [105].

FIGURE 2 | Ground-state energies per nucleon (top) and differences between

theoretical and experimental charge radii (bottom) for selected light and

medium-mass nuclei and results from ab initio computations. The red

diamonds mark results based on the chiral interaction NNLOsat. The blue

columns indicate which nuclei where included in the optimization of the LECs

in NNLOsat, while the white columns are predictions. Gray symbols indicate

other chiral interactions.

From a quantitative perspective, the advent of models capable of
accurate predictions is of course an important step forward and
has proven very useful [26, 27, 106, 107].

The major drawback of any model based on the NNLOsat

interaction is the lack of quantified theoretical uncertainties.
This is quite common also for ab initio models based on other
interaction potentials. At the moment, the best we can do
is to estimate the truncation error using Equation (4). This
requires additional and sub-leading chiral-order potentials using
the same optimization protocol, e.g., LOsat and NLOsat, which
do not exist. The calibration of such models require an even
more careful inclusion of model discrepancies. This is discussed
more in section 4. One can certainly argue that it becomes
even more important to quantify the theory errors for models
that we strongly believe will make accurate predictions, like
the ones based on the NNLOsat interaction. Otherwise we are
limited in our ability to assess discrepancies with respect to
experiment. This argument applies equally well to models based
on e.g., the 1.8/2.0 interaction from reference [29, 30] which
typically yield good predictions for binding energies and low-
energy spectra. In reference [26], the prediction from ab initio
models based on different interactions, NNLOsat and the 1.8/2.0
interactions amongst other, were compared to estimate the
overall theoretical uncertainty.

It is difficult to judge the degree of over-fitting to finite nuclei
in NNLOsat. It was noted during calibration that this interaction
fails to reproduce experimental nucleon-nucleon scattering cross
sections for scattering momenta larger than ∼ mπ . Enforcing
a good reproduction of all scattering data up to e.g., the pion-
production threshold most likely corresponds to over-fitting in
the A = 2 sector. It is the role of the model discrepancy term,
with appropriate priors, to balance this.
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One clearly gains predictive power regarding saturation
properties by including additional medium-mass data during
the calibration stage. This was also observed in a lattice EFT
analysis of the nuclear binding mechanism [108]. The related
topic of possibly emergent nuclear phenomena like saturation,
binding, and deformation of atomic nuclei is discussed further in
reference [109]. Although the inclusion of a model discrepancy
term while calibrating to heavier-mass data will be important, it
does not solve the underlying problem of having a systematically
uncertain model. It was noted in references [110–112] that the
explicit inclusion of the 1 isobar in the chiral description of
the nuclear interaction dramatically improves the description of
nuclei while also reproducing nucleon-nucleon scattering data. A
possibly fruitful way forward is to employ improved models, i.e.,
with explicit inclusion of the 1 isobar, that are calibrated using
also data from selected heavy-mass nuclei, while systematically
accounting for model discrepancies. Furthermore, it will be
interesting to se how much additional information is contained
in three-nucleon scattering data [91, 92, 113].

4. BAYESIAN INFERENCE

The previous section introduced the concept of model calibration
and the fundamental expression in Equation (5) that relates a
model with measured data. In this section I will outline the
Bayesian strategy for learning about the model parameters and
some existing estimates of the discrepancy term. The overarching
goal is still to calibrate an ab initio model M(Eα, Ex), and reliably
predict properties of atomic nuclei. However, instead of finding a
single point Eα⋆ in parameter space that maximizes the likelihood
for the data, we can use Bayes’ theorem to relate the data
likelihood to a pdf for the model parameters themselves

P(Eα|D,M, I) = P(D|Eα,M, I)P(Eα|M, I)

P(D|M, I)
, (12)

where P(Eα|M, I) denotes the prior pdf for the parameters,
P(D|Eα,M, I) denotes the likelihood of the data, the denominator
P(D|M, I) denotes the marginal likelihood of the data, and
P(Eα|D,M, I) denotes the sought-after posterior pdf of the model
parameters. The additional I represents any other information
at hand.

The Bayesian reformulation of the inference problem can at
first sight appear as a subtle point, and it is easy to overlook
the fundamental difference between computing the pdf for
the parameters and maximizing the likelihood, i.e., frequentist
inference. From a practical perspective, it is clearly advantageous
to obtain a pdf for the model parameters P(Eα|D,M). This
quantity is also intuitively straightforward to interpret compared
to frequentist interval estimates that might contain the true value
of the unknown model parameters, e.g., confidence intervals.
The prior pdf P(Eα|M, I) for the parameters Eα given a model M
offers up front possibility to incorporate any prior knowledge (or
belief) about the parameters, before we look at the data. In the
case of ab initio modeling, an underlying EFT-description of the
nuclear interaction embodies substantial prior knowledge, such
as the typical magnitude of the model parameters as well as a

handle on the systematic uncertainty. The Bayesian requirement
of prior specification also ensures full transparency regarding the
assumptions that goes into the analysis.

The existence of priors in Bayesian inference is sometimes
criticized and one can argue that the scientific method should
let the data speak for itself, without the explicit insertion of
subjective prior belief. Inference about model parameters in
terms of hypothesis tests or confidence intervals, derived from
the frequency of the data, is referred to as frequentist inference.
Note however that the likelihood rests on initial subjective
choice(s) regarding the data model. In this review, I will maintain
a practical perspective, and just recognize the usefulness of
the Bayesian approach to encode prior information about the
model parameters and the model discrepancy terms. Which is
also required in order to handle possible confounding between
the discrepancy and the model parameters [93]. Either way,
it is difficult to avoid subjective choices in statistical inference
involving uncertainties and limited data. In fact, one can even
argue that only subjective probabilities exist [114].

Bayesian model calibration, sometimes called Bayesian
parameter estimation, is currently emerging in ab initio
modeling [115–117]. To get some intuition about this topic, let us
look at Bayesian parameter estimation in its most simple version.
This amounts to assuming a (bounded) uniform prior pdf for the
model parameters Eα, i.e.,

P(Eα|M, I) ∼ U(Ea, Eb) (13)

and adopting a data likelihood as in Equation (8). In
practice, what remains is to explicitly evaluate P(Eα|D,M, I) in
Equation (12) by computing the product of the two terms in the
numerator. The denominator can be neglected since it does not
explicitly depend on Eα. This marginal likelihood does however
matter for absolute normalization of the posterior pdf. The
evaluation of the posterior can be done via brute force evaluation
in some simple cases, but for computationally expensive models
and/or high-dimensional parameter space typically more clever
strategies are required, such as Markov chain Monte Carlo. With
uniform priors, the point for the maximum posterior coincides
exactly with the point obtained using maximum likelihood
methods, which for normal likelihood distributions is nothing
but least-squares.

The advantages of Bayesian parameter estimations becomes
apparent once we include non-uniform prior knowledge, and in
most cases we know a bit more about the parameters than what a
simple uniform pdf reflects. The general strategies for application
of Bayesian methods to calibrate EFTs are pedagogically outlined
in reference [116]. To exemplify the use of priors and some of the
related techniques, let us assume a Gaussian prior with zeromean
for the model parameters Eα = [α1,α2, . . . ,αN], i.e.,

P(Eα|ā,M, I) =
(

1√
2πEa

)N

exp

(

− Eα2

2ā2

)

, (14)

where the parameter ā2 denotes the prior variance. This is not an
unreasonable prior for the model parameters in chiral EFT. The
impact of this parameter prior is to penalize model parameters
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that are too large, which would typically signal over-fitting. For
situations where there exist a large amount of precise data, the
prior specification for the parameters matter less. Nevertheless,
the question remains, what value should we pick for ā? This can
be dealt with straightforwardly by marginalizing over ā, i.e., we
express the prior for the parameters as

P(Eα|M, I) =
∫

dā P(Eα|ā,M, I)P(ā|M, I), (15)

which only forces us to specify a prior for the variance for our
belief about the model parameters, here we could choose a rather
broad range if we like. With appropriate analytical form for the
prior on ā, it is even possible to carry out this marginalization
step analytically. See reference [117] for illuminating examples
about the impact of different priors in model calibration with
scattering-phase shifts.

4.1. Prediction and Calibration Including
Model Discrepancies
Observables computed with potentials from chiral EFT should
exhibit a pattern where contributions from successive orders
ν = 0, 1, 2, 3, . . . are smaller by factors Qν . This is reflected in
Equation (3). Therefore, the expansion coefficients {cν} should
remain of natural size, a clear example of a situation where we
have prior knowledge3. Given a series of model calculations of the
observable O, up to the chiral order ν = k, i.e., O0,O1, . . . ,Ok,
and an estimate of the factor Q, it is straightforward to extract
the coefficients [c0, c1, . . . , ck]. It was shown in references [118,
119] how to extract a pdf for the EFT truncation error δk in
Equation (4) using this information. First, we factor out the
overall scale, and define

δ̃k = δk/O0 (16)

as the overall dimensionless truncation error. We now seek an
expression for P(δ̃k|c0, c1, . . . , ck) given the known values for
the first k + 1 coefficients. It turns out that for independent,
bounded, and uniform prior pdfs for the expansion coefficients,
the integrals can be solved analytically if one also approximates
δ̃k with the leading term. Thus, we assume

δ̃k ≈ δ̃
(1)
k

= ck+1Q
k+1, (17)

The posterior pdf P(δ̃
(1)
k
|c0, c1, . . . , ck) is given in reference [119]

(Equation 22), and explicitly derived in the appendix of
reference [118]. This posterior pdf is the complete inference

about δ̃
(1)
k
. If the pdf is multi-modal or otherwise non-trivial one

should use it in its entirety in forward analyses. However, we
can sometimes use a so-called degree of belief (DOB) value to
quantify the width of a pdf. This is the probability p%, expressed
in percent, that the value of an uncertain variable η, distributed
according to the pdf P(η), falls within an interval [a, b]. This

3The wording; prior knowledge vs. prior expectation, or even prior belief, signals

the level of subjective certainty or source for the prior.

interval is then referred to as a credible interval with p% DOB,
where

p% =
∫ b

a
P(η) dη. (18)

The posterior pdf for δ̃
(1)
k

is not Gaussian, however it is
symmetric and have zero mean. Therefore, we can define

a smallest interval [−d
(p)

k
,+d

(p)

k
] that captures p% of the

probability mass

p% =
∫ +d

(p)

k

−d
(p)

k

P(δ̃1k |c0, c1, . . . , ck) dδ̃
(1)
k
, (19)

and solve for d
(p)

k
. This will define the width of the credible

interval within which the next term in the EFT expansion will
fall with p% DOB, i.e., an estimate of the truncation error. The
expression is derived in references [118, 119], and given by

d
(p)

k
=max(|c0|, |c1|, . . . , |ck|)Qk+1 nc + 1

nc
p%, if p% ≤ nc/(nc+1),

(20)
where nc denotes the number of available coefficients. Thus,
with nc/(nc + 1) × 100% DOB, the EFT truncation error for
the observable O, in dimensionful units, is straightforwardly
estimated byO0×max(|c0|, |c1|, . . . , |ck|)Qk+1. This estimate also
corresponds to the prescription employed in reference [120]. This
a posteriori truncation error estimate essentially boils down to
guessing the largest number that one can expect based on a series
of numbers drawn from the same underlying distribution. For
example, given only one (nc = 1) expansion parameter c0, we
have a 50% DOB that we have encountered the largest coefficient
in the series. This procedure has been applied to estimate the
truncation error in several ab initio model calculations, see the
long list of papers that are citing references [119, 120].

The procedure for estimating the EFT truncation error, i.e.,
part of the model discrepancy, requires an estimate of the
high-energy scale 3b of the underlying EFT. For the models
discussed here, the results are based on chiral EFT, for which
the naive estimate of 3b is roughly MN ∼1 GeV. This was
analyzed more carefully for semi-local chiral potentials [45, 120]
in reference [121]. The posterior pdf for 3b indicated that a
more probable value is 3b ≈ 500 MeV. This value was also
used for the breakdown scale in the truncation error analysis of
nucleon-nucleon scattering phase shifts from the 1-full models
at LO,NLO, and NNLO chiral orders in reference [110]. The
results are presented in Figure 3. This result also strengthens the
observation made earlier, that the inclusion of the 1 degree of
freedom tend to improve model descriptions of nuclear systems.
This is more clearly seen when employing the same potentials to
makemodel predictions for the ground-state-energies and charge
radii of selected finite nuclei (see Figure 4), and the energy per
nucleon in symmetric nuclear matter (see Figure 5).

The model predictions for the nuclear matter indicate that
the 1-full models on average agree better with experimental
energies and radii. The uncertainty bands for the predictions
were extracted under the additional assumption that the relevant
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FIGURE 3 | Neutron-proton scattering phase shifts computed with models based on 1-full and 1-less chiral interaction potentials. The bands indicate the limits of

the expected DOB intervals at each chiral order ν. The black dots represent the values from the Granada partial wave analysis [84].

FIGURE 4 | Ground-state energy (negative of binding energy) per nucleon and

charge radii for selected nuclei computed with coupled cluster theory and the

1-full potential 1NNLO(450). For each nucleus, from left to right as follows:

LO (red triangle), NLO (green square), and NNLO (blue circle). The black

horizontal bars are data. Vertical bars estimate uncertainties from the

order-by-order EFT truncation errors.

soft-scales for finite and infinite nuclear systems are given by
the pion mass and the Fermi momentum, respectively. Although
these are rough estimates of the soft scales, it is important
to note that the the truncation error in Equation (20) only
holds up to factors of order unity. A comparison of theoretical

FIGURE 5 | Coupled-cluster based model prediction of the energy per

nucleon (in MeV) in symmetric nuclear matter using an NNLO potential with

(solid line) and without (dashed line) the 1 isobar. Both interactions employ a

momentum regulator-cutoff 3 = 450 MeV. The shaded areas indicate the

estimated EFT-truncation errors. The diamonds mark the saturation point and

the black rectangle indicates the region E/A = −16 ± 0.5 MeV and ρ = 0.16

± 0.01 fm−3.

error estimates based on different statistical methods provide
additional validation. The Bayesian method for estimating the
truncation error and the model errors estimated using the
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modified χ2-function in Equation (10) are quite different in
nature. Nevertheless, a comparison of the theoretical errors in
nucleon-nucleon cross sections at high scattering-energies agree
very well for these methods [80, 119]. The link between the two
approaches for estimating the model uncertainties is discussed
further in reference [117]. A complete Bayesian parameter
estimation including model discrepancy will hopefully reveal
more details about the structure of the chiral EFT error.

At the moment, most model discrepancies in ab initio
modeling based on chiral EFT are extracted a posteriori using
predictions based on calibrated models. This is possible based
on the expectation that the predictions might follow an EFT
pattern. This of course remains to be validated on theoretical
grounds. However, under the assumption that the interaction
potential actually gives rise to an EFT pattern for the observable,
we can build on Equation (4) to include a discrepancy term in
the likelihood for calibrating ab initiomodels. See reference [122]
for a discussion about correlated truncation errors in nucleon-
nucleon scattering observables following this line of thought,
where it is also observed that the expansion parameters behave
largely as expected.

5. SUMMARY AND OUTLOOK

Statistical representation of a sound model discrepancy term
is certainly challenging. Still, the assumption of zero model
discrepancy is a rather extreme position. Almost any reasonable
guess is better than nothing in order to avoid false values for the
model parameters and to minimize over-fitting.

The importance of acknowledging model discrepancies is
neatly summarized in the famous quote of George E. P. Box:
“Essentially, all models are wrong, but some are useful” [123],
with the additional comment in reference [93]: “But a model that
is wrong can only be useful if we acknowledge the fact that it is
wrong.”

Fortunately, most of the ab initio models of atomic nuclei
are built on methods from EFT, which by construction promises
extra information about the expected impact of the neglected
or missing physics in theoretical predictions. Bayesian inference
is a natural choice for accounting for model discrepancies and
prior knowledge, especially when the priors have a physical basis.
Indeed, extracting the posterior pdf for the model parameters
via Bayesian inference methods makes it possible to abandon
the notion of having a single parameterization of a particular
interaction potential and instead build models based on a
continuous pdf of parameters. Developments along these lines
are already taking place in e.g., density functional theory for
atomic nuclei [124].

At the moment, most theoretical analyses of atomic nuclei
proceed in the following fashion. Given a potential V(Eα⋆),
optimized to reproduce some set of calibration data D, we
setup a model M(Eα⋆, Ex) to analyze an experimental result
corresponding to the control setting Exi, i.e., we evaluateM(Eα⋆, Exi).
In a few cases we propagate uncertainties originating from
the measurement errors present in the data vector D, and
sometimes we estimate the EFT truncation error using a series

of models at different chiral orders. This takes a lot of effort.
Indeed, ab initio nuclear models are represented by complex
computer codes, implemented via years of dedicated work by
several people, and computationally expensive to evaluate. On
top of that, to understand the underlying nuclear interaction is,
arguably, one of the most difficult problems in all physics. Still,
we would like to answer questions like: how much should we
trust a model prediction? is the model M over-fitted? why is it
not agreeing with observed data, and how do we understand
this discrepancy?

We should strive to use Bayesian methods for calibrating
our models M(Eα, Ex) to obtain posterior pdfs P(Eα|M,D, I) for
the parameters. Subsequent evaluations of an observable Oi,
corresponding to setting the model control variable to Exi, should
be marginalized over the parameter posterior pdf to produce a
posterior predictive pdf

P(Oi|M, Exi,D) =
∫

dEα P(Oi|Eα,M, Exi,D)P(Eα|M,D). (21)

This quantity will best reflect our state of knowledge, and is quite
meaningful to compare with data. Various marginalizations with
respect to subsets of the parameters can provide better insights
into the qualities of the ab initio model. Bayesian inference
also allows us to compare different models via the computation
of Bayes factors [125], which in turn enables us to address
questions like: which PC in chiral EFT has the strongest support
by data? It is also theoretically straightforward to compute
the posterior predictive pdf averaged over a set of different
models M = [M1,M2, . . . ,M3] [126], each weighted by their
probability of being true, in the finite space spanned by M,
given data D.

5.1. The Computational Challenge
There are several challenges connected with the outlook
presented above: working out the theoretical underpinnings of
chiral EFT, specifying prior information, formulating model
discrepancy terms, and performing challenging Markov Chain
Monte Carlo evaluation of complicated posterior pdfs. From a
practical point of view, handling, the computational complexity
is the most difficult one. Indeed, evaluating models of
medium- and heavy-mass atomic nuclei typically requires vast
high-performance computing resources. This clearly puts the
feasibility of the Bayesian scenario presented above into question.
Without any unforeseen disruptive computer technologies or
dramatic algorithmic advances, it will be necessary to employ,
where possible, fast emulators that accurately mimic the response
of the original ab initio models. This is where we can draw
from advances in machine learning. Possibly useful methods are
e.g., Gaussian process regression and artificial neural networks.
Both of these approaches can be challenging since they introduce
hyperparameters that require additional optimization. Although
it can be difficult to assess how well such methods will work,
there exist several examples of useful surrogate interpolation and
extrapolation in nuclear modeling (see e.g., references [122, 124,
127–131]). A new method called eigenvector continuation [132]
turns out to be a promising tool for accurate extrapolation
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and fast emulation of nuclear properties [133]. In a recent
paper [134], this method proved capable of emulating (with a
root mean squared error of 1%) more than one million solutions
of an ab initio model for the ground-state energy and radius
of 16O in one hour on a standard laptop. An equivalent set
of exact ab initio coupled-cluster computations would require
20 years.
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