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The heat transfer in living tissues is an evergreen problem in mathematical modeling

with great practical importance starting from the Pennes equation postulation. This

study focuses on concept in model building, the correct scaling of the bio-heat

equation (one-dimensional) by appropriate choice of time and length scales, and

consequently order of magnitude analysis of effects, as well as fractionalization

approaches. Fractionalization by different constitutive approaches, leading to application

of different fractional differential operators, modeling the finite speed of the heat wave, is

one of the principle problems discussed in the study. The correct choice of the damping

(relaxation) function of the heat flux is of primarily importance in the formulation of the

bio-heat equation with memory. Moreover, this affects the consequent scaling, order of

magnitude analysis and solutions.

Keywords: bio-heat equation, model build-up, scaling, nondimensalization, fractionalization

Model building is the art of selecting those aspects of a process that are relevant to the question being

asked - J.H Holland.

(Holland, JH (1995) Hidden Order.

Addison-Wesley, New York, USA.)

1. INTRODUCTION

All biological bodies live in space-depended temperature fields (environments), that is even in
single organism there are no uniform temperatures of organs and tissues [1]. The non-uniformity
of the temperature fields causes energy transfer between the organs (and tissues) with the perfused
blood as wells at the body interface trough the skin [1].

Heat transfer in living tissues is a complex process and the mathematical modeling needs
simplifications allowing to apply its methods. Hereafter, we will consider, in general, human
bio-heat problems where the core body temperature is maintained at a level of 36–37◦C. Cases
related to organisms which body temperature varies as the external temperature changes (the
so-called poikilothermic organisms [2]) are out of the scope of this work. In general, the heat
exchange between a living body and the environment, taking place through the skin, involves
mechanisms of conduction, convection,radiation and perspiration (consisting of separation and
evaporation of sweat) [3, 4]. In medical applications, for instance, heat transfer procedures such as
cryosurgery, radio-frequency and laser thermal ablations, thermal resections, ultrasound, etc. [5–
7] need not only experimental data but also deep understanding of the basic mechanisms of heat
transport and adequate mathematical modeling.
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The human body temperature is affected by many factors,
such as: environmental conditions, temperatures of media
surrounding tissues, metabolism in muscles and blood
circulation. We will briefly comment two heat transfer processes
involved in the basic models discussed further in this work:

(i) Heat transfer through the skin (section 1.1), and
(ii) Blood circulation and its contribution to the overall heat

exchange in the body (section 1.2). Moreover, basic steps in
formalization of the heat fluxes due to different causes such
as conduction, convection and metabolic heat generation
are commented prior to the analysis of the bio-heat models
(section 1.3).

1.1. Heat Exchange Through the Skin
Skin is the largest single organ of the body [1] enabling protection
from the surrounding environment and playing significant role
in thermoregulation, sensory and host defense functions. The
primary role of thermoregulation compromises heat generation,
absorption, radiation, transmission and vaporization [1]. That is,
the primary process occurring at the skin (and through the skin) is
the thermal energy exchange with the environment. In humans the
skin properties (structure and thickness) depend on the location
and its function [1, 8]. The skin includes two layers epidermis
and dermis [7, 9]. The former allows heat release by convection,
radiation and perspiration (see Figure 1). In this context, the
typical forearm skin temperature is about 31◦C [7, 10] while
the bone temperature is about 33◦C. Hence, the increase in
the temperature of a deep tissue requires higher temperatures
to be imposed at the skin surface. The thermoregulation of
the body, by help of the skin functions, is mainly by changing
the blood flow rate in the micro-circulatory bed consisting of
arterioles, arterial and vein capillaries, and venules [1]. In this
context, an increase in the skin temperature to 42◦C results in
increased blood circulations (see below) in order to dissipate

FIGURE 1 | Schematic presentations of human body layers: see explanation in the text.

a portion of the thermal energy and to permit increase in the
heat conduction mechanism through the deep tissue beneath
[10, 11]. Last but not least, body fat affects strongly both the
skin and deep tissue temperatures when the human body is at
rest [11].

The common thermophysical parameters of the human
skin are (collected from different sources) [1, 12–14]: density
(ρ = 1.000 − 1.005

[
kg/m3

]
), heat conductivity (k = 0.5 −

0.628 [W/mK]), heat capacity (c = 4.187− 4.200
[
Jkg/K

]
). As it

is shown by many authors (see data collected in [15]) the interior
tissue temperature attains a constant value at a short distance
from the surface, commonly this happens at a depth of 2–3 cm.
Because of that in many studies the finite length of the tissue
volume under consideration, commonly denoted as L, is within
this range.

1.2. Blood Circulation and Heat Exchange
at a Glance
Blood perfused tissues structures include layers of skin, fats,
muscles and bones (see the schematic presentation vessels (see
Figure 2A) (after [9]).Moreover, the blood circulation, trough the
two principle sets of arteries and veins, is the principle mechanism
in the body thermal regulation (see Figure 2B): Blood leaving the
heart via the aorta (the largest blood vessel with a diameter of
about 5000 µm is transported to the muscles through the arteries
and the veins with diameters within the range of 300–1,000 µm:
primary arteries with diameters of 100–300 µm are supplying
blood to the secondary arteries 50–100 µm in diameter. Then,
the blood is delivered to arterioles 20–40 µm connected to the
smallest transport vessels, the capillaries [9]. The returning blood
loop to the heart consists of veins.

The blood is leaving the aorta (with a temperature Ta)
practically does not exchange energy with the tissue up to
the point where it enters the primary arteries where thermal
equilibration with the surrounding tissue begins; this process
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FIGURE 2 | Schematic presentations of human body circulatory system (A) and blood temperature distributions through the vessels of the circulatory system (B). See

comments in the text.

completes before the points where the blood enters the
arterioles and the capillaries. Further, the blood flow attains the
temperature of the perfused tissue Tt and its value does not vary
too much (if it is not mixed with other blood streams) [9]. The
chilled blood from the peripheral tissues and the hot blood from
the internal organs are mixed in the vena cava and the right
atrium, and ventricle. The next heat transfer steps of the blood
circulation are the pulmonary circulation and remixing in left
heart chamber: this allows the blood to attain the temperature
at which it left the heart at the beginning of its flow through the
circulation system [9, 16].

The thermoregulation due to blood circulation and perfusion,
in accordance with prevailing theories, is to maintain the body
core temperature at a constant value required for the normal
physiological functions [17]. Alternatively, the blood circulations
should maintain the body energy balance and therefore the tissue
temperatures are results, not the causes for the thermoregulation
process [18, 19].

The common blood parameters involved in the bio-heat
models are Torvi and Dale [12], Yamada et al. [13], and
Askarizadeh and Ahmadikia [14]: temperature (Tb = 37oC),
metabolic heat generation (qm = 1.19×103W/m3) perfusion rate
(volumetric rate per unit tissue volume, i.e., ωb = Qblod/Vtissue =
m3s−1/m3 (ωb = 1.87× 10−3s−1).

Note 1: Sometimes the blood perfusion rate is repressed as
mass blood flux per unit mass of the tissue, that is ωb =
Gblood/Vtissue = kg/m3s [15]. The reader should take care what
is the dimension used in a specific study, that mainly affects the
nondimensalization procedures.

1.3. Bio-Heat Modeling Formalization
Analyzes of thermal energy balances in various biological tissues
are multifaceted due to differences in tissue structures and
functions. The relative importance of a certain heat transfer

mechanism, the relevant time scale of the deposited energy
and as well as differences in boundary and initial conditions
strongly affect the energy balance [20]. In modeling, commonly
simplifying assumptions are necessary thus making possible
to model the basic properties of the thermal status of the
organism (or its parts) and the effects of the boundary and initial
conditions. The build-up of such models, in general, begins with
application of the energy balance law over a control volume [20]

d

dt
Qgain = d

dt
Qstorage +

d

dt
Qloss +

d

dt
W (1)

That is, the rate of heat gained is balanced by the heat stored and
heat loss (by conduction or heat exchange with advanced fluids),
and the rate of workW performed by the tissue [20]. Precisely, the
heat gain (2) due to heat generated by unit tissue segment q (r, t)
and heat energy storage (3) can be expressed as integral over the
control volume V , namely

d

dt
Qgain =

∫

V

q (r, t)dV (2)

d

dt
Qstorage =

∫

V

ρc

[
∂

∂t
T (r, t)

]
dV (3)

Further, we will restrict the heat transfer mechanisms to only
conduction and convection in order tomake clearer the following
analyzes of the models, their scaling and consequently generated
dimensionless groups, and the fractionalization when the thermal
inertial should be taken into account. In bio-heat transfer
problems the heat conduction mechanism is commonly modeled
by the Fourier law when no inertia is taken into account, that is

Qconduction = − kt

1Lt
At (T1 − T2) , T1 > T2 (4)
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where kt is the tissue heat conductivity with dimension

[W/m · K ], which is usually temperature-dependent; this
transport coefficient strongly depends on the microscopic
structures of the biological materials. In differential form the
conduction component of the heat flux through the issue (per
unit area)

[
W/m2

]
is

qcond = −kt
∂

∂x
Tt (x, t) (5)

while the convection (perfusion) fluid-body term is

qconv = h
(
Tw − Tfluid

)
(6)

The heat transfer coefficient (fluid-solid surface) h
[
W/m2 · K

]

is dependent on the fluid velocity. In biological tissue the fluid-
related heat transfer should be contributed to the blood perfusion
and flow distribution due the heterogeneity of the living
structures. Mathematically representing the blood perfusion
component of the bio-heat thermal flux (through unit area of the
tissue) qb

[
W/m2

]
the structure of the relationship is the same

as in the case of heat transfer at the solid-fluid boundary (as in
the case of simple blood flow in a cylindrical vessel commented
in section 2.2). However, now the flux is proportional to the
difference between the blood temperature in the artery (denoted
as Tart or Ta) and the venous level temperature Tven, namely

qb = ωbρbcb (Tart − Tven) (7)

The choice of this temperature difference is a matter of
arguments as we will see in the sequel when model constructions
will be discussed. However, at a glance, these are the only
practically measurable temperatures when thermal sensors have
to be introduced in the living organism, despite the physical
models assumptions considering another temperature differences.
However, it could be considered that in capillary beds the very
slow blood flows attain complete thermal equilibria with the
tissues; consequently the perfusion associated heat flux (7) could
be approximated as

qb = ωbρbcb (Tart − Tt) (8)

Hence, under such circumstances, the energy transfer by
the blood stream, over the entire control volume, is (in
original notations)

d

dt
Qb =

∫

V

ωbρbcb [Tart (r, t)− Tt (r, t)] dV (9)

The result (9) is a not unconditional, despite the fact that it is
frequently encountered in model formulations; in larger arteries
it would be not valid due to strong blood mixing [20].

After considering the different heat transport mechanisms we
may construct the balance of thermal energy (neglecting the work

performed by the tissue) over an arbitrary volume element as

∫

V

ρtct
∂

∂t
Tt (r, t) dV =

∫

V

kt∇Tt (r, t)dV+

+
∫

V

ωbρbcb [Tart (r, t)− Tt (r, t)] dV +
∫

V

Qm (r, t) dV

(10)

In one dimensional case and homogeneous distributed source of
metabolic heat Qm we get

ρtct
∂

∂t
Tt (x, t) = kt

∂2

∂x2
Tt (x, t)+ ωbρbcb

[Tart (x, t)− Tt (x, t)]+ Qm (11)

This is the standard form of the heat transfer through living

organisms (tissues) or bio-heat transfer equation. We will discuss
it components and assumptions behind, which may vary under
circumstances imposed by the modeled object, as well the
contribution of the transport mechanism involved by scaling and
dimensional analysis. The study addresses three principle issues
in bio-heat modeling:

(i) Models building concept,
(ii) Model scaling and nondimensalization and
(iii) Model fractionalization by involving fractional operators.

1.4. Motivation of This Study
Working in the modern direction of modeling involving
fractional operators the author was intrigued by development
of so-called fractional bio-heat models and how they are related
to the classical ones such as Pennes’s, Wulff ’s, Klinger’s, Chen-
Holmes’ models, etc. [20, 21]. The literature search revealed
that the dominating approach is to fractionalize formally the
Pennes equation. Moreover, the correct solution of models either
based on local or non-local operators needs correct scaling
and nondimensalization. This formulates a special interest
about the time and length scales, velocity scale and finally the
dimensionless groups appearing as pre-factors in the modeling
differential equations; as weighting factors and allowing to see the
contributions of different physical effects accounted by the model
of interest.

The classical models mentioned above are based on the
continuum approach allowing easily to apply the local (integer-
order) calculus and as fundamental base the Fourier law.
Therefore, in all these models, parabolic by nature, the heat
flux speed is infinite, which is unphysical. The flux damping
in models involving local derivatives are based on extension
of the Fourier law by applying first order approximation
by Taylor series expansion; the Maxwell-Cattaneo and the
Dual-phase-lag approaches resulting in hyperbolic models are
commonly applied.

Therefore, the main motivation of this study is to revisit
the existing bio-heat models, precisely thus considering blood
perfused tissue, and to attempt representing them from a
common basis thus allowing to see what are the links between
them and how the modern trends, such as the fractional models
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should be correctly constructed. Therefore, to be precise, this
study considers the following problems related to 1-D bio-heat
transfer models:

(1) Basic concepts of model build-up and the relevant physical
and mathematical assumptions.

(2) Scaling and nondimensalization, thus detecting the
controlling dimensionless groups.

(3) Fractionalization: (a) Critical analysis of the existing
fractional models, (b) A systematic approach based
on fractional Taylor series expansion and the fading
memory concept.

Analytic and numerical solutions of existing bio-heat transfer
models are out of scope of this work, even though we will analyze
them to some extent in the context of the three main directions
declared above. Comprehensive analysis of analytical solutions
of existing bio-heat models (integer-order) with/without flux
damping are available in Xu et al. [1], Datta [16], Valvano [17],
Orr and Eberhart [20], Charny [21], and Fan and Wang [22].

1.5. Aim and Paper Organization
The main focus of the article was formulated in the preceding
sections of the Introduction considering skin properties (section
1.1), blood circulation in human body (section 1.2) and the
general approach in construction of bio-heat models (section
1.3). Now after these initial words the following part of this article
is organized in three main directions, with a common point of
view, as follows:

1) Integer order models without flux damping (classical models
of Pennes, Wulff, Klinger, Chen-Holmes, porous media
concepts) in section 3. The models developed prior to that of
Pennes are briefly presented in sections 2.1 and 2.2.

2) Integer order models with flux relaxation based on the
Maxwell-Cattaneo and Dual-Phase-Lag approaches are
discussed in section 5.

3) Bio-heat models with memory, that actually means heat flux
damping modeled by fractional-order operators are especially
analyzed in section 7.

4) A systematic approach in bio-heat heat conduction models
is formulated in section 7.2 via application of two principle
approaches: (a) Fractionalization via fractional Taylor series
(section 8.1) developed in section 8, and (b) Fractionalization
by application of the fading memory concept with different
relaxation kernels (section 9).

For completeness of the exposition in this article, we will briefly
present at the very beginning (section 2) some mechanistic ideas
(models) that appeared in parallel to the continuum models
forming the core of this study.

2. FORMAL MECHANISTIC BIO-HEAT
MODELS

The mechanistic models presented briefly here have been
developed by applying formal analogy between the blood vessels-
tissue configurations and the design of the existing heat transfer
equipments. This can be easily explained by the motivation

to apply the existing knowledge, but at the same time this
approach has inherent limitations which are obvious when more
complex vascular architectures should be modeled. Two simple
cases are commented: (a) Surface heat flux to the tissue by a
convective blood flow streaming the blood-tissue interface, (b)
Heat transfer between a cylindrical blood vessel of final length
and the surrounding tissue.

2.1. Surface Heat Flux Model
Following the comprehensive analysis of Charny [21] the surface
heat flux qs through tissue (per unit area At , that is qs has a
dimensionW/m2 ) and with missing flood flow is

qs = ωbρbcbLt (Tb − Ts)+
kt

Lt
(Tb − Ts) = Keff (Tb − Ts) (12)

where ωb is the volumetric blood flow to the tissue per unit
volume of it, that is

[(
m3/s

)
blood

/m3
tissue

]
while the heat

conductivity of the tissue with a thickness Lt is kt . Here, the
first term in (12) is the thermal energy transported by the
blood flow through the tissue layer of depth Lt and volume
Vt = AtLt , while the second term is the Fourier law. This
construction allows the effective thermal conductivity Keff to be
determined by experimentally measured surface (at the skin)
heat flux qs and temperature Ts, and the body core temperature
Tb at a depth Lt . This formulation allows the effect of blood
perfusion to be evaluated as an additional contribution to the
dimensionless (relative) effective heat conductivity Keff /Ko =
1+ωb

(
cbL

2
t /kt

)
[21] using the tissue conductivity K0 in absence

of blood perfusion as a reference scale. The value of Keff at
large differences (Tb − Ts) does not vary thus corresponding to
the maximum degree of vasoconstriction in the tissue [21]. In
addition, the value of Lt was estimated by early physiological
measurements at Lf = 2 cm [23] (see a comprehensive analysis
in [21]).

The first term in (12) is related to macroscopic heat removal
by a fluid flowing through the tissue (blood perfusion), while the
second one is the heat transport by conduction mechanism. Now,
in order to make more visible the contributions of each transport
mechanism we transform the heat flux Equation (12) in two
equivalent dimensionless forms, namely

q̄s = qs
kt
Lt
(Tb − Ts)

= 1+ ωb
L2t
ab

kb

kt
= 1+ ωbτb

(
kb

kt

)
,

τb =
L2t
ab

, ab =
kb

ρbcb
(13)

q̄s = qs
kt
Lt
(Tb − Ts)

= 1+ ωb

(
ρbcb

ρtct

)
L2t
at

= 1+ ωbτt

(
ρbcb

ρtct

)
,

τt =
L2t
at

, at =
kt

ρtct
(14)

The first form (13) defines the diffusion time scale of the blood as
τb, while the second form (14) determines the heat diffusion time
scale τt . Taking in to account that ωs has dimension

[
s−1
]
(see the

definition above) the products ωbτb and ωbτt are dimensionless.
Hence, this dimensionless presentation easily demonstrates the
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contribution of the blood perfusion to the total heat flux through
the tissue.

2.2. Heat Exchanger Formalistic Models for
Flow in Vessels
The models considered in this section are not the core of
this article but prior to continue with more sophisticated
continuum (section 3) and fractional models (section 7) we have
to mentioned some mechanistic models, quite simplified, but
related to well-known solutions of fluid-flow heat exchange in
simple systems of tubes (modeling blood vessels).

The mechanistic tube flow models are analyzed by Chato
[24, 25] using the facts that for individual blood vessels the
capillaries are important for attaining the thermal equilibrium
with the surrounding tissue: the smaller arteries and the veins
have intensive heat transfer with the tissue, in contrast to the larger
vessels affecting relatively little the heat exchange.

2.2.1. Heat Transfer From Blood Flowing in a Vessel
Following Chato [24, 25] the blood behaves as non-Newtonian
yield stress medium (Casson fluid) with a constitutive equation

√
τs =

√
τy + µ

∂V

∂y
(15)

relating the shear stress τs, the yield stress τy and the yield-stress
viscosity µ. In (15) V is the axial blood velocity, while y is the
direction normal to the vessel wall.

For steady flow the relation of themeanNusselt numberNu =
hbD/kb based on the vessel diameter D is related to the Graetz
number Gr = Re · Pr ·

(
D
L

)
and can be approximated as

Num = 4+ 0.155exp
(
1.58log10Gr

)
, Gr < 103 (16)

This approach invokes two principle questions [25]:

(1) At what distance from the entrance the blood-tissue will
attain the equilibrium? That is, what is the heat transfer
entrance length? This question was further discussed in
construction of themore complex continuummodel of Chen
and Holmes (see section 3.4).

(2) What is the blood temperature in axial direction at a given
length along the vessel wall?

Considering a simple model of concentric cylindrical vessel-
surrounding tissue of final thickness R2 − R1 (see Figure 3),
then applying what is well-known from every textbook on heat
transfer, we have

Radial temperature distribution

T − T0

Tb − T0
= ln

(
R2

r

)
1

kt
(hbR1)

+ ln
(
R2
R1

) , R1 ≤ r ≤ R2 (17)

Heat flux transferred to the tissue

q1 = 2πkt (Tb − T0)
1

kt
(hbR1)

+ ln
(
R2
R1

) (18)

where hb is the local heat transfer coefficient, while he is an
effective heat transfer coefficient for the blood flow.

The axial temperature profile of the blood is simply modeled
by one dimensional equation [25]

dTb

dx
+ 2

he

ρbcbVR1
(Tb − T0) = 0 H⇒ dθ

dX
+3xθ = 0,

θ = Tb − T0

Tb1 − T0
, X = x

2R1
= x

D
, 3x = 4

Nue

RePr

(19)

leading to exponential decaying temperature distribution along
the x axis with a rate depending on3x.

With these two examples we close this direction in the blood-
tissue heat exchange since they are out of the scope of this study
(the continuum based models). Extensive analysis of systems
based on mechanical analogies are available in Charny [21] and
Chato [24, 25].

3. ENERGY BALANCE BASED CONTINUUM
MODELS (STARTING BY PENNES)

Modeling of the blood flow effect on bioheat in living tissues
due the complex architecture of the vascular system has been
developed in two distinct directions [26]:

(1) An approach considering the vascular system and as a system
of rigid tubes protruding the tissues. With this point of view
only large vessels are considered while the smaller ones are
neglected thus reducing the order of complexity (similar
approach was commented briefly in section 2.2).

(2) The second approach eliminates the vascular flow effects and
uses continuum models incorporating in average the blood
flow effects on the temperature over a control volume of
the tissue.

The continuum approach allows, depending on the problem that
should be modeled by an additional source term in the modeling
equation; or defining effective transport coefficients such as the
heat conductivity and the blood-tissue heat transfer coefficient.
The most popular models are the Pennes model (see section
3.1) where the blood perfusion is modeled by a fluid-surface
heat transfer term with a heat transfer coefficient dependent
on the blood flow rate, and the Weinbaum-Jiji models (see
section 3.5) with heat conductivity dependent on the vascular
structure. These models will be analyzed here together with other
continuummodels since they provide a sufficient basis to develop
two modeling trends accounting relaxation effects in bio-heat
transfer, namely:

(a) Heat-wave models (section 5) with simple heat flux lagging
(section 5.1), and dual-phase lag models (section 5.2), both of
them employing local derivatives.

(b) Non-local models modeling the heat flux and temperature
gradient damping (lagging) by fractional differential operators
(sections 7 and 8.1).

3.1. The Model of Pennes
Pennes [27] formulated the oldest and the most studied
mathematical model based on temperature profiles in limb
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FIGURE 3 | Mechanistic representations of single blood vessel-tissue heat transfer as a countercurrent energy exchange process: See the text about the studies in

Chato [25].

FIGURE 4 | Forearm-Fin mechanical analogy of the logical construction used in the Pennes model. Present author conceived analogy and interpretations: see the

explanations in the text.

(forearms) assuming maximum of temperature at the axis of
symmetry, thus reasonably formulating the model equation in
cylindrical coordinates, namely

ρtct
∂Tt (r, t)

∂t
= kt

r

∂

∂r

[
r
∂Tt (r, t)

∂r

]
+ ωbρbcb

(Ta0 − Tt (r, t))+ Qm (20)

assuming a uniform distribution of the metabolic heat generation
Qm

[
W/m3

]
in the tissue layer, as well as uniform tissue heat

conductivity kt . With a convective boundary condition at the skin
surface (r = R)

kt
∂Tt

∂r

∣∣∣∣
r=R

= h [Tt (R, t)− T∞] (21)

The principle simplifying assumptions of the Pennes model are
[4, 28]:

(a) Capillary bed equilibration: pre-arteriole heat transfer and pre-
venule heat transfers are neglected. The only variable in the
Pennes model is the tissue temperature.

(b) Isotropic blood flow in small capillaries, i.e., the blood flow
direction is not considered.

(c) All blood vessels close to the capillary beds do not affect the
heat exchange and the local vascular geometry is ignored.

(d) The blood reaches the capillary beds through the arterioles at
deep body temperature (core temperature).

Actually, the Pennes model assumes that the arterial blood flow
bathes the tissue at the same temperature everywhere in the limb
cross section (see detailed comments in [21, 29]). This approach
resembles the thermal problem of the longitudinal metal fin
with constant cross section AF (and cross section perimeter PF),
available in every textbook of heat transfer (see as good reference
sources [30] and [31]), namely

ρFcF
∂TF (x, t)

∂t
= kt

∂2TF (x, t)

∂x2
− hF

PF

AF
[TF (x, t)− T∞] (22)

where h is the heat convective transfer coefficient and T∞ equals
the arterial blood temperature, as it is schematically illustrated
in Figure 4 (Forearm-Fin analogy). This term in the Pennes’
equation is amatter of arguments under different assumptions. In

Frontiers in Physics | www.frontiersin.org 7 November 2019 | Volume 7 | Article 189

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Hristov Bio-Heat Models Revisited

accordance withWulff [32] the last term is not local in contrast to
the other two (the time and space derivatives); this comment will
appear in the criticism of the Wulff ’s continuum model [32] (see
also [21, 29]) discussed further in this analysis. This standpoint
would be true if the assumption of Pennes [27] about the thermal
equilibrium between the tissue and venous blood is accepted. That
is, if Tt (r, t) = Tb(ven) in this term is independent of the space
coordinate x, then the last term in (3.6.1) is not local. However, if
Tt (r, t) depends on the space coordinate r as TF (x, t) in the fin
Equation (22) then this term is local: it is a distributed heat sink
such as the distributed metabolic term Qm. Here, we can see the
first contradiction in the Pennes equation formulation: in general
the tissue temperature depends on both the space coordinate and
time but the last cooling term it is assumed as space independent,
even though actually it is; the source/sink term (termed also
convective term) is homogeneously distributed along the x axis.

The main deficiencies of the Pennes model can be briefly
outlined as [28]:

(a) The thermal equilibration in the capillaries is a misconception
since this process takes place in the pre-arteriole and
post-venule vessels (with diameters within the range of
70–500 µm).

(b) The blood flow spatial orientation is not taken into account, that
is the countercurrent heat transfer between the artery-vein
pairs is not considered, for example.

(c) The blood perfusion is overestimated since the arterial
temperature changes continuously from the deep body
temperature of the aorta to the secondary arteries and further
to all branches of the system: (i) the pre-arteriole temperature
is not equal to the body core temperature; (ii) The vein return
temperature is not equal to the mean tissue temperature.

The nondimensalization of (22) yields

∂θ

∂ t̄
= ∂2θ

∂x2
− h

kt
L2

PF

AF
θ ,⇒ ∂θ

∂ t̄
= ∂2θ

∂x2
− B̄i

PF

AF
θ (23)

where the dimensionless variables are

θ = T − T∞
Tt − T∞

, t̄ = t

t0
, t0 =

L2

at
, at =

kt

ρtct
(24)

The group B̄i = h
kt
L2 PF

AF
is dimensionless and can be assumed

as analog of the Biot number Bi. The product PFLF equals the
total surface area of the fin; then L2F (PF/AF) with a dimension of
length defines the characteristic length scale of the fin lF .

The solution of the Pennes model in radial coordinates [21] is

Tt = ApI0
(
rap
)
+ Qm

ωbρbcb
+ Ta0, ap =

√
ωbρbcb

kt
,

Ap =
T∞ − Qm

ωbρbcb
− Ta0

ktap
h
I1
(
Rap

)
+ I0

(
Rap

) (25)

where I1 and I0 are modified Bessel functions
First, the parameter ap has a dimension

[
m−1

]
because it

can be represented as ap =
√
ωb

1
ab

kb
kt
, where ab is the thermal

diffusivity of the blood. Taking into account that the dimension
of ωb is

[
s−1
]
(volumetric blood flow rate per unit volume of the

tissue) then the ratio (ωb/ab) has a dimension
[
1/m2

]
. Therefore,

the products rap and Rap in (25) are dimensionless. Further, the
ratio Qm/(ωbρbcb) has a dimension of temperature per second

[K/s] since the dimension of ωb (
(
m3/s

)
/m3) is

[
s−1
]
, as it was

commented above.
The scaling of the boundary condition in (21) yields

∂θt

∂ r̄

∣∣∣∣
r=R

= hR

kt
θ (R, t) = Bi [θ (R, t)] , θ = Tt (R, t)

Tart (R, t)− T∞
,

r̄ = r

R
(26)

where Bi = hR
kt

is the thermal Biot number representing the

ratio of the heat transported to the tissue by convection to the heat
transported through the tissue by conduction.

It is well-known that for very small Biot numbers (Bi < 1)
the temperature gradients in the body (tissue) are negligible and
the model of Pennes reduces to the lumped heat capacitance
model, namely

ρtct
∂Tt

∂t
= ωbρbcb (Ta0 − Tt)+ Qm (27)

or in a scaled version as

∂Tt

∂t
= −ωb

ρbcb

ρtct
(Ta0 − Tt)+

Qm

ρtct
⇒ ∂θt

∂τ
= ωbt0

(
ρbcb

ρtct

)

+ Qm

ρtct
t0 (28)

For example, the steady-state version of the Pennes equation in
rectangular coordinates (1-D) is

∂2θ

∂x2
− B̄i

PF

AF
θ = 0 (29)

and its solution is [21]

θ =
sinh

(√
B̄ix
)

sinh
(√

B̄i
) , 0 ≤ x ≤ 1 (30)

The Pennes equation was seriously criticized in consequent
developed studies (see in the sequel), and we will stress the
attention on this, but now we focus on nondimensalization and
the physical meaning of the parameters in the solution (22). The
principle shortcomings, in addition to the ones mentioned above,
of the Pennes model can be outlined as:

(i) As mentioned above, the perfusion terms is assumed as that
the tissue is bathed by the arterial flow, while the venous
return from the distal part having an important effect on the
tissue temperature is neglected.

(ii) The analysis of Shitzer and Kleiner [33] and Shitzer and
Chato [34] reveals that the perfusion term may play a role
of a sink in the warm core region of the tissue (precisely
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in the cylindrical limb model) and as source in the cooler
peripheral area (see also analysis in [21, 29]. Further, with
increase in the arterial bold flow, that is the increase
in the perfusion rate, then the last term in the Pennes
equation performs as a heat source in a large section of
the living tissue [21]. Mathematically this means that the
sign of the perfusion term should change (as source or as
sink) depending on the location of the modeled tissue, a
properties which is not encountered in the Pennes model.

(iii) The models do not consider the detailed structures of
the vascular networks, especially the countercurrent
arrangements as well as important anatomical
characteristics of the blood circulatory system.

Despite these deficiencies the Pennes equation was extensively
applied to model heat transfer in living tissues but mainly
within body segments and with good very good agreements with
experimental data. According to Charny [21] in most of cases
the neglected heat transfer in the prearteriole and postvenule
blood vessels of the circulatory systems can be used to explain
discrepancies between the instrumental measurements and the
data predicted by the Pennes model. We will meet again the
Pennes model when problems related to its fractionalization will
be discussed further in this article.

3.2. The Continuum Model of Wulff
The Wulff ’s approach [32] is a modeling of heat transfer through
the tissue on a continuum basis and the main criticism is on the
formulation of the perfusion terms. Actually, Wulff clearly states
that Pennes’ perfusion term is a global (integral term) that does
not corresponds to the other terms (as derivatives) which are
local derivatives. As mentioned earlier in this text, this is a matter
of argument, but for better understanding what we mean, let us
consider the basic idea of the Wulff ’s model. Following Wulff,
since the blood is moving through the tissue it may remove or
derive heat by convection in any directions but not only in the
direction defined by of the local temperature gradient. Following
this assumption, the convective energy transport through the
tissue is Wulff [32] (see also [21, 29])

ρbhbvh =
1

4π

∫

�

ρbhbvdω (31)

In (31) hb is the blood specific enthalpy formulated as

hb =
Tb∫

T0

cp
(
T∗
b

)
dT∗

b + P

ρb
+1Hf (1− ε) (32)

Further, ω is the solid angle across the control surface of the
blood vessel, while � is the entire solid angle, and vh is the local
mean apparent blood velocity.1Hf is the specific enthalpy of the
metabolic reaction.With these assumptions the energy flux at any
point of the tissue is [32, 35]

q = −kt∇Tt + ρbhhvh (33)

Thus, the energy balance simply reads as

ρbcb
∂Tt

∂t
= −∇ · q (34)

that in detailed form is [21, 29, 32]

ρbcp
∂Tt

∂t
= kt

∂2Tt

∂x2
− ρbvh

(
cp
∂Tb

∂x
−1Hf

∂ε

∂x

)

︸ ︷︷ ︸
Metabolic heat

(35)

The last term in right-hand side of (35) is equivalent to the
metabolic heat source Qm. The main problem in application of
the Wulff model is the determination of the local blood mass flux
ρbvh [35].

Further, Wulff assumed that the blood temperature gradient
in (35) equals the gradient of the temperature gradient of the
environment surrounding the tissue and this step permits to
assume that Tb = Tt (the same assumption as in the Pennes
equation !). Hence (35), can be written in a more convenient
form, namely

ρbcp
∂Tt

∂t
= kt

∂2Tt

∂x2
− ρbvhcp

∂Tt

∂x
+ Qm (36)

which can be also re-written (with at = kt
ρbcp

-thermal diffusivity

of the tissue) as

∂Tt

∂t
= at

∂2Tt

∂x2
− vh

∂Tt

∂x
+ Qm

ρbcb
, at =

kt

ρbcb
(37)

or in a more familiar form as 1–D convection-diffusion equation
of heat transfer

∂Tt

∂t
+ vh

∂Tt

∂x
= at

∂2Tt

∂x2
+ Qm

ρbcb
(38)

3.2.1. Nondimensalization of the Wulff’s Model
The nondimensalization of (37) or (38) with θ = Tt(x)−Tt(0)

Tt(Lt)−Tt(0)
,

x̄ = x/Lf , t̄ = t/t0 and t0 = L2t /at (as well as assuming
kt = kb) yields

∂θ

∂ t̄
+ Pe

∂θ

∂ x̄
= ∂2θ

∂ x̄2
+ Q∗

m, Pe = vhLt

at
= vhLt

kt
ρbcb (39)

The groups

Pe = vhLt

at
= vhLt

kt
ρbcb, Q∗

m = Qm

ρbcb

L2t
at

= Qm
L2t
kt

(40)

are dimensionless.
Moreover, the Peclet number Pe =

advective transport/diffusion transport is a weighting
coefficient showing the contribution of the perfusion to
the total heat transfer in the living tissue. For low Peclet
numbers (low perfusion rates) the heat conduction transport
mechanism dominates.
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3.3. The Continuum Model of Klinger
The model of Klinger [36, 37] is similar to that of Wulff
[32] and focuses on correct description of experimental data
from thermal clearance experiments. In the Klinger’s model the
tissue temperature is related to the rate at which the deep tissue
temperature changed during point source heating [38, 39]. Taking
into account the critique of Perl [38, 39] to the Pennes model that
the unidirectional blood flow was postulated while the naturally
existing nonunidirectional blood flow, Klinger [40] formulated
the main problems emerging in the implantation of the Pennes
equation, and what should be improved, that is

K1) The solution envisages a microscopic (local) temperature,
that is the temperature at each point of the tissue.

K2) Themeasuring devices have finite dimensions and inmost of
the cases larger than the length scale of the tissue of interest
and consequently, the measured temperature is an average
value and cannot be accepted as a local one, i.e., it is not
local, but do not misunderstand it as a result of a memory
based differential operator since all derivatives used in the
integer-order models are local operators !

K3) The correction of the missing nonunidirectional blood
flow in Pennes’ model is corrected by introducing the
concept of convection multipoles related upon the in vivo
vascular anatomy, thus accounting not only the magnitude
of the blood flow but also its direction [21, 36, 37]. The
Klinger model is based on the assumption of constant tissue
properties (kt , ρt and ct) and incompressibility of the blood
flow (that is ∇ · vb = 0) and expressed as

ρtct
∂Tt

∂t
+ ρbcbvb · ∇Tt = kt∇2T + Q (41)

In a dimensionless form (41) becomes [21, 36, 37]

∂Tt

∂τ
+ Pev∗ · ∇̄Tt = ∇̄2Tt +

QL2

kt
(42)

Here v∗ denotes the blood velocity with respect to the
characteristic velocity used in the formulation of the Peclet
numberPe. In addition, ∇̄2 is dimensionless Laplacian gradient
operator based on a characteristic length scale L, while τ = L2/at
is the characteristic time (atis the tissue thermal diffusivity).
As commented by Charny [21] this time characterization is
equivalent to Fourier number of unity, that is when t = τ =
L2/a. However, this is not true, as it possible to see from the
preceding examples of nondimensalization of model equations.
The main question arising here is: What is the definition of the
characteristic length scale L? It should be determined arbitrary,
that is depending on the region of the tissue considered and the
experience of the modeler. It is noteworthy, to understand the
main idea of this model, that Klinger introduced a dimensional
velocity v̄ = Pe v∗ thus allowing the energy balance equation to
presented as

ψTt +
QL2

kt
= 0, ψ =

[
∇̄2 −

(
Pev∗ · ∇̄

)
− ∂

∂τ

]
(43)

Assuming the point heat source heating, the main idea in the
studies of Klinger) is the replacement of the source termQL2/kt by
a Dirac delta function (vanishing elsewhere but appearing at the
position r1); this immediately invoked the Green function based
solutions (41) [21, 36, 37, 41]. In accordance with Klinger, in all
vascular arrangements studied, the multiple moment is directly
proportional to the total volumetric blood flow rate through the
vessels with repeating tissue element. The effects of the multipole
moments depends on the ratio (λ/L); here L is the macroscopic
length scale, while λ is the length of the side of cube over which the
average tissue temperature is determined, and the nondimensional
volume is (λ/L)3. Since (λ/L) < 1 the results of Klinger’s
modeling experiments is that the countercurrent flow effect on the
tissue heat transfer is a second order effect.

Hence, the concept of averaging the temperature around a
certain position leads to [40]:

K4) The effect of the blood convection on the average
temperature can be represented as superposition of terms,
each of which mirrors a particular properties of local
symmetry of the vascular system.

K5) The order of magnitude of the convection effect decreases
with increasing in the symmetry.

K6) The Peclet number used by Klinger [36] is defined as a
ratio of two characteristic times: Pe = tcharconv/t

char
cond

, where

tcharconv = v0/L and tchar
cond

= L2/at (see the a comments after
(refeq:Wulff-9) where Pe is defined as a ratio of the two heat
fluxes (convection to conduction).

The model developed by Klinger is a serious contribution to bio-
heat modeling since it address some important issues, among
them [21, 36, 37, 40, 41]:

1) Since εb ≪ 1 [21] it follows that keff is practically independent
of the blood flow, and consequently it is reasonable to accept
keff ≈ ksolid tissue.

2) The Green function solution allows quantifying the vessel
number density, blood perfusion rate and the vessel spatial
construction. The principle outcome of this is that the
temperature field are strongly influenced by the spatial geometry
of the blood carrying vessels. More detailed analyzes are
available elsewhere [21, 29].

3.4. The Model of Chen-Holmes
Chen and Holmes [42] have considered heat transfer applied
in living tissue with hierarchical system of vessels with the

continuum approach. The modeling technology is the same as
in the models of Wulff and Klinger making energy balance of

tissue-blood control volume. This physical hypothesis is based
the existence of a large number of blood vessels in the tissue
domain (volume) over which the energy balance is taken. As a
rule, the characteristic length scale of this domain is much larger
than the characteristic dimensions of the individual blood vessels,
thus the continuum approach can be applied. Obviously, with
this approach the blood flow through the small vessels protruding
the tissue affects the definition of the effective heat transport
coefficients such as tissue conductivity and the metabolic term.
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Hence, in terms of local mean temperature, the energy balance
equation for both the tissue and vascular spaces are [21, 29, 42]:

In the solid tissue space

dVs

[
ρscs

∂Ts

∂t

]
= dQks︸︷︷︸

conduction

+ dQbs︸︷︷︸
blood

compartment

+ dQm︸︷︷︸
metabolic
heating

(44)

In the vascular space

dVb

[
ρbcb

∂Tb

∂t

]
= dQkb︸︷︷︸

conduction

− dQbs︸︷︷︸
blood

compartment

+
∫

S

(ρbcbT)vds

(45)
where the last integral term is the contribution of the convective
energy gain due to blood flow at velocity v across a surface area
S. With help of (44) and (45) when dV (the bulk control volume)
goes to zero the continuum energy balance of the tissue is

ρtct
∂Tt

∂t
= dqk︸︷︷︸

conduction

+ dqm︸︷︷︸
metabolic

+ dqp︸︷︷︸
blood
flow

(46)

dqk =
Qks + Qkb

dV
= ∇ · kk∇Tt , dqp =

1

dV

∫

S

(ρbcbT) vds

(47)
Note 2: The temperature under the integral sign in (47) is not
simply equal to Ts in contrast to the assumption used by Wulff
[32]. Moreover, the tissue temperature Tt is defined as

Tt =
1

ρc

[(
1− dVb

dV

)
ρscsTs +

dVb

dV
ρbcbTb

]
(48)

and since the ratio dVb/dV → 0 we get Tt → Ts.
Skipping details in the final formulation (see the analyzes

in [21, 29] of the new equation) named Chen-Holmes bio-heat
equation is

ρc
∂Tt

∂t
= ∇ · kt∇Tt︸ ︷︷ ︸

overal
heat

conduction

+ ∇ · kp∇Tt︸ ︷︷ ︸
effective

heat conduction
(with perfusion)

+ω∗
j

(
T∗
a − Tt

)
︸ ︷︷ ︸

perfusion
heat
source

−

− ρbcbvp (∇ · ∇Tt)︸ ︷︷ ︸
convective

heat
transfer

+ dqm

dt︸︷︷︸
metabolic

heat
source

(49)

ρc
∂Tt

∂t
= ∇ · Keff∇Tt︸ ︷︷ ︸

overall (effective)
heat

conduction

+ ∇ · kp∇Tt︸ ︷︷ ︸
effective

heat conduction
(with perfusion)

+ω∗
j

(
T∗
a − Tt

)
︸ ︷︷ ︸

perfusion
heat
source

−

− ρbcbvp (∇ · ∇Tt)︸ ︷︷ ︸
convective

heat
transfer

+ dqm

dt︸︷︷︸
metabolic

heat
source

(50)

Referring to the effective heat conduction of the tissue we address
the formulated conductivity enhancement by the blood flow
through the tissue. Hence, the effective heat conduction flux qcond
[the first term in the right-hand side of (50)] in the control
volume of the perfused tissueδV is presented as

qcond =
qcond(tissue) + qcond(blood)

δV
= ∇ ·

(
keff∇Tt

)
,

keff = εbkblood + (1− εb) ksolid tissue
(51)

Here, the effective heat conductivity is defined as in a two-phase
(solid-liquid) medium where the blood volumetric fraction is

εb =
δVb

δV
= control volume in the blood

control volume in the perfused tissue
(52)

Therefore, since εb ≪ 1 [21] it follows that keff is practically
independent of the blood flow, and consequently it is reasonable to
accept keff ≈ ksolid tissue. Further, using the porosity of the tissue
εb where blood flows, the effective density, heat capacity and local
mean tissue temperature are defined as [29, 42]

ρ = (1− εb) ρs + εbρb, c = 1

ρ
[(1− εb) (ρscsTs)

+εb (ρbcbTb)] (53)

Tt = 1

ρc
[(1− εb) (ρscsTs)+ εb (ρbcbTb)] (54)

where the subscript b denotes blood.

3.4.1. Some Remarks on the Chen-Holmes Model
The Chen-Holmes final equations need some relevant sub-
problems (of strong importance with respect to the physical
background) to be commented briefly, that is:

Remark 1: The tissue temperature Ts can be replaced by
the volume-weighted continuum temperature Tt as much as
εb ≪ 1. Moreover, a perfusion term ω∗

j

(
T∗
a − Tt

)
similar to

that in the Pennes equation also emerges in the Chen-Holmes
equation. However, this is a formal similarity, since the analysis
performed by Chen and Holmes about the thermal equilibration
lengths in various blood transporting vessels revealed that the
velocities are proportional to power of 1/3 of the vessel radii.
Hence, for larger vessels (such as aorta and large arteries, as well
as vein) the thermal equilibria require equilibration lengths to
have order of meters [21, 42]. Otherwise, in vessel compromising
microcirculations (arterioles, venules and capillaries) the thermal
equilibration lengths are of order of microns. Therefore, the Chen-
Holmes model and the relevant analysis clearly contradict the
Pennes formulation that all tissue-blood heat transfer occurs in
the capillary bed.

Remark 2: In the context of the preceding remark, Chen
and Holmes emphasis on the fact that the formal perfusion
heat source (54) differs in its physics from the perfusion term in
the model of Pennes. There two principle differences albeit the
formal similarities, that is Charny [21] and Chen and Holmes
[42]: (1) The coefficient ω∗

j is the total perfusion bleed-off to

the tissue only from the microvessels past the j∗th generation of
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branching. In contrast, the Pennes term ωb considers the bleed-
off from all generations of vasculature. (2) The perfusion term
of Chen-Holmes (54) is proportional to the departure difference(
T∗
a − Tt

)
which is different from (Ta0 − Tt) (see Equation 3.6.1).

The difference between
(
T∗
a − Tt

)
and Ta0−Tt can attain an order

of 10 − 50 percents using as a base for comparison the thermal
equilibration lengths of the large vessels.

Remark 3: Chen and Holmes accepted the idea of Wulff [32]
that the blood temperature equals the solid tissue temperature
everywhere in the control volume. This assumption allows the
perfusion through the control volume to be presented by a
conventional convection term −ρbcbvp · ∇Tt , where ρbcbvp is the
blood mass flux through the control volume of the tissue.

Remark 4: The effective (perfusion) conductivity [see the
second term in the right-hand sides of (49) and (50)] simplifies
the analysis assuming that the conductivity kp is a vascular
quantity, that is, it actually is related to the suggestion that the
heat flux proportional to temperature gradient is normal to the
differential surface area.

3.5. Weinbaum-Jiji Model
Weinbaum and Jiji [43–45] and Weinbaum et al. [46–49]
developed a model starting from objections to the Pennes model
addressing the missing directionality effects of the larger blood
vessels on the blood-tissue-heat transfer. Additional critiques of
Weinbaum and Jiji refereed to absence in the Pennes model
characteristics describing the geometry of the vessel system, that
is sizes, diameters, branching, etc. The series of studies beganwith
the ideas presented in Weinbaum and Jiji [43].

The general step in the Weinbaum-Jiji model (WJM) is the
modification of the Pennes equation with an effective thermal
conductivity which is a function of the blood flow rate and the
vessel architectures. This modification lays on the suggestion
that small arteries and veins are parallel, thus the flow direction
is countercurrent; hence, there are counterbalanced heating and
cooling. The hypothesis is mainly applicable to intermediate skin
layers (see comments in [21, 29]).

The governing equations for deep tissue layer are based
on the vessel geometry and capillary bleed-off phenomena
on a continuum basis. The continuity relationship related to
the mass conservation in paired blood vessels is defined as
d
ds

(
na2ū

)
= −2nagb. Here, s is the location along the length

of the countercurrent network which differs from the distance x
due to the inclination angle of the vessel pair with respect to the
normal axis to the skin surface [21]. Further, ū is the bulk mean
electricity in the blood vessel, while gb is the perfusion bleed-off
per unit vessel surface area (the subscript b refers to blood).

Next, neglecting the axial heat conduction in arteries (with
temperature Ta) and veins (with temperature Tv), the energy
balances for the blood flows are

(ρbcb)
d

ds

(
nπa2uTa

)
= −nqa − (ρbcb)

(
2πangb

)
Ta (55)

(ρvcv)
d

ds

(
nπa2uTv

)
= −nqa − (ρvcv)

(
2πangb

)
Tv (56)

Here qa is the flux of heat loss through the artery wall, while qv
is the heat gain by conduction (per unit length) into the vein

through its wall; Ta and Tv are the blood bulk temperature in the
arteries and the veins, respectively.

Further, the second term in (55) describes the heat loss from
the artery due to perfusion, while in (56) the corresponding term
is the gain from the atrial blood due to perfusion.

From (55) and (56), after substraction, it follows that

(ρbcb)

[
d

ds

(
nπa2uTa

)
− d

ds

(
nπa2u

)
Tv

]
= ∇ · kt∇ (Tt)+ qm

(57)
Applying the continuity equitation in the right-hand sides of
these equations we get the heat fluxes, namely

qa = − (ρc)b
(
nπa2u

) dTa

ds
,

qv = − (ρc)b
(
nπa2u

) dTv

ds
,

qa − qv = (ρc)b
(
πa2u

) d

ds
[Ta − Tv]

(58)

Taking into account that only Ta and Tv exist in the definitions of
the fluxes (58) it is impossible to determine the tissue temperature
Tt . To overcome this problem, it was suggested a simplification
that [44]

Tt
∼=

Ta + Tv

2
(59)

In addition, the authors suggested that the heat transfer through
the tissue surrounding the vessels is dominated by heat conduction
mechanism. As a consequence they assumed the simplification
defined as

qa ∼= qv = σkt (Ta − Tv) , σ = π

cosh−1
(
Ls
a

) (60)

where σ is a shape factor related to the ratio of vessel spacing to
the vessel diameter Ls/a.

After all these assumptions and simplifications the
Weinbaum-Jiji equation [44] is

nπ2akb

4kt
Pe

[
2gPe

σu

dTt

ds
− d

ds

(
aPe

σ

dTt

ds

)]
= ∇ ·

(
kt∇Tt

)
+ qm

(61)
with Peclet number defined as Pe = 2a(ρc)bu

kb
The Weinbaum-Jiji concept leads to a parabolic models with

infinite speed of the heat flux. We will remember about this
when the heat flux relation should be taken into account (in
models with phase-lag and fractional models). Now, we stress the
attention on some physical facts that might help us to understand
the physics behind. As it is mentioned inWeinbaum et al. [46] the
thermal relaxation of the blood in paired arteries and veins occurs
through two principle mechanisms:

(a) An axial departure decay due to radial diffusion in blood
vessels and the surrounding tissue,

(b) Countercurrent heat exchange when an arteries and veins are
closely juxtaposed.
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FIGURE 5 | Blood bleed-off trough thermally significant parallel blood vessels only. See explanation in text about the works of Weinbaum et al. [46] and Nakayama

et al. [52] and the ideas developed by Wissler [51]. Note: The area is subdivided by area of solid As and area of capillaries Ac.

It is worthy to note that an important characteristic of the
Weinbaum-Jiji model is its applicability to heat transfer in
peripheral tissues only, where the basic assumptions used in its
construction are valid. That is, the assumptions that the mean
blood temperature (Ta + Tv) /2 equals the tissue temperature. In
this models construction, the superposition used by Baish et al.
[50] is used to validate the underlying assumptions.

The Weinbaum-Jiji simplified model based on parallel blood
transporting vessels was commented thoroughly by Wissler [51]
and some questionable assumptions, crucial for its derivation,
were outlined, among them:

(a) The tissue and blood temperatures are related: therefore is
not necessary the tissue temperature to be calculated as an
arithmetic mean of the artery and venous temperatures (see
Equation 59).

(b) The temperature at which the blood enters a large vessel is
important because the thermal equilibration needs a certain
distance along the vessel wall (see the assumptions of the
Chen-Holmes model commented above).

(c) Obviously the tissue temperature will be intermediate
between the arterial an venous blood temperatures but
Equation (59) cast doubts about its general applicability.

(d) The assumed close thermal coupling between blood and
tissue (the basis of the Weinbaum-Jiji simplified model-see
Figure 5) leads to Equation (61) where the arterial blood
departure is missing.

(e) Wissler commented that the first version of the Weinbaum-
Jiji model (published in [47] and not commented here) is
more realistic that the simplified one (61).

For more details see Wissler [51] and the commented works of
Weinbaum and Jiji [43–45] and Weinbaum et al. [46–49], the

presentation in Chapter 10 of Jiji [28] as well as the analyzes in
Charny [21] and Khanafer and Varfai [29].

3.6. Characteristic Length Scales of
Temperature Distributions in Tissue
The temperature distributions in living tissues is related to
number of spacial scales, which mainly are taken into account
in the Chen-Holmes model (see Remark 1 in section 3.4.1). Let
us stress the attention on some of them [53].

3.6.1. Range where the heat transfer is controlled by

conduction
The Pennes equation , for instance defines the length scale

LD ∼
√

at

ωb
(62)

where at is the tissue thermal diffusivity, defined with
assumptions that ρb ≈ ρt and cb ≈ ct . This length scale is
associated with the time scale τconduction = L2D/at ≈ ωb.

3.6.2. Length scale of the blood-tissue thermal

equilibrium
Another, characteristic length scale Lv is considered as the mean
distance in a single vessel where the arterial flow achieves thermal
equilibrium the surrounding tissue when moving from the large
arteries to the arterioles. This length scale, actually, equals the
length scale LII characterizing the distance along vessel axis at
which the blood and tissue become in thermal equilibrium. In
accordance with [24, 46] the definition is

LII ∼
(
R2v
at

vb

)
ln

(
dmean

Rv

)
(63)
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where Rv is the radius of vessel, dmean is the mean distance
between vessels of the same length L; vb is the blood velocity
(averaged over the vessel cross-section). Following Lubashevsky
and Gafiychuk [53] and Witmore [54] commonly L ∼ dmean an
therefore taking into account that Lv ∼ LII we get

Lv ∼
at

ωb

[
ln

(
dmean

Rv

)−1
]
,ωb ∼

R2vvb

L3
(64)

since the total blood flow through the vessel is π2R2vvb and
consequently d2meanLv ∼ L3v .

The value related to Lv directly affects the tissue thermal
diffusivities [53]: typically at ≈ 2 × 10−7 m2/s, while ωb ≈
6× 10−2 s−1 and dmean/Rv ≈ 40. This yields length scales LD ≈
0.6 cm. and Lv ≈ 0.3 cm, while the time scale τcond ≈ 3 min.

3.7. Some Comments on the Continuum
Bio-Heat Models
The continuum models permit different features to be modeled
but under correctly defined circumstances. Here we stress the
attention on the comments of Crezee and Lagendijk [55] (even
though they repeat some previous standpoints), among them:

(1) The basic problem is that the structure of vascularized tissues
is too complex consisting of solid and fluid compartments
with architecture that cannot be easily described and
modeled. In the solid section the conduction is the dominant
heat transfer mode while convection takes part in the
fluid filled compartments. The vast number of small blood
transporting vessels the modeler task to incorporate the role
of all of them, down to singular capillaries, in the structures
of mathematical models.

(2) Albeit the fact that it would be possible to require exact
information on particular vascular geometry at micro-level,
it becomes difficult to model it and the most important issue
is that the results are unpractical despite the huge amounts
of computing resources involved in the simulation process.

In the context of the previous comments, the adequate models
should compromise between what we know and what is
reasonable in the model build-up. Following this standpoint and
looking at the modeling process pragmatically we may point out
some comments on the existing continuum models, that is

(3) The first attempt of Pennes is criticized, as commented
above, focusing on the basic assumption incorporated in the
perfusion term: the blood enter the tissue with the arterial
temperature and leave it with the averaged local temperature.
From this, the main critical points are:

(a) the heat transfer related to the blood mass transport
is neglected;

(b) the actual blood temperature entering a particular tissue
compartment is not accounted for.

(c) the individual heat transfer processes of individual tissue
such as cooling or heating are not incorporated in
the model.

(d) the entire venous vessel architecture is neglected with
the assumption that there is entrance lengths to attain
thermal equilibria.

Despite these critical notes the Pennes model is widely popular
due to its simple mathematical structure [56–61].

The models created after Pennes are based on effective
transport coefficients, particularly on effective heat
conductivity keff :

(4) The Wulff ’s model is the first incorporating such a transport
coefficient by a substitution of the Pennes’ perfusion term by
the product ρbcbU · gradT, thus introducing the mean fluid
velocity U as a variable. Actually, this is an attempt to create
a model of heat transfer in living tissues, similar to the ones
known from the convection heat transfer with unidirectional
flow; but, the blood transport in tissues is not unidirectional.

(5) The models of Chen-Holmes and Weinbaum-Jiji also use
keff , precisely an enhanced thermal conductivity (tensor).
This approach requires details about every component in the
vascularized structure, but assuming isotropy, for the sake
of simplicity in modeling, the conductivity tensor reduces to
scalar keff .

After these comments we may write the bio-heat transfer
model in a generalized in the form proposed by Crezee and
Lagendijk [55]

ctρt
∂T

∂T
=
(
∇keff∇T

)
− fccbρb (T − Ta)+ qm (65)

where keff and< fc ≤ 1 are phenomenological parameters.
Thus, repeating the Pennes construction, the generalized

equation (65) is only an instructive heat balance model allowing
on its basis particular bio-heat models to be developed: after
successive procedures allowing to establish the model structures
by direct averaging microscopic governing equations (see more
comments in [53]).

At the end of this section we may conclude that creations
of continuum based models of bio-heat transfer need serious
preliminary analyzes of the particular tissue of interest and the
associate blood transporting architectures of vessels.

4. BIO-HEAT MODELS USING THE
POROUS MEDIA CONCEPT

All continuum models commented above, in their origins, start
with criticisms of the flaws of the Pennes models and attempts to
improve its deficiencies. As we saw each models is applicable to
a particular type of living tissue and a generalization is hard to
be attained. Alternatively, to the continuum models, a concept
considering the matrix of tissue, arteries, veins and capillary
vessels a porous medium with specific porosity variations, effective
heat conductivities and heat dispersion by blood flow have been
developed [21, 29, 52, 62–66]. Following this concept the thermal
energy transfer between the blood flow and the tissue is modeled
with the basic assumption of thermal non-equilibrium [29, 67–
69] described by two energy equations for the blood phase and
the solid phase [29], namely (in original notations)
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Blood phase

ε (ρc)b

[
∂ 〈T〉b
∂t

+ 〈U〉b · ∇ 〈U〉b
]
= ∇ ·

[
kab · ∇ 〈T〉b

]
+

+hbs

[
〈T〉s − 〈T〉b

] (66)

Solid porous phase

(1− ε) (ρc)s
∂ 〈T〉s
∂t

= ∇ ·
[
kas · ∇ 〈T〉s

]
−

−hbs

[
〈T〉s − 〈T〉b

]
+ (1− ε)qm

(67)

Here 〈T〉b, 〈T〉s, kab, kas , hbs are local volume-averaged
arterial blood temperature, local volume-averaged solid-tissue
temperature, blood effective thermal conductivity tensors (for
the blood and solid phases, respectively), and the interstitial
convective heat transfer coefficient, correspondingly. Further, ε
and 〈U〉b are the solid phase porosity and the blood velocity
vector (all vectors are denoted as bold letters), accordingly. The
locally averaged interstitial convective heat transfer coefficient
hbs depends on the blood velocity and solid phase geometry;
the heat transfer between the phases is proportional to the

difference hbs

[
〈T〉s − 〈T〉b

]
. 〈T〉b and 〈T〉s are locally averaged

blood and solid tissue temperatures, while kab and kas the blood
and solid tissue effective conductivity tensors (averaged), as
mentioned above.

With the assumption of isotropic heat conduction the effective
conductivities are

kab = εkb + ktb, kas = (1− ε)ks (68)

where ktb denotes the thermal dispersion conductivity as a natural
consequence of the already existing models of heat transfer in
porous media [67, 68].

For tissues with small-sized blood vessels when ε << 1
the flowing blood is thermally equilibrated , then using (66)
and (67) the following simplified model can be developed (in
original notations)

(ρc)bǫ + (1− ε)(ρc)s
∂ 〈T〉
∂t

+ ε(ρc)b 〈U〉b · ∇ 〈T〉︸ ︷︷ ︸
(blood perfusion)

=

= ∇
(
kas + kas

)
· ∇ 〈T〉 + qm(1− ε)

(69)

The blood perfusion term in (69) corresponds to the ideas
developed byWulff [32], Charny [21], and Klinger [36, 37, 40, 41]
in contrast to the Pennes model where a uniform blood perfusion
ωρbcb

(
Ta,in − Tv,out

)
is assumed in the model construction.

4.1. Nakayama-Kuwahara Porous Medium
Approach
The porous media concept in bio-heat transfer uses the volume
averaging theory (VAT)[52, 65, 66], a technique well-established
in the area of fluid-saturated porous media. Looking at the
anatomy of the living tissues, three principle compartments can

be identified: blood vessels, cells and interstitium (see Figure 6).
For the sake of simplicity the volume averaging theory applicable
to living tissues [52, 65, 66] considers only two regions: the
vascular region and extravascular region (cells and interstitium).
This approach considers the entire biological structure as a fluid-
saturated porous medium through which the blood infiltrates. The
extravascular region is regarded as a solid matrix (despite the fact
that exatravascular liquid exists).

The volume averaging needs the control volume V to be
representative as characteristics but enough small in order to
apply the tools of integer-order calculus. In such a case the
volume averaging of certain variable φ is 〈φ〉 ≡ 1

V

∫
V

φdV and

therefore for the region occupied by the blood we have 〈φ〉b ≡
1
Vb

∫
Vb

φdV . The relationship between the two averaged values is

〈φ〉 = ε〈φ〉b, where ε = Vb/V defines the local porosity as a
ratio of the volume of the fluid (blood) to the entire volume in
the vascular space. In the dominating cases ε < 0.1 [65].

Further, considering the macroscopic governing equations of
continuity, Navier-Stokes equation and the energy equation, the
Nakayama-Kuwahara model consists of two energy equations
based onVAT [52, 65, 66], namely (in original notations-take into
account the summation notations)

Blood phase

εbρbcb
∂〈T〉b
∂t

+ ρbcb
∂

∂xj

〈
Uj

〉

〈T〉b = ∂

∂xj

(
εkb

∂〈T〉b
∂xj

+ εkdis(j,k)
∂〈T〉b
∂xk

)
−

− abhb

(
〈T〉b − 〈T〉s

)
− ρbcbω

(
〈T〉b − 〈T〉s

)
(70)

where kdis(j,k) is the dispersion related heat conductivity [70]

The solid tissue phase

(1− ε) ρscs
∂〈T〉s
∂t

= ∂

∂xj

[
(1− ε) ks

∂〈T〉s
∂xj

]

+ abhb

(
〈T〉b − 〈T〉s

)
+ ρbcbω

(
〈T〉b − 〈T〉s

)
+ (1− ε) qm

(71)

Equations (70) and (71) are correct for all cases of thermal non-
equilibrium (for more details about their derivations we refer
[65]). Now, the interesting part of this section is to see how these
equations are related to the models discussed earlier and derived
from a continuum point of view.

4.2. Relations of the Porous Media
Concept to the Existing Continuum Models
4.2.1. Pennes Model in Porous Media Terms
In terms of (70) and (71) the Pennes model can be expressed as
[52, 65]

(1− ε) ρscs
∂〈T〉s
∂t

= ∂

∂xj

[
(1− ε) ks

∂〈T〉s
∂xj

]

+ ρbcbωPennes

(
Ta0 − 〈T〉s

)
+ (1− ε) qm

(72)

Frontiers in Physics | www.frontiersin.org 15 November 2019 | Volume 7 | Article 189

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Hristov Bio-Heat Models Revisited

FIGURE 6 | A schematic presentation of a control volume V in a tissue with blood supply through arteries and veins in parallel relevant to the studies of porous media

approach.

where ωPennes is the mean blood perfusion rate; Ta0 is the
mean branchial artery temperature Comparing to the solid phase
energy equation (71) it is obvious that

ρbcbωPennes

(
Ta0 − 〈T〉s

)
= abhb

(
〈T〉b − 〈T〉s

)

+ ρbcbω
(
〈T〉b − 〈T〉s

)
(73)

where ab is the specific surface area contacting with the blood.
Assuming that Ta0 ≃ 〈T〉b for small vessels [65] it follows that

ωPennes ≃ ω + abhb

ρbcb
(74)

Hence, the Pennes perfusion rate is an effective value including
the surface heat transfer [65]. The second term in (74) is a ratio of
two components of the perfusion heat flux [see (73)]. Therefore
the assumption for complete thermal equilibrium is valid when
the Peclet number is too small (the diffusion transport dominates
and the advection could be neglected).

4.2.2. Klinger and Wulff Models in Porous Media

Terms
In terms of (70) and (71) the Klinger model is (in
original notations)

(1− ε) ρscs
∂〈T〉s
∂t

= ∂

∂xj

[
(1− ε) ks

∂〈T〉s
∂xj

]
−

−ρbcb
∂
〈
Uj

〉
〈T〉s

∂xj
+ (1− ε) qm

(75)

Suggesting a thermal equilibrium, that is 〈T〉b = 〈T〉s [65] it
follows from (70) and (71) that

[εbρbcb + (1− ε) ρscs]
∂〈T〉s
∂t

+ ρbcb
∂

∂xj

〈
Uj

〉
〈T〉s =

= ∂

∂xj
εkb + (1− ε) ks

∂〈T〉s
∂xj

+

+ εkdis(j,k)
∂〈T〉s
∂xk

+ (1− ε) qm (76)

Equation (76) reduces to the Klingermodel (41)when the porosity
(that is the ratio of vascular volume to the total volume) is
sufficiently small. Further, when the blood flow is strong and the
macroscopic diffusion transport can be neglected, then energy
equation for the blood phase (70) becomes

ρbcb
∂

∂xj

〈
Uj

〉
〈T〉b = −abhb

(
〈T〉b − 〈T〉s

)
−ρbcbω

(
〈T〉b − 〈T〉s

)

(77)
It is easy to see that with the approximation (77) the energy
equation for the solid phase (71) reduces to the Klinger equation
(76). Hence, the condition the Peclet number to be sufficiently
larger than unity (i.e., dominating convective transport with
respect the negligible conduction heat transfer) leads to the
Klinger model; the high Peclet number condition relates the
Klinger model to the heat transport in large vessels.
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5. INTEGER-ORDER MODELS WITH
RELAXATIONS (HYPERBOLIC MODELS)

The simplest model of heat conduction is based on the
Fourier law assuming that the heat flux is related to the
temperature gradient

q = −k
∂T

∂x
(78)

via the heat conductivity k as a transport coefficient. This a
reliable model confirmed by experiments, but there are serious
limitations for its applications. Precisely (78), is an adequate
model of the microscopic phenomenon of heat diffusion in
cases when the length scales are much greater than the mean
free path and the time scales are much greater then the thermal
relaxation time (see the excellent comments in [71]). However,
one unphysical outcome, such as with the diffusion models
based on the Fick’s law, is the infinite speed of temperature
disturbances, that is the heat flux has no damping. Physically,
temperature distribution is due tomotion of particle carriers such
as electrons and quanta such as photons [71] and reasonably
the realistic picture is the thermal disturbances to propagate with
finite speed.

The models of Pennes, Wulff, Klinger, Chen-Holmes and
Nakayama are based on the Fourier law leading to parabolic
equation with infinite speed of the heat flux. However, in real
systems the flux propagates with finite speed. In metals, for
example, the relaxation times are of orders from 10−8 to 10−14s
[72–74], while in biological tissues the relaxation times are of
order of 10–30 s [72–75]. In biological tissues, for example,
in muscles under local strong heating the experiments reveal
anisotropy in heat transport that cannot be explained by the
Fourier law only [76–78]. This leads to formulation of thermal
wave bio-heat models [79, 80] based on two main approaches:

(1) Maxwell-Cattaneo approach with heat flux time lag, known
also as Single-Phase Lag (SPL) approach [81, 82].

(2) Double-Phase-Lag (DPL) approach with relaxations in both
the heat flux and temperature gradient propagation [81–84].

Both approaches lead to hyperbolic equations with finite speeds
of the solutions discussed in the sequel of this section.

5.1. Single-Phase Lag Heat Conduction
(Maxwell-Cattaneo Approach)
5.1.1. Basic Approach in Modeling of Heat Flux

Relaxation by SPL Approach
Considering the need of heat flux relaxation (damping) the
simplest approach is to assume first order approximation (via
Taylor series expansion) of the flux with respect to the time [81–
84]. Hence,the extension of the Fourier law (see as an example
[85]) as a model with a single time-lag of the flux is

q(x, t+λq) = q(x, t)+λq
∂q(x, t)

∂t
= −k

∂T

∂x
, λq =

a

C2
, λq > 0

(79)
According to this postulation the temperature gradient
established at a point x at time t gives rise to a heat flux vector at

x at a later time t + λq, that is there is time-shift between the heat
flux and the temperature gradient. The heat flux relaxation time
λq, called also a phase-lag parameter has been interpreted from
different points of view [1]:

(i) from the framework of the second law of the irreversible
thermodynamics [81, 86],

(ii) λq comes from the phase-lag shift between the heat flux vector
and the temperature gradient [86] in high-rate responses;

(iii) λq is a constant representative for the interaction of different
inner structural element of a material with the heat flux [73]
and may take large values within the range (10−3− 103s) [74].

By using the formal temporal translation t́ = t + λq (79) may be
written in the equivalent delayed form [81]

q(x, t) = −k
∂T(x, t́ − λq)

∂x
, t́ > λq (80)

Actually, SPL is a result of a first order Taylor expansion and
this model is consistent with the Second law of Thermodynamics
[87, 88].

Equations (79) and (80) are the forward and backward forms
of SPL model, respectively [81]. For λq < 0 the role of cause
and effect are exchanged in corresponding forward and backward
forms [81].

Obviously, there are no restrictions to expand the flux (the
forward SPL problem) with a truncated Taylor series of various
orders. Thus, with second-order of Taylor expansion we have [81]

q+ λq
∂q

∂t
+
λ2q

w

∂2q

∂t2
+ O(λ3q) = −k

∂T

∂x
, λq > 0 (81)

The divergence of (79) and by help of the energy balance (see
Equation 84) yields a hyperbolic heat equation

λqp
∂2T

∂t2
+ p

∂T

∂t
= k

∂2T

∂x2
(82)

The solution of (82) is aweakly-damped wave equation [71] where
the temperature disturbance speed is vT =

√
k/λqcp.

Particularly, the first order approximation yields (79) which is
equivalent to the constitutive equation with fading memory (see
section 9)

q(t) = −
∫ ∞

0
R̃(t, s)

∂

∂x
T(t, s)ds, R̃(t, s) = k

λq
e
− t−s
λq (83)

The hyperbolic heat equation (82) can be regarded as a singular
perturbation of the Fourier heat conduction model, recovered
from (82) for λq → 0. This is a formal limit, as mentioned in [71]
because any solution of (82) reduces to a solution of the Fourier
heat conduction equation for λq → 0. This is a very sensitive
situation since if λq cannot be considered as mathematically small
the resulting solutions are unphysical (see detailed analysis in [71]
and the comments in [89, 90]).

Similar interrelations between Taylor series expansions
describing short-memory effects and integral constitutive
equations with rapidly fading memory are widely encountered
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in other physical applications displaying memory effects such as
viscoelasticity and electromagnetic wave propagation [81].

In the following parts of this section we will use the forward
forms of SPL and DPL because only these versions are related to the
existing time-fractional bio-heat models (section 6.2.1) as well to
the systematic approach in equation fractionalizations (developed
in section 7.2).

5.1.2. SPL (Heat-Wave) Model Without Blood

Perfusion Relaxation
With (79) and applying the energy balance equation

ρtct
∂T

∂t
= −∂q

∂x
(84)

we get a hyperbolic version of the Pennes model [22, 91] where
both the blood perfusion term and the metabolic heat source are
not affected by the thermal relaxation.

λq
∂2T

∂t2
+
(
1+ ωb

ρbcb

ρtct

)
∂T

∂t
+ωb

ρbcb

ρtct
(Tt − Tb) = a

∂2T

∂x2
+ qm

ρtct
(85)

Hereafter, in this section, we will continue with the two-
dimensional model of Bravo et. al.[92] in a dimensionless
form, namely

DeT
∂θ2

∂τ 2
+ ∂θ

∂τ
=
[
∂2θ

∂ξ 2
+ ∂2θ

∂η2

]
+ σ (θa − θ) = (8m +8r)

(86)
where the dimensionless variables are defined as

θ = T

Tc
, ξ = x

L
, η = y

L
, τ = at

L2
, 8 = L2qm

kTc
(87)

In the model (86) the relaxation time λq = a/C2 is defined
(as in the linear viscoelasticity [93–95] and heat waves [96, 97])
as a ratio of the thermal diffusivity a to the thermal velocity of
propagation in the medium C. The relaxation time λq allows
definition of the thermal version of the Deborah number DeT =
λq
(
a/L2

)
as a ratio of λq to the characteristic time of the heat

diffusion L2/at . Moreover,8 is the dimensionless metabolic heat,
despite the fact that the authors termed this terms as diffusive flux
of energy.

The contribution of the blood perfusion (as in the model of
Pennes) is weighted by the dimensionless factor σ = Lωb/at .

Precisely, in [92] σ is presented as σ = L2ωb
at

which actually

is a ratio of the blood perfusion rate ωb

[
s−1
]
to a velocity

scale (volume of fluid flow per volume of tissue) defined through
the thermal diffusivity as uT = at/L

[
s−1
]
without physical

meaning). Comparing (85), (86), and (87) it is easy to see how
the dimensionless groups can be defined.

In the context of dimensional consistency, let us look at
Equation (85). The fist term in left-hand side has dimension s−1

(if we assume conditionally that T is dimensionless only for these
comments), while the second and third terms are dimensionless
since ωb in the prefactors has dimension s−1. The dimension of
the first term in left-hand side is balanced by the dimension of
first term in right-hand side (because at has a dimensionm2s−1).

With the assumption to represent the solution as a sum of
steady state θ0 and transient terms θt

θ(ξ , η, τ ) = θ0(ξ , η)+ θt(ξ , η, τ )exp(−aτ ) (88)

the modeling dimensionless model and associated boundary
conditions are

DeT
∂θτ

∂τ 2
+ [1− 2σDeT]

∂θτ

∂τ
+ σ 2DeT = ∂2θ

∂ξ 2
+ ∂θ

∂η2

+8rexp(σ t) (89)

η = 1, −dθt(ξ , 1, η)

dη
= [8s − Bi0θair − θ0s] exp (στ) ,

(90)

η = 0, θt(η, 0, τ ) = 0 ξ = 0,
dθτ

dξ
= 0,

ξ = 1,
dθτ

dξ
= 0 (91)

The Biot number at steady-state Bi0 is a measure of the thermal
resistance of the tissue when the heat flux is imposed at its surface,
while θair is the dimensionless temperature of the ambient air.
In this context, the last term in (90) allows to be altered with
small perturbation of the atmosphere, i.e., as in an air stream
exhibiting a stochastic behavior. Hence, the model is oriented to
modeling thermal reactions of living tissues when external fluid
(air) with varying temperature is supplying or removing thermal
energy from bodies. From the analyzes above, it becomes clear
that this is a model oriented to bio-heat problems appearing
close to the skin surface. Second, in this model construction,
the blood perfusion is modeled as in the Pennes model without
detailed analysis of the vascular architecture. Third, the definition
of the Deborah number needs experimentally defined values of
the thermal relaxation time of the tissue λ and the speed of
thermal wave in the same medium.

The solutions performed in Bravo [92] with Biot number Bi0
less and almost equal to unity, indicate that they are related
to cases with negligible thermal gradients inside the tissue.
Furthermore, the range of variation in the Deborah number was
chosen from DeT = 0 (this means classical Fourier law without
flux lagging) up to DeT = 0.0013, that should mean fast thermal
relaxation of the tissue. However, it is hard to judge these results
since neither λ nor C are presented numerically in this work.

At the end, of this subsection, we may say that, actually, the
only new element is the application of the SPL concept (Maxwell-
Cattaneo approach) for heat flux relaxation. The definition of the
Deborah number as it is done is not useful since by definition
it should be a ratio of relaxation time λq to the current time t.
Precisely, with a general definition of the time scale t0 we have
for the left-hand side (after nondimensalization with respect to
the temperature θ = T/Tc and the space coordinates)

λq
∂θ

∂t2
+ ∂θ

∂t
⇒ λq

1

t20

∂θ

∂τ 2
+ 1

t0

∂θ

∂t
⇒ 1

t0

[(
λq

t0

)
∂2θ

∂τ 2
+ ∂θ

∂τ

]

(92)
Then, multiplying both sides of the dimensionless form of

the equation by t0 = L2

a we get (86). Hence, the thermal
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Deborah number DeT defined in Bravo [92] is a ratio of the
characteristic heat flux relaxation time to the characteristic thermal
diffusion time. Now, making dimensionless both the nominator
and denominator of DeT we get

DeT =
λq

t0
=
λq/t

t0/t
= De

1/Fo
(93)

Hence, the dimensionless prefactor DeT is a product of
two dimensionless times (dimensionless numbers), that
is DeT = DeFo.

We can see, that for small DeT , which is important when
λq << t0, the first term in the model (86) can be neglected
while the parabolic term ∂θ/∂τ determines the model behavior
with dominating diffusion and perfusion terms in the right-hand
side of (86). This can be simply tested by dividing both sides of
(86) by DeT . We have to stress the attention on the fact that the
definition of DeT , which can be considered as a fixed value of the
Fourier number Fo for t = λq, is by analogy, taking similarity of
the relaxation process in viscoelastic transient flow, as mentioned
above. It is not related to material flow, as mentioned in [92] since
the heat conduction equation as (86) does not encounter a flow
behavior of the material.

In the context of the SPL approach we have to mention the
convolution form of the thermal flux damping (relaxation) with
exponential memory kernel [96, 97], (related to 83), namely

qrelax = − k

τ

∫ t

0
et−τ∇ (x, τ) dτ (94)

which is erroneously represented as

qrelax(x, t) = − k

τ
e−t/τ

∫ t

0
es/τ∇ (x, s) ds (95)

following [98], thus destroying (violating) the memory effect
(damping) in the flux relaxation model. The coefficient k in (94)
should has a dimension [(W/m · K) · s]. It will be of a special
interest further in this article when the fading memory formalism
will be applied as a technique allowing correct fractionalization of
model equations [see the SPL relationship (94) and the comments
about (83)].

The Maxwell-Cattaneo approach was also used by Tang et al.
[99] in solution of surface heating of biological tissues, that is
excluding the perfusion effect from the problem.Well-performed
analytical-numerical study of skin burn injury induced by
radiation heating by 3-D model applying the Maxwell-Cattaneo
approach was carried out by Dai et al. [100]; see also the results
of Liu et al. [79].

5.1.3. Heat Wave Model With a Blood Perfusion

Relaxation
The Maxwell-Cattaneo approach uses only the first order
approximation of the heat flux (79) but as commented earlier
there are no restrictions more terms of the Taylor series
expansion to be involved [101] in the extension of the Fourier
law, namely

q(x, t + τq) ≈=
∑ τnq

n!

dn

dtn
q(x, t) = −k∇T(x, t) (96)

Then, using the Pennes construction of the heat flux and its
component (conduction, perfusion and metabolic source), and
the external heating qr , we may write [101]

ρtct
∂Tt(x, t + τq)

∂t
= k∇2Tt + ωbcb(x, t + τq)
[
Tb − Tt(x, t + τq)

]
+

+qm(x, t + τq)+ qr(x, t + τq) (97)

For the sake of simplicity of the analysis let us assume that qm = 0
and qr = 0. Then, following [101] let us consider only the
temperature elevation θ = T(x, t)−T(x, 0) above the steady-state
version of (97). In this case (subtracting (97) from the steady-state
version) the resulting equation is

ρtct
∂θt(x, t + τq)

∂t
= k∇2θt − ωbcb(x, t + τq)θ(x, t + τq) (98)

Assuming the traveling approach in solution of (98) (not
presented here) Liu et al. [101] concluded in their analysis that
the higher blood perfusion rate the higher frequency in osculation
of the tissue temperature, an effect that cannot be accounted by the
classical models of Pennes, Klinger, Wulff, and Chen-Holmes.

This is only an attempt in modeling the integer-order bio-
heat transfer by application of the Maxwell-Cattaneo approach
with a step ahead considering a relaxation of the blood perfusion
term. No more studies in this direction cannot be detected in the
literature, thus we stop comments on this approach. However,
we will come back to this idea, in a different form, when the bio-
heat models using fractional-differential operators will be used to
model the finite speed of heat flux.

5.2. Dual-Phase-Lag Heat Conduction
Concept
As an extension of the Maxwell-Cattaneo approach, which
cannot work correctly when in the medium there are micro-
structural interaction effects, the so-called Dual-Phase-Lag (DPL)
was proposed by Tzou [84] (see also the analysis and solutions in
[83, 102]) as

q+ λq
∂q

∂t
= −k

∂T

∂x
− kλT

∂

∂t

(
∂T

∂x

)
(99)

This construction of the heat flux-temperature gradient
relationship can be easily understand if the Taylor series
expansion is simultaneously applied to both sides of the Fourier
law (see the beginning section 5), that is in terms of first order of
approximations we get

q = −k
∂T

∂x︸ ︷︷ ︸
Fourier law

H⇒︸︷︷︸
Taylor
series

q+ λq
∂q

∂t
= −k

[
∂T

∂x
+ ∂

∂t

(
∂T

∂x

)]

︸ ︷︷ ︸
DPL model

(100)
In the DPL model (100) the relaxation times λq and λT can
be interpreted as the periods arising from thermal inertia of the
materials and the micro-structural interactions [1]. Especially λT
(λq was discussed earlier) can be considered as heat diffusion with
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sharp wave front (the hyperbolic equations exhibit finite speed
solutions) induced by the appearance of λq [83]. From (100) it
follows that at any point of the heat conductor the heat flux vector
at t + λq corresponds to a temperature gradient at time t + λT
[1, 103].

The basic condition [84] (see also in [81]) is that both λq and
λT are positive and the delay (the time-shift between λq and λT)
should be also positive, that is

λd ≈ λq − λT > 0 (101)

This condition allows to avoid violation of the common physical
causality between ∂T/∂x and q [81]. In this context, if a temporal
translation t́ = t + λT or t́ = t + λq is applied, then (99) can
be presented as the SPL model with a time delay λd = λq − λT
[81]. The stability of the DPL heat conduction models and the
thermodynamic restrictions are analyzed in Fabrizio and Franchi
[81], Quintanilla and Racke [103], Fabrizio and Lazzari [104], and
Fabrizio et al. [105], but we skip these problems since they are out
of the scope of this work.

It is noteworthy that when λq = λT the result of lagging
disappears and we get a diffusion model of heat conduction
[84]. For example, the experiments of Tang et al. [106] with IR
irradiated tissue revealed that λq = 20 s and λT = 14 s (data
obtained in the first 50s of the tissue irradiation) and these data
confirm the wave-like behavior of the heat transport [84].

Hence, by first and second order (or higher) approximations
via Taylor series it is possible to construct different phase-
lag heat conduction models with several relaxation times thus
accounting for heat transport through materials with complex
structures. Hereafter in this section, we will focus the attention
only on simple phase-lag models (obtained by first order
approximations). For more complex models of such a type we
refer Xu et al. [1].

5.2.1. Dual-Phase Lag Bio-Heat Model
The approach used in (100) to model relaxations by mixed time-
space derivative is well-known from the viscoelastic models [93–
95] and was used also in construction of models with fractional
derivatives [94, 95] (see further in this article).

Now, with the Pennes model [14] presented as

ρtct
∂Tt

∂t
= −k

∂q

∂x
+ ωbρbcb (Tb − Tt) (102)

where Tb is the blood temperature in the artery, that is Tb−Ta0 in
the Pennes’ model. Then, expressing the heat flux as the second
version of (100) we get [14]

λq
∂2Tt

∂t2
+
(
1+ λq

ωbρbcb

ρtct

)
∂Tt

∂t
+ ωbρbcb

ρtct
(Tb − Tt) =

= a

(
1+ λT

∂

∂t

)
∂Tt

∂x2
+ qm

ρtct

(103)

with initial conditions T(x, 0) = T0 and T(x, 0) = 0 in
accordance with the version of the model solved.

In (103) the product
(
λq

ωbρbcb
ρtct

)
in the pre-factor of the

second term in the left-hand side is completely dimensionless
since the product λqωb is dimensionless.

Two simple examples of DPL model solutions are briefly
presented next.

5.2.1.1. Constant flux as boundary condition to a tissue of

final depth
With a boundary condition −k ∂T

∂x = q0 to a tissue with final
depth L and introducing generalized time (t0), length (Lx),
temperature (Tscale) and heat flux (qscale) scales (and order of
magnitude analysis, as it was already done above) the following
dimensionless variables can be defined as [14]

ξ = x

√
Wbcb

k
, ξL = L

√
Wbcb

k
, ⇒ Lx =

√
k

Wbcb

η = t

(
Wbcb

ρtct

)
H⇒ t0 =

ρtct

Wbcb

θ(ξ , η) = T(x, t)− Tb

Tscale
, Tscale =

q0√
kWbcb

3q =
λq

t0
, 3T = λT

t0

ψ = qm

(
1

q0

k

Wbcb

)
H⇒ qscale = qo

√
Wbcb

k

(104)

Hence, the dimensionless models is

A
∂2θ

∂η2
+ B

∂θ

∂η
+ θ =

(
1+ D

∂

∂t

)
∂2θ

∂ξ 2
+ ψ (105)

0 ≤ A = 3q ≤ 1, 1 ≤ B = 1+3q ≤ 2,

0 ≤ D = 3T

3q
= λT

λq
≤ 1

with dimensionless initial and boundary conditions

θ(ξ , η = 0, θη(ξ , η) = 0

θξ (0, η) = −1, θξ (ξL, η) = 0
(106)

The Laplace transform solution of (105), (106) in the s space
is [14]

θ(ξ , s) =
cosh

[√
β (ξ − ξL)

]

s
√
β sinh

(√
βξL

) + ψ

s (1+ Ds) β

β(s) = Es2 + Fs+ G

1+Hs

(107)

The time-domain solution needs inversion via the Bromwich
integral but we will skip these huge expressions [14] since this
is out of the scope of present work where model constructions
and nondimensalizations are at issue.

Let us now see how the relaxation times and how their ratios
control the contributions of different heat transfer effects, as
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terms, in the model equation. Dividing all terms in (105) by A
we get

∂2θ

∂η2
+ B

A

∂θ

∂η
+ θ = 1

A

(
1+ D

∂

∂t

)
∂2θ

∂ξ 2
+ 1

A
ψ

1

A
= 1

3q
,

B

A
= 1+ 1

3q
,

D

A
= 3T

3q

(108)

The ratio A
A = 3T

3q
= λt

λq
has order of magnitude of unity.

Thus, the diffusion term in the right-hand side of (108) has a
strong influence on heat transport (by heat conduction). Further,
B/A = 1 + 1/3q and for very small values of λq we have
B/A >> 1, that is, there is a negligible inertia in the heat flux
propagation; then the second term in the left-hand side of (108)
dominates and determines a parabolic behavior of the model

(while the first term ∂2θ
∂η2

can be neglected. Otherwise, for high

values of 3q the model has strong hyperbolic behavior. In this
case, the contribution of metabolic terms is low but cannot be
neglected since this means eliminating of themetabolic heat from
the model, which is unphysical.

5.2.1.2. Periodic surface heat flux
The boundary condition q = q0exp(iωt) and
dimensionless variables

ξ = x

√
ω

a
, ξL = L

√
ω

a
H⇒ Lx =

√
a

ω

η = t, , τ1 = ωλq, τ2 = ωλT H⇒ t0 =
1

ω

θ(ξ , η) = k
T(x, t)− Tb

q0

√
ω

a
H⇒ Tscale =

q0

k

√
a

ω

30 =
Wbcb

ρtctω
, ϕ = qm

q0

√
k

ρtctω

(109)

allow to express the governing energy equation as

E
∂2θ

∂η2
+ F

∂θ

∂t
+ Gθ =

(
1+H

∂

∂η

)
∂2θ

∂ξ 2
+ ϕ (110)

with initial conditions

θ(ξ , 0) = θξ (ξ , 0) = 0 (111)

where E = τ1, F = 1+30τ1, G = 30 and H = τ1.
In the Laplace domain the solution of (110), (111) is

θ(ξ , s) =
cosh

[√
γ (ξ − ξL)

]

(s− i)
√
γ sinh

(√
γ ξL

) + ϕ

s(1+Hs)γ
,

γ (s) = Es2 + Fs+ G

1+Hs

(112)

The simulations in Askarizadeh and Ahmadikia [14] used value
of the surface heat flux q0 = 5 × 103W/m2 (a value typical for
the heat flux released by fire [107]).

5.2.2. Closing Briefs on the DPL Models
At the end of this section we have to refer to some additional
studies applying the dual-phase-lag approach to modeling bio-
heat problem. The dominating studies are on the Pennes
model, among them: laser radiation heat supply to the tissue
[108], temperature-dependent perfusion [109], skin heat transfer
[14], pulsed IR irradiation [106], cryosurgery of lung cancer
[110], laser heating [111, 112], interaction between tissue and a
cryoprobe [113, 114], human head relaxation times [115]. The
main idea of the DPL, that is the Taylor series expansions of the
integer-order heat conduction equation, thus creating damping
and heat wave behavior, is fruitfully used in fractionalization of
bio-heat models (see section 8.4).

6. FRACTIONAL BIO-HEAT EQUATIONS:
THE STATE-OF-THE-ART IN MODEL
FORMULATIONS

This section is devoted to the existing fractional models of
bio-heat transfer and the emphasis is on the technology of
fractionalization, not on solution techniques. The correct model
build-up, with correct application of both physical laws (and
hypothesizes) and mathematical tools is of primary importance
prior to attack the equations with simple or sophisticated solution
techniques. With modern mathematical tools, either analytical
or numerical any equation could be solved to greater extent.
However, the principle question is: Does this equation is the
adequate and correct model of what you need to represent in the
mathematical space by it? We try to answer this question when
analyzing the existing fractional versions of bio-heat equations.

6.1. Scaling and Nondimensalization of
Fractional Operators
Before starting any analyzes of time-fractional bio-heat models
we have to see how scaling and nondimensalizations have to
carried out when time-fractional operators are used. The next
section presents the common fractional operators used and
the techniques of nondimensalization (based on the recent
work [116]).

6.1.1. Time-Fractional Operators With Singular

(Power-Law) Memory
We start with same definitions which will be useful in reading
the following text even though they are available in many texts
devoted to fractional modeling and textbooks [117]

6.1.1.1. Fractional integral
The Riemann-Liouville fractional integral of order α > 0
is a natural result of the Cauchy multiple integral the m-
fold primitive of a function f (t) expressed as a single integral
convolution for arbitrary positive number α > 0 [117]

0I
α f (t) = 1

Ŵ(α)

∫ t

0
(t − z)α−1f (z)dz, t > 0, n ∈ R+ (113)

The law of exponents for fractional integrals is:

0D
−α

0D
−γ f (t) =0 D

−α−γ f (t) =0 D
−γ

0D
−α f (t)
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The Laplace transform of the fractional integral through the
convolution theorem yields

L
[
0D

α
t f (t)

]
= L

[
tα

Ŵ(α)

]
L
[
f (t); s

]
= s−αF(s) (114)

where LT
[
R(s) > 0

]
, and F(s) = LT

[
f (t)

]
are

Laplace transforms.

6.1.1.2. Riemann-Liouville time-fractional derivative
The Riemann-Liouville time-fractional derivative is defined as

0D
α f (t) =0 D

m
0I

m−α f (t) = 1

Ŵ(m− α)
dm

dtm

∫ t

0

f (z)

(t − z)α+1−m
dz,

m− 1 < α < m, m ∈ N

(115)

6.1.1.3. Caputo time-fractional derivative
The Caputo derivative of a casual function f (t) is defined [117] as

CDαt f (t) =0 I
m−α d

m

tm
f (t) =0 D

−(m−α)
t f (m) =

1

Ŵ(m− α)

∫ t

0

f (m)(z)

(t − z)α+1−m
dz, m− 1 < α < m

(116)

Form = 1 we have the common definition

CDαt f (t) =
1

Ŵ(1− α)

∫ t

0

1

(t − s)α
df (s)

ds
ds (117)

Caputo derivative of a constant is zero, i.e., CDαt C = 0 [117].
Further, when f (0) = f ′(0) = f ′′(0) = ... = f (n)(0) = 0, then the
Riemann-Liouville and the Caputo derivatives coincide.

Let us see the nondimensalization procedure to CDαt f (t),
which is uncommon in the existing literature [117] but is strongly
related to the analysis of the existing fractional bio-heat models
(see section 6.2). The Caputo derivative of the function U(t) is

CDαt U(t) = 1

Ŵ (1− α)

t∫

0

1

(t − s)α
d

ds
U(s)ds (118)

Changing the variables as Y = U/U0 and t̄ = t/TR, with U0 and
TR as characteristic scales of the process, so that 0 < Y < 1, 0 <
t̄ < 1, yields: U = U0 ⇒ dU/dt = U0dY/dt ⇒ dU/dt = U0TR,

Further, the nondimensalization of (t − α)−α yields (t−α)−α
TαR

.

Then, we get

CDαt Ū(t̄) = U0

TR
α

1

Ŵ (1− α)

t̄∫

0

1(
t̄ − s̄

)α
dY (s̄)

ds̄
ds̄ (119)

If the nondimensalization is only with respect to the time, than
we get

CDαt U(¯̄t) = 1

TR
α

1

Ŵ (1− α)

t̄∫

0

1(
t̄ − s̄

)α
dU (s̄)

ds̄
ds̄ (120)

The result of nondimensalization can be easy attributed to
the scale-invariant property of the power-law function used as
memory kernel as commented in Hristov [116].

Alternatively, when the power law is expressed through the
ratio (t/τ)−α where τ are the process relaxation time; the
process time scale is TR. The introduction of the relaxation time
leads to ταt−α and since τ = const. this is directly related
to the scale invariance of the power-law function. With the
nondimensalization procedure, as it was done above, we get

CDαt U(t̄) =
(
τ

TR

)α 1

Ŵ (1− α)

t̄∫

0

1(
t̄ − s̄

)α
dU (s̄)

ds̄
ds̄ (121)

that is, an expression similar to (120),
Hence, we got a dimensionless scaling coefficient (τ/TR)

α

which could be considered as a weighting factor, too.

6.1.1.4. Caputo-Fabrizio fractional operator
The Caputo and Fabrizio [118] time-fractional operator with
exponential kernel is defined as

CFDαt f (t) =
M(α)

1− α

∫ t

0
exp

[
−α(t − s)

1− α

]
df (t)

dt
ds ⇒

LT
[
C
CFD

α
t f (t)

]
=

pLT
[
f (t)− f (0)

]

p+ α(1− p)

(122)

where the normalizing functionM(α) should obey the conditions
M(0) = M(1) = 1, and LT

[
C
CFD

α
t f (t)

]
is the operator

Laplace transform.
From the definition (122) it follows that if f (t) = C = const.,

then CFD
α
t f (t) = 0, an expected results as in the classical Caputo

derivative [117]. Analyzes of applications of the Caputo-Fabrizio
operator are available in Hristov [96] and Hristov [119–121] and
will skip reference quotations here.

The constitution of the Caputo-Fabrizio operator the
stretched time is multiplied by a dimensional factor α/(1 −
α) and therefore it should have a dimension of inverse time
(t−1). Actually α is a dimensionless parameter and it is related
to the relaxation time [119] via nondimensalization of the
exponential relaxation kernel represented as exp [(t − s) /τ]
[119–121] precisely nondimensalization of the exponential
function, yields

exp

(
t − s

τ

)
= exp

(
t/t0 − s/t0

τ/t0

)
= exp

(
t̄ − s̄

τ̄

)
H⇒

H⇒ 1− α
α

= τ̄ = τ

t0
⇒ α = 1

1+ τ/t0

(123)

where t0 is the characteristic time of the relaxation process.
The nondimensalization of the kernel preserves the meaning

of the exponential memory function and avoids doubts about the
definition of the fractional order α as Hristov [119] (see also the
next comments).

Now, let us repeat the basic steps of nondimensalization
of the convolution integral, as it was done in section
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6.1.1.3. With Caputo-Fabrizio operator applied to a function
U(t) and dimensionless variables Y = U/U0, t̄ =
t/T, 0 < Y < 1, 0 < t̄ < 1 we have defined
as [116]

CFDαt U(t) = 1

1− α

t∫

0

exp

[
− α

1− α (t − s)

]
d

ds
U(s)ds (124)

where TR is the characteristic time-scale of the process.
After nondimensalization we get [116]

CFDαt U(t̄) ⇒ U0





1

1− α

t̄∫

0

exp

[
− α

1− α
(
t̄ − s̄

)]dY (s̄)
ds̄

ds̄





⇒

⇒ CFDαt U(t̄) = U0

[
CFDαt Y(t̄)

]

(125)

and the Laplace transform is

LT
[
c
cfD

α
t f (t)

]
= U0LT

{[
c
cfD

α
t U(t)

]}
(126)

When the nondimensalization is only with respect to the time by t̄ = t/T

we get

CFDαt U(t̄) ⇒ 1

1− α

t̄∫

0

exp

[
− α

1− α
(
t̄ − s̄

)]dU (s̄)
ds̄

ds̄

⇒ CFDαt U(t) (127)

Therefore, no additional prefactors emerge in front of the convolution

integral unlike the case of the Caputo-derivative with a power-law

kernel. This result can be attributed to the invariant properties of

the exponential function used as memory kernel. The construction

of Caputo-Fabrizio operator by definition, implicitly, contains a

dimensionless kernel since it comes from the classical (exp −
t/τ ), which is dimensionless. Additional scaling inside the kernels

such as (t/T) / (τ/T) does not change the ratio (exp − t/τ ), but

yields the product (1/τ) [(−t/T)]. Now, (1/τ) ∈ [0,∞) can

be to be replaced by the ratio [α/ (1− α)] ∈ [0,∞), where

α ∈ [0, 1].

6.2. Existing Formally Fractionalized
Versions: Analysis and Scaling
6.2.1. Ezzat’s Models
Ezzat et al. [122, 123] considered the classical Maxwell-Cattaneo

construction of the heat flux dependence on the temperature gradient

q (x, t + τ) = −k∇T (x, t). Recall, that in the Maxwell-Cattaneo

approach, a first order approximation q ≈ q + τ
∂q
∂t (local

expansion in a Taylor series) is used to reach the hyperbolic heat

conduction equation (section 5.1). Mimicking this approach, Ezzat

et al. [122, 123] applied fractional Taylor series expansion (of

order α) (see section 8.1 for details about fractional Taylor series)

with modified Riemann-Liouville derivatives of Jumarrie [124] [see

the definition (130)] and the heat flux-temperature gradient was

expressed as

q+ τα

α!

∂αq

∂tα
= −k∇T,

∂αq

∂tα
= Iα−1

[
∂q

∂t

]
, 0 < α < 1 (128)

where the Jumarries’ fractional Taylor series are defined

as [124]

f (x+ h) =
∞∑

k=0

hαk

Ŵ(1+ αk) f
(αk)(x) =

∞∑

k=0

hαk

(αk)!
f (αk)(x),

0 < α < 1 (129)

through the modified Jummarie derivative

(130)

J f
α(x) = 1

Ŵ(1− α)
d

dt

∫ t

0
(x− z)−α−1[f (x)− f (0)]dz, 0 < α < 1

(130)
The second version of (129) comes from the relationship

Ŵ(1+ αk) = :(αk)!

Recall, that τα/α! should be equivalent to λq in the simple

DPL model (79) and we may use the symbol λαq . The dimension

of λαq = τα/α! is sα . The relationship (128) for α → 1 reduces

to the integer-order Cattaneo construction (79) as mentioned

above. Next, with the Fourier law construction (131) at hands,

and taking the partial time-derivative of order α the result

is (132)

ρc
∂T (x, t)

∂t
= −∇q+ Q (x, t) , Q (x, t) = Wbcb

[Tb − T (x, t)]+ Qm (131)

ρc
∂

∂t

[
∂α

∂tα
T (x, t)

]
= −∇

(
∂α

∂tα
q

)
+ ∂α

∂tα
Q (x, t) , 0 < α < 1

(132)

Then, multiplying (132) by τα/α! both sides of (133) and

applying (128) in the right-hand side, the final Ezzat’s

equation is

ρc

(
T + τα

α!

∂αT

∂tα

)
= k∇2T +

(
Q+ τα

α!

∂αQ

∂tα

)
, 0 < α < 1 (133)

Actually, the Ezzat’s equation is a result of a formal fractionalization of

the Pennes’ equation by fractional Taylor series (first order expansion)

(about fractional Taylor series expansion see section 8.1) of the heat

flux and accepting the concept of Wulff (see the preceding text) about

the perfusion term (i.e., the reference temperature is the arterial blood

temperature Ta). With the pre-factors τα/α! in both sides of (133)

the equation is dimensionally consistent but why these pre-factors should

exist and what they model are questions unanswered in the studies

of Ezzat et al. [122, 123]. We will discuss this problem further in

section 8.2.

The scaling by θ = T−Ta
T0

and the length, and time scales (Lx and t0)

yields

(
θ + 1

tα0

τα

α!

∂αθ

∂t
α

)
= a

L2x
∇2θ +

(
1+ 1

tα0

τα

α!

∂α

∂t
α

)
Q

ρcT0
,

t = t

t0
, a = k

ρc
(134)

Since the ratio a/L2x (a = k/ρc is the thermal diffusivity

of the tissue) has a dimension of inverse time [1/s] it follows

that with a time scale t0 = L2x/a we get the dimensionless

(τ/t0 )
α relaxation time-delay (the term is in accordance with basic

postulate of Cattaneo), or in other words a fractional Fourier number
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defined through τ , that is α
τ Fo = aτ/L2x. Moreover, α

τ Fo =(
τ
t

) (
at/L2x

)
= DeFo. Hence, the ratio (τ/t0)

α in the Ezzat model

(see (134) is

(
τ

t0

)α
=
( τ
t

)α ( t

t0

)α
=
(

t

t0

)α ( at

L2x

)α
= (DeFo)α (135)

For α = 1 in (135) we get the integer-order relationship (93). In case

of t0 = τ we get that (τ/t0)
α = 1 and it follows from (135) that

(τ/t0)
α = (Fo)α . This leads to simplified terms of the time-fractional

derivatives in (134), that is

1

tα0

τα

α!

∂αθ

∂ t̄α
⇒ 1

α!

∂αθ

∂Foα
(136)

This result answers the question previously raised about appearance of

the pre-factors in the Ezzat model (134). The answer is simple: incomplete

nondimensalization of the model equation. In the above formula we did

not use the correct expression of λαq , omitting the dimensionless α!, only

for the sake of simplicity. Actually, the left-hand-side of (128) can be

presented as

q+ τα

α!

∂αq

∂tα
= q+ λαq

∂αq

∂tα
(137)

, where the fractional relaxation time is λαq = τα/α!.

Now, the problem remaining is the definition of the length

scale Lx. From the general requirement all terms to have order of

magnitude of unity and dimensionless pre-factors we get that (Q/ρcT0)

is dimensionless. Hence, the length scale cannot be defined through the

known parameters and it has to be taken from the experiments, depending

on the precision of measurements. In this context, we have to remember

that themagnitude of the time delay (relaxation time) of the tissue should

be also determined from experiments parallel to adequate value of the

fractional order α, thus recalling for accurate inverse problems taking

into account their ill-posed natures.

6.2.2. Damor’s Model
The model of Damor et al. [125] is a fractional version of the bio-heat

equation by a simple replacement the time derivative with a fractional

counterpart as Caputo derivative (order α ∈ (0, 1]) with singular

(power-law) kernel and the spatial derivative by a Riesz-Feller fractional

derivative of order β ∈ (0, 2], namely

ρtct
∂αTt (x, t)

∂tα
= kα,β

∂βTt (x, t)

∂xβ
+Wbcb (Ta − Tt)+ qm,

0 < α < 1, 0 < x < L (138)

whereWb and cb are related to the blood; the subscript t is related to the

tissue, as in the model of Pennes.

With initial and boundary conditions (139)

T (x, 0) = Ta, T (x, t)|x→±∞ = 0 (139)

Otherwise, for α = 1 and a Riemann-Liouville space derivative of order

γ ∈ (0, 2] [see (141)] the formal fractionalization results in [126]

ρtct
∂Tt (x, t)

∂t
= kγ

∂γTt (x, t)

∂xγ
+Wbcb (Ta − Tt)+ qm (140)

∂γTt (x, t)

∂xγ
= 1

Ŵ (2− α)
d

dx

x∫

0

Tt (t, s)

(x− s)γ
ds, 0 < γ ≤< 2 (141)

For β = 2 the model (138) reduces to [125]

ρtct
∂αTt (x, t)

∂tα
= k

∂2Tt (x, t)

∂x2
+Wbcb (Ta − Tt)+ qm, t > 0,

0 < x < L, 0 < α < 1 (142)

With dimensionless variables [125]

ξ = x

(
Wbcb

kα

)1/2

, η = t

(
Wbcb

ρtct

)1/α

, θ = T − Ta

T0
,

φ = Qmet

T0Wbcb
(143)

equation (142) takes a dimensionless form, namely

∂αθ

∂tα
+ θ = ∂2θ

∂ξ 2
+ φ (144)

with initial and boundary conditions

θ (ξ , 0) = 0, θ (ξ , η)|ξ→±∞ = 0 (145)

The dimensionless variables (143) reveal that the length and time

scales are

Lx =
(

kα

Wbcb

)1/2

, t0 =
(
ρtct

Wbcb

)1/α

, θ (ξ , η)|ξ→±∞ = 0 (146)

The nondimensalization with the dimensionless variables (143) seems,

to some extent, artificial (without explanations, performed in a

typical mathematical manner without physical explanations). To be

precise, if we use the generally defined length and time scales as

(Lx and t0), and with classical dimensionless temperature θ =
(T − Ta)/T0 or θ = T/T0 (in this case there is only a

shift in the temperature scale origin), and applying the classical

techniques of nondimensalization of differential equations we get

from (142)

[
ρtct

T0

(t0)
α

]
∂αθ (ξ , η)

∂η
= kα

[
T0

(Lx)
2

]
∂2Tt (ξ , η)

∂ξ 2

+WbcbθT0 + qm, θ (ξ , η)|ξ→±∞ = 0 (147)

Now, dividing all terms by the prefactor of the time fractional derivative[
ρtct

T0
(t0)

α

]
we get

∂αθ (ξ , η)

∂ηα
=
[(

kα

ρtct

)
1

(Lx)
2
(t0)

α

]
∂2Tt (ξ , η)

∂ξ 2

+
[

Wbcb

ρtct
1

(t0)
α

]
θ + qm

ρtctT0
(t0)

α (148)

Since at this moment all terms in (148), including the variable θ ,

should be of order of magnitude of unity and applying the order of

magnitude analysis requirement we may obtain the length and time

scales of the process. Hence, setting the pre-factor of the second term

in the right-hand side (Wbcb/ρtct) (t0)
α = 1 we get the time scale

(t0)
α = (ρtct/Wbcb) ⇒ t0 = (ρtct/Wbcb)

1/α . Further, from(
kα/ρtct

) (
1/(Lx)

2
)
(t0)

α = 1 we have t0 =
[
(Lx)

2/aα
]1/α

, where

aα = kα/ρtct is the fractional thermal diffusivity of the tissue with a

dimension
[
m2/sα

]
. Consequently, the requirement all prefactors of the

dimensionless equation to be equal to 1 yields Lx =
(
kα/Wbcb

)1/2
.
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Therefore, the characteristic time and length scales depend on

preliminary known process parameters and there is nothing magic in

formulation of the dimensionless variables (143) (do not believe that

they are formulated ad hoc). Moreover, since t0 = (ρtct/Wbcb )
1/α ,

consequently ηα defines the fractional Fourier number. αFo = (t/t0 ) =[
t/(ρtct/Wbcb )

1/α
]
. Thus, the time-fractional derivative in (144) can

be expressed as

∂αθ (ξ , η)

∂ηα
= ∂αθ (ξ , η)

∂ (αFo)
(149)

However, we refer the dimension of the fractional heat conductivity kα
for correctness and physical relevance of the model. When we define

the fraction thermal diffusivity aα = kα/ρtct it is obvious that it obeys

the dimensional homogeneity of the time-fractional diffusion equation.

Nevertheless, the problems is to the initial definition of kα . In the Damor’s

model this was not clarified and on this basis Ferras et al. [127] criticized

it (see the next section 6.2.3). Wemay say briefly, that the crucial problem

is the correct constitutive equation of the heat flux in terms of fractional

integral with adequate memory function and we will discuss this problem

at large further in this article.

6.2.3. Ferras et al. Model
Ferras et al. [127] adapted the Pennes equation by using timer-fractional

Caputo derivative in the form

∂αT (x, t)

∂tα
= A

∂

∂x

(
k (x)

∂T (x, t)

∂x

)
− BT (x, t)+ C,

0 < t < T∗, 0 < x < L, 0 < α < 1

(150)

where

A = 1

ρtct

1

τα−1
, B = Wbcb

ρtct

1

τα−1
, C = Wbcb + qm

ρtct

1

τα−1
(151)

It is worth-mentioning that in this model a new parameter τ (this is

not the past time in the fractional operator) was added to assure the

dimensional consistency. Thus, this is the same step as in the approach

of Ezzat commented above [see the operation transforming (132) into

(133)] where the multiplication by τα/α! is applied.

It is worth noting that Ferras et al. [127] focused the attention on

the fading memory approach following Gurtin [128] and Gurtin and

Pipkin [128] where the non-locality of the heat flux is expressed by a

convolution integral

q = −k

∞∫

0

K (t − τ) ∂
∂x

T (x, τ) dτ (152)

With this step Ferras et al. [127] got a heat conduction equation with

memory.

∂T (x, t)

∂t
= a

0∫

t

K (t − τ) ∂
2

∂x2
T (x, τ) dτ , a = k

ρc
(153)

Note 3: However, we only mention at this point that the model (153) is

not complete, as it should follow from the fading memory approach of

Gurtin [128] and Gurtin and Pipkin [128], because the right-hand side

of (153) is only the elastic part of the heat flux [97] (see also the analysis

in [96]).

The next step of Ferras et al. [127] is the assumption that the memory

kernel in (153) is a of power-law type, that resulted in

q = −
kpk

Ŵ (α)

d

dt

∞∫

0

(t − τ)α−1 ∂

∂x
T (x, τ)dτ , 0 < α < 1 (154)

which, in fact, is that the heat flux is proportional to a Riemann-Liouville

derivative of the temperature gradient. This is ad hoc formulation of a

constitutive equation about heat flux, without any physical background,

but in the sequel of this section we will see way this was done.

Then, with (154) the model (153) was transformed into

∂αT (x, t)

∂tα
= aα

∂

∂x

(
∂T (x, t)

∂x

)
(155)

The result (154) is, in fact, the time-fractional diffusion equation where

the thermal diffusivity aα should have a dimension
[
m2/sα

]
. Hence, we

may see why (154) was constituted; the explanation is simple: to get an

equation that we know how to solve.

Ferras et al. [127] raised a principle question about the construction

of their model (150) by introducing the new parameter in the coefficients

[see (151)] which physical meaning was difficult to be explained.

Moreover, Ferras et al. [127] claimed that a new relationship between

the heat flux and temperature gradient is established (153) and (154),

which actually is not true since the fading memory approach of Gurtin

and Pipkin [128] is incompletely used . We will explain these critical

standpoints further in this article but now let us turn on last result of

Ferras et al. [127]

ρtct
∂αT (x, t)

∂tα
= kα

∂

∂x

(
∂T (x, t)

∂x

)
, kα =

kpk

τα−1
(156)

defining in this way a “new fractional conductivity” kα = kpk/τ
α−1.

Note 4: The approach of Ferras et al. [127] is very dubious because it

uses only the pseudo-elastic part of the heat flux (see further the section

devoted to fading memory concept) expressing it as a Riemann-Liouville

derivative (154) that leads to a result which is a well-known, i.e., the

time-fractional diffusion equation. Now, the principle question is: What

would be the result is the Gurtin and Pipkin [128] approach is correctly

applied ? This problem is discussed in the next section where a systematic

approach in construction of bio-heat equation with memories involving

time-fractional operators is drawn.

6.3. Briefs on the Existing Time-Fractional
Bio-heat Models
Fractional models form a modern trend in modeling of transport

processes with relaxations. In this context, the use of time-fractional

derivatives in heat transfer model is a reasonable step since the integer-

order models are related to infinite heat flux speed. However, formal

replacement of integer-order derivatives by fractional counterparts (see

the model of Damor), in general, is not a correct approach since it is

not based on basic laws. Hence, striking the balance at the moment,

the only correctly derived time-fractional bio-heat is that of Ezzat (136).

The Ferras’ model uses a completely different basis for fractionalization

and we will comment it further in this text when the fading memory

approach will be applied. Besides, the existing studies demonstrate only

fractionalization techniques and model solutions but comparisons of the

simulations outputs with experimental data are still missing.

Frontiers in Physics | www.frontiersin.org 25 November 2019 | Volume 7 | Article 189

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Hristov Bio-Heat Models Revisited

7. TIME-FRACTIONAL BIO-HEAT MODELS:
A SYSTEMATIC APPROACH

7.1. Short Preamble
After the analysis of the existing fractional versions of the bio-heat

equations in the preceding section 6.2 we will try to draw some principle

steps how fractional operators can be implemented in existing models.

From the analysis of the continuum models it became clear that the

main work how to account for the vascular geometries and the effects

of either large or small blood transporting vessels was already done. At

this moment we accept these models as granted and the focus is on

the modeling technology accounting the fact that there is a heat flux

damping when it propagates through the living tissue. We already saw

how this could be done by the Maxwell-Cattaneo and the Dual-phase lag

approaches. Now, we will use some ideas from them and will draw new

ones toward correct formulation of heat transfer models applicable to

living tissues. The principle model where we will test these approaches is

the Pennes model due to its simplicity and taking into account that the

already existing time-fractional bio-heat models are mainly based on it.

7.2. Fractionalization: Principle Directions
From the lessons learned we may suggest two principle directions in

fractionalization of heat conduction models:

(A) By application of fractional Taylor series expansions concerning

three examples:

(A1) Heat flux damping by application of the fractional Taylor

series expansion (first order approximation).

(A2) Both heat flux and thermal gradient damping by application

of the fractional Taylor series expansions (first order approximations).

(A3) Thermal gradient damping in a viscoelastic manner by

applying time-fractional derivatives.

First of all, the fractional series expansions (first order approximations)

will be discussed as an analog of the methods applied in integer-order

models with relaxation (in section 8.2). All these methods use time-

fractional derivatives with singular (power-law kernels).

(B) The fading memory concept in two versions:

(B1) Simple fading memory (SFM) and

(B2) Extended Fading Memory (EFM).

These two fading memory versions will be investigated with various

relaxation kernels, some of them different from the common power-law.

Now, we will investigate these ideas step-by-step.

8. FRACTIONALIZATION BY SERIES
EXPANSIONS

8.1. Fractional Taylor Series: Necessary
Information
With this short note we only explain what the fractional Taylor series

expansion is meaning in the process of fractionalization of model

equations, thus making the further discussions more readable.

Many authors suggested general forms of power series (we already

commented an example with Jumarie’s derivative), precisely Taylor series

with fractional derivatives. Following Hardy [129] the Riemann general

Taylor series is

Rf (x+ x0) =
∞∑

k=0

xk+r
0

Ŵ(k+ r + 1)

(
Jk+r
s f

)
(x) (157)

where Jk+r
s is the Riemann-Liouville Fractional integral of order k+r (see

section 6.1.1.1).

Similarly, in 1931 Watanabe [130] developed the following

expression [131]

W f (x) =
n−1∑

m=−k

(x− x0)
α+m

Ŵ(α +m+ 1)

(
D̂α+m
s f

)
(x)+ Rn,k(x), k < α,

s ≤ x0 < x (158)

with a residual term

Rn,k(x) =
(
Jα+n
s D̂α+n

s f
)
(x)+ 1

Ŵ(−α − k)

∫ x0

0
(x− t)−α−k−1

(
D̂α−k−1
s f

)
(t)dt (159)

where D̂α+n
s is Riemann-Liouville of order α + n.

A Taylor series expansion in terms of Riemann-Liouville fractional

derivatives was proposed by Trujillo et al. [132]

T f (x) =
n∑

m=0

Ŵ(α)(x− x0)
mα

Ŵ
[
(m+ 1)α

] (
D̂mα
s f

)
x+0 + Rn(x, x0),

0 < α ≤ 1, s ≤ x0 < x (160)

with a residual terms

Rn (x, x0) =
(x− x0)

(n+1)α

Ŵ
[
(n+ 1)α + 1

]
(
D̂(n+1)α
s f

)
(ζ ), x0 ≤ ζ ≤ x (161)

At the end, we refer to the work of Odibat and Shawagfeh [133] where a

generalized Taylor series expansion in terms of Caputo derivativeDmα
x0

of

ordermα was proposed

OSf (x) =
n∑

m=0

{
1

Ŵ(mα + 1)
Dmα
x0

[
f (x0

]}
) (x− x0)

mα + Rαn (x),

0 < α ≤ 1, x0 < x ≤ b

Rαn (x) =

(
D
(m+1)
x0 f

)
(ξ )

Ŵ[(m+ 1)α + 1]
(x− x0)

(m+1)α

Dmα
x0

= Dαx0 · D
α
x0
· Dαx0 · ··

Dkα
a f (x) ∈ C(a, b], k = 0, 1, ..., n+ 1, 0 < α ≤ 1

(162)

more informatively, for the purposes of the following sections, we have

OSf (x) = f (x)+
[

1xα

Ŵ(1+ α)

]
∂α f

∂xα
+
[

1x2α

Ŵ(1+ 2α)

]

∂α f

∂xα

(
∂α f

∂xα
f (x)

)
,1x = x− x0, 0 < α ≤ 1

(163)

In terms of fractional relaxation times, we may write

OSf (x) = f (x)+ λα ∂
α f (x)

∂xα
++λ2α ∂

α f (x)

∂xα

(
∂α f

∂xα
f (x)

)
,

0 < α ≤ 1 (164)

where

λαm = (1x)αm

Ŵ(1+mα)
, 0 ≤ m <∞ (165)
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and λαm has a dimension
(
dimx

)mα
, where dimx is the dimension of x

(time or length, depending on the physics of the modeled process).

Now, we will stop with definitions of fractional Taylor series since

this is out of the scope of this work. We will concentrate the attention

on the first-order approximations only, that is for m = 1. For more

details and information we refer to El-Ajou et al. [131]. Hereafter in our

discussion we may assume that the fractional Taylor series are based on

Caputo derivative, if some other type is not especially specified. Recall,

that in the above equations, x was used optionally and this is not the

space coordinate used in the model. The relationships remain the same if

we will use the time t instead x.

8.2. Heat Flux Damping by Fractional
Taylor Series Expansion (Fractional SPL-Q)
This approach means application of the constitutive flux-gradient

relationship in the form

q (x, t) = q0 + λq
∂αq (x, t)

∂tα
(166)

without specification what type of fractional derivative is used (from the

previous section it is easy to see that using only 2 terms for k = 0 and

k = 1 we get similar results). When the Caputo derivative is used, then

λαkq is defined by Equation (165).

Actually this a fractional version of the Maxwell-Cattaneo approach

(see section 5) (which reduces to (79) for α = 1), an approach already

used by Ezzat et al. [122, 123]. We already analyzed this model (see

section 6.2.1) and therefore it will be more interesting to skip repetitions

and explain the other ideas for fractionalizations. The case with α 6= 1 is

termed here Fractional SPL with respect to the heat flux, SPL-Q.

It is noteworthy to mention that this is the simplest way to

achieve model fractionalization (excluding the formal replacement of

the derivatives by fractional ones, which in many case results in

unphysical models). However, there are no restrictions to apply high

order approximation by of the heat flux as

q (x, t) = q0 +
K∑

k=1

λkq
∂αkq (x, t)

∂tαk
(167)

Obviously, this will lead to more complex models with fractional

derivatives of different orders. In this context, their applicability could

be proved only by testing models to real data and answer sincerely to the

question: What this flux damping approach will model and how it will

improve the existing model to which it will be applied? Hence, we have

an idea, and a guiding line how to perform it, but final formulations of the

consequentmodels and solutions, and generally, answers to the emerging

questions are not available yet. At this moment we have to take into

account the comments at the end of section 5.1.1, precisely that λq should

be mathematically small since if we like the model to be physically sound.

8.3. Thermal Gradient Damping by
Fractional Taylor Series Expansions
(Fractional SPL-T)
Alternatively to the approach used in section 8.2, we apply the fractional

Taylor expansion to the temperature gradient only

∂T(x, t)

∂x
= ∂T(x, t)

∂x
+ λT

∂β

∂tβ

(
∂T(x, t)

∂x

)
, 0 < β ≤ 1 (168)

where

λT = τβ

Ŵ(1+ β) (169)

with a dimension sβ . Then, the fractionalized heat flux is

q(x, t,β) = k

(
1+ λT

∂β

∂tβ

)(
∂T(x, t)

∂x

)
(170)

or

q(x, t,β) = k
∂T(x, t)

∂x
+ k

β

T

∂β

∂tβ

(
∂T(x, t)

∂x

)
(171)

The transport coefficient k
β

T = kλT with a dimension (W/mK)sβ is a

damping heat conduction (some times termed as elastic heat conduction)

which has no effect when the memory kernel of ∂β/tβ goes to zero. For

β = 1 in (170) and (171), we get the right-hand side of the integer-

order DPL model. By analogy, we term this version of the fractional SPL,

FSPL-T (fractional SPL with respect to the temperature gradient).

The approach demonstrated here can be applied by application of

Taylor series expansions to either the time t, as it as done here, which

corresponds to the assumption of a homogenous heat conductor, or with

respect to the space coordinate x if the heat conduction is assumed as

non-homogeneous in space (see such examples in [134, 135]).

8.4. Fractional Dual-Phase Lag Approach
This approach is a fractional version of the Dual-Phase Lag concept

[83, 84, 102] and by analogy we will term it Fractional Dual-Phase Lag

(FDPL) concept. The time-fractional version of the constitutive equation

relating the heat flux and the temperature gradient is

q (x, t) = q0 + λq
∂αq (x, t)

∂tα
= k

(
1+ λT

∂β

∂tβ

)(
∂T(x, t)

∂x

)
(172)

Obviously, λq 6= λT . In order to preserve the causality of the heat flux

with respect to the temperature, we need λq > λT and λq − λT > 0.

Consequently, the causality requirement mentioned above needs α <

β , that is the flux should have stronger memory than the temperature

gradient. There is no mandatory condition requiring α = β but the

condition λq − λT > 0 remains. For α = β = 1 we get the integer

order DPL model (section 5.2), and obviously we should have λq > λT .

Further, the approach expressed by (166) could be applied to FDPL, but

we will skip this point since a serious physical background to do that is

missing, albeit the formal application of high order approximations by

fractional Taylor series is a valid mathematical approach.

8.5. Thermal Gradient Damping in a
Viscoelastic Manner
The idea for this damping of the heat flux (by high order time derivatives)

comes from the viscoelastic models of non-Newtonian general second

grade fluids where the relationship between the shear stress τshear (t) and

strain εstrain (t) is presented as [93–95, 136]

τshear (t) = µεstrain (t)+ λeDγt [εstrain (t)] ,

τ (t) = µε (t)+ E
dε (t)

dt
(173)

Here µ is a fluid dynamic viscosity, while λe is the first normal

stress modulus (analog to the heat conduction relaxation time in the

expansions by Taylor series commented above [94, 136]

ρ
∂u

∂t
= µ

∂2u

∂y2
+ α1Dγt

∂2u

∂y2
(174)
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Alternatively, the second version of (173) leads to the governing integer-

order equation of the unidirectional flow of a second grade fluid [93, 94,

136, 137], namely

∂u

∂t
= ν

∂2u

∂y2
+ β1

∂3u

∂t∂y2
(175)

where ν is fluid kinematic viscosity with dimension m2/s (analog of the

thermal diffusivity a).

The last term in (175) is the same as in the integer order DPL model

[see (99) or (100)].

To be precise, and for the sake of clarity of the following expression,

we mention that from the basic relationship between the velocity u(x, t)

and shear stress τfric (the flux of momentum in hydrodynamics

∂u

∂t
= −ν

∂τfric

∂x
(176)

and the integer-order relationship

τfric = −
[
ν + β1

∂

∂t

]
∂u

∂x
(177)

leading to (175) we actually have the SPL-T analog in the fluid flow.

The fractional version corresponding to (174) is

τfric = −
[
ν + β1

∂γ

∂tγ

]
∂u

∂x
(178)

Therefore, using analogy between the fluid velocity field and the

temperature field distribution in the body it is possible to formulate

a constitutive relationship between the heat flux and temperature

gradient as

q (x, t) = −k
∂T (x, t)

∂x
− kλeT

∂β

∂t

(
∂T (x, t)

∂x

)

= −k

(
1+ λeT

∂β

∂tβ

)
∂T (x, t)

∂x
(179)

Equation (179) is only the right-hand side of the Fractional Dual-Phase

Lag model formulated above. For β = 1 we get the integer order

DPL model (actually, only its half part related to the damping of the

temperature gradient).

Then, with the energy balance relationship ρcp
∂
∂tT (x, t) = − ∂q(x, t)

∂x
(without convection and volumetric heat sources: for the sake of

simplicity in presentation of this fractionalization technique) we get

Fractional model

∂T (x, t)

∂t
= k

∂2T (x, t)

∂x2
+ λeT

∂β

∂tβ

(
k
∂2T (x, t)

∂x2

)
, 0 < β < 1

(180)
where λeT has a dimension sβ and therefore the product kλeT could be

considered as a fractional (in time) heat conductivity kβ with a dimension

(W/mK) sβ .

Integer-order model for β = 1

∂T (x, t)

∂t
= k

∂2T (x, t)

∂x2
+ λeT

∂

∂t

(
k
∂2T (x, t)

∂x2

)
(181)

Further, applying this approach to the Pennes model we get

ρtct
∂Tt (x, t)

∂t
= k

∂2Tt (x, t)

∂x2
+ λeT

∂β

∂tβ

(
k
∂2Tt (x, t)

∂x2

)

+ ωbρbcb (Ta0 − Tt)+ qm (182)

Actually, the fractionalization applied here is equivalent to the one-

side approach (fractionalization only of the temperature gradient)

demonstrated in section 8.3.

Note 5: We like to stress the attention on the last two versions of

fractionalization where the damping effect is applied to the temperature

gradient only (sections 8.3 and 8.5). At a glance, it would be a violation

of the causalty between the heat flux and the temperature gradient.

However, we have to mention that the Taylor series expansion and

fractionalization of the viscoelastic manner are more philosophically

related to the fading memory concept developed in the next section 9

and there is no violation of causality mentioned above.

8.6. Comments on Fractionalization by
Taylor Series Expansions
Fractionalization of integer-order models by application of fractional

Taylor series expansions (first-order approximation) is a feasible

technique resulting in simple time-fractional equations. The techniques

demonstrated in this section dealt only with models assuming

homogenous tissues as heat conductors. Logically, the fractional Taylor

series technique could be extended toward space-fractional models

but this needs serious physical motivation and information about the

non-homogeneity of the tissue of interest. Regarding the existing time

fractional bio-heat models, only the Ezzat’ equation (136) [through

(128)] follows this approach correctly, despite the fact that the obsolete

Jummarie fractional derivative is used. However, there are no obstacles

the same approach to be applied with Taylor series based on the

Caputo derivative (this will change only the pre-factors of the time-

fractional terms). It might be expected that the approaches demonstrated

in this section would be successfully applied for creation of new

bio-heat models.

9. THE FADING MEMORY CONCEPT TO
HEAT CONDUCTION

9.1. Basic Principle of Fading Memory in
Heat Conduction
The fading memory concept relating the flux j(x, t) to its gradient, for

simple materials [128, 138–142], is modeled by the following integro-

differential equation

j (x, t) = −D0∇C (x, t)− D′
t∫

−∞

R (t − τ)∇C (x, τ) dτ (183)

as a manifestation of the Boltzmann linear superposition functional

expressing the flux history [143] through the function of influence

(memory kernel) R (t, τ). In (183) D0 and D′ are transport

coefficients (diffusivities).

The appropriate history value problem is related to the hereditary

integral in (183) [144]

d (t) =
0∫

−∞

R (t − τ)∇C (x, τ) dτ (184)

allowing to give a function C (x, t) on (−∞ < t ≤ 0)

From (183) and (184) it follows that

∇ · j (x, t) = −D01C (x, t)− D′
t∫

−∞

R (t − τ)1C (x, τ) dτ
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+ ∇ · d (t) (185)

Since C(x, t) is a causal function (vanishing for t < 0) and considered

only for 0 < t < ∞ it follows that d (t) = ∇ · d (t) = 0, thus (185) can

be rewritten as

∇ · j (x, t) = −D01C (x, t)− D′
t∫

0

R (t − τ)1C (x, τ) dτ (186)

Following Gurtin [128], Gurtin and Pipkin [128] the heat flux can be

expressed in a shorter version by the hereditary integral only

∇ · j (x, t) = −D′
t∫

0

R (t − τ)1C (x, τ) dτ (187)

which comes from (186) forD0 = 0. Hence we have two forms of the

fading memory concept:

(B1) Simple fading memory concept expressed by (187).

(B2) Extended fading memory concept expressed by (186).

Let us now see how these two versions of the fading memory work in the

heat conduction problem.

9.2. Simple Fading Memory Concept and
Effect of the Kernel
As it was several times commented above the Fourier law trough the

energy balance results in the simple parabolic heat conduction equation

by the relationship

ρcp
∂T

∂t
= − ∂q

∂x
, q (x, t) = −k

∂T (x, t)

∂x
⇒ ρcp

∂T

∂t
= k

∂2T

∂x2
(188)

with infinite speed of the heat flux.

A damping function related to a finite speed of heat diffusion in rigid

conductors was conceived by Cattaneo [145] by a generalization of the

Fourier law through a linear superposition of the heat flux and its time

history (with a time-delay s by a hereditary (memory) integral).

q(x, t) = −
∫ t

0
R (x, t − s)

∂

∂x
T (x, t − s) ds (189)

Now, the principle question is: What function R(x, t) should serve as

adequate memory kernel? It is noteworthy to mention that the type of

the relaxation function R(x, t) strongly depends on the reaction (response)

of the material where the heat transport takes place. It was demonstrated

in Hristov [116, 120], in the field of the linear viscoelasticity of materials,

the relaxation response defines the type of the memory function in the

hereditary integral. Hence, there is a freedom in choosing R(x, t), but this

cannot be done voluntary since the physics should be taken into account. In

the sequel we will see how the final form of the heat conduction equation

depends on choice of R(x, t).

9.2.1. Exponential Kernel
For homogeneous rigid heat conductors the memory function R (x, t)

is space-independent and can be represented, for instance, by the Jeffrey

kernel [96, 97] as

R (t, s) = exp (−(t − s)/τ) (190)

where the relaxation time τ is finite, i.e., τ = const.

Then, the energy balance yields the Cattaneo equation

∂T (x, t)

∂t
= −a2

τ

t∫

0

exp

[
−
(
t − s

τ

)]
∂T (x, s)

∂x
ds, a2 =

k2

ρcp
(191)

For t → ∞ the right-hand side is zero and no physical meaning comes

from this. Here, the thermal diffusivity a2 is elastic thermal diffusivity

relevant only to the fading memory term (see below the comments about

(194). For τ → 0 the limit of the Cattaneo equation is the Fourier law.

The first order approximation of the heat flux, in τ yields [146] is

q (x, t + τ) = −k1
∂T (x, t)

∂x
, q (x, t + τ) ≈ q (x, t)+ τ ∂q (x, t)

∂x
(192)

a technique already discussed in section 5.1

This leads to a first order differential equation [146]

1

τ
q (x, t)+ ∂q (x, t)

∂t
= − k1

τ

∂T (x, t)

∂x
(193)

The integration of (193) with help of (192) results in the Cattaneo

equation, which is the simplest giving rise to finite speed of flux

propagation. Further, continuing the integration and applying the

energy balance we will get the classical telegraphic hyperbolic equation.

However, now we look at results from a different viewpoint trying to

interpret the constitutive equations involving hereditary integral from

the position of fractional calculus.

9.2.2. Relaxation Function of Joseph and Preziosi
Considering the heat-wave nature of the conduction energy transfer

Joseph and Preziosi [97] have considered a modified relaxation function

replacing the exponential kernel in (189) by

RJP = k1δ (s)+
(
k2/τ

)
exp (−s/τ) (194)

, where δ (s) is Dirac delta function, while k1 and k2 are the effective

thermal conductivity and the elastic conductivity, respectively. This

constitutive equation defines the relaxation function in a way that

matches exactly the philosophy of fading memory concept: the first

term of RJP models the instantaneous (memory-less) reaction of the

heat conductor, that is this corresponds to the Fourier law, while the

second term corresponds to the flux damping effect and finite speed

of propagation.

In this case the Fourier law leads to a flux defined as [97, 146]

q (x, t) = −k1
∂T (x, t)

∂x
− k2

τ

t∫

0

e−(
t−s
τ )
∂T (x, s)

∂x
ds (195)

Consequently, the conservation equation of the internal energy in

the heat conductor [128] results in the Jeffrey-type integro-differential

equation [146]

∂T (x, t)

∂t
= a1

∂2T (x, t)

∂x2
+ a2

τ

t∫

0

e−(
t−s
τ )
∂2T (x, s)

∂x2
ds,

a1 = k1/ρcp, a2 = k2/ρcp (196)

The second term in (196) goes to zero for large times, since the memory

function fades and only the first term remains; despite this the time for

existence of the second term is related to the finite heat flux speed (i.e.,
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the flux is damped in time). Equation (196) corresponds to the extended

fading memory concept with a simple exponential kernel, as it will be

demonstrated in the sequel (see section 9.3.1 ).

Equation (196) can be expressed as [96] (see also the analysis in [119])

∂T (x, t)

∂t
= a1

∂2T (x, t)

∂x2
+ a2 (1− α) CFDαt

∂2T (x, t)

∂x2
,

t > 0, 0 < α ≤ 1 (197)

with a damping term controlled by the Caputo-Fabrizio operator

(derivative) [118]

CFD
α
t f (t) =

M (α)

1− α

t∫

0

exp

[
−α (t − s)

1− α

]
df (t)

dt
ds (198)

whereM (α) is a normalization function such thatM (0) = M (1) = 1.

9.2.3. Simple Power-Law Kernel
The exponential memory function (190) is a bonded kernel since for

t → 0+ it approach unity. However, the power-law memory kernel

tα−1/Ŵ(α) (with 0 < α < 1) is unbounded at t → 0+ and time-scale

invariant (the exponential function is not time scale invariant).

Now, constructing the shorter equation of the fading memory

concept (187) with a power-law function we get

q(x, t) = −Kα
1

Ŵ(α)

t∫

0

1

(t − τ )1−α
∂

∂x
T(x, τ )dτ (199)

We can see that the right-hand side in (199) is the Riemann-Liouville

fractional integral [117]. Hence, the heat flux gradient dq/dx is

∂q (x, t)

∂x
= −Kα

1

Ŵ(α)

t∫

0

1

(t − τ)1−α
∂2T(x, τ )

∂x2
dτ (200)

Now, applying the energy balance equation we get

ρcp
∂T(x, t)

∂t
= Kα

1

Ŵ(α)

t∫

0

1

(t − τ)1−α
∂2T(x, τ )

∂x2
dτ

︸ ︷︷ ︸
damped heat conduction (elastic term)

(201)

At this moment we may perform a small thought experiment. Let us

suggest that the heat conduction is modeled by the Continuous Time

Random Walk (CTRW) concept. Then, the right-hand side of (199)

corresponds to this model and we get

d

dx

[
qelastic(x, t)

]
= −Kα

1

Ŵ(α)

t∫

0

1

(t − τ)1−α
∂2T(x, τ )

∂x2
dτ (202)

Differentiation of (202) with respect to the time yields

∂

∂t

[
∂

∂x

(
qelastic(x, t)

)]
= −Kα

1

Ŵ(1− α)
d

dt

∫ t

0

1

(t − τ)α
∂2T(x, τ )

∂x2
dτ (203)

The right-hand side of (203) is the core of the constitutive equation about

the heat flux relaxation in the fractional model of Ferras et al. [127] (see

Equation 154). Further, the suggestion of Ferras et al. [127] simply means

that applying the heat balance we have to write

∂

∂t

[
ρcp

∂T(x, t)

∂t

]
= − ∂

∂t

(
∂

∂x
qelastic

)
= − ∂

∂x

(
∂

∂t
qelastic

)
(204)

where
∂q
∂t and

∂q
∂x should be taken from the elastic part of Equation 201).

Therefore, the final result of the Ferras’ constitutive equation

should be

ρcp
∂2T(x, t)

∂t2
= Kα

(
RLDαt

[
∂2T(x, t)

∂x2

])
(205)

but not equation (154).

In this context, we can see, as it was mentioned earlier in section

6.2.3, that the quest to find something that is well-known and easily

solvable may lead to use of wrong premises (the Ferras’s et al. constitutive

relationship heat flux-thermal gradient) violating basic thermodynamic

principles such as the fading memory concept or naively applying it. We

are aware about the commonly mentioned and published solutions of

the time-fractional heat-wave equation [117] (the final result of Ferras

et al. [127]) but applying it we need serious physical background. In the

specific case of bio-heat models such physical reasons are still missing (or

not published yet).

9.2.4. Extended Power-Law Kernel
Here, we suggest an extended power-law (EPL) memory kernel, by

analogy of the extended exponential relaxation function (189) of Joseph

and Preziosi [97], namely

REPL(t, s) = k1δ (s)+ k2
tα−1

Ŵ(α)
(206)

With

q = −k

∫ t

0
REPL(t, s)

∂T(x, s)

∂x
ds (207)

we get

q = −k1
∂T(x, t)

∂x
− k2

1

Ŵ(α)

∫ t

0

1

(t − s)1−α
∂T(x, s)

∂x
ds (208)

That is, the second term in (208) is the Riemann-Liouville fractional

integral. The result (208) coincides with the one obtained by the extended

fading memory concept and simple power-law kernel (see the next

section 9.3.2).

Then, the heat conduction equation becomes

∂T(x, t)

∂t
= a1

∂2T(x, t)

∂x2
− a2

1

Ŵ(α)

∫ t

0

1

(t − s)1−α
∂2T(x, s)

∂x2
ds,

a1 = k1

ρcp
, a2 =

k2

ρcp
(209)

For large times, when the memory kernel goes to zero (209), reduces

to the Fourier equation. The dimension of a1 is m2/s, while k1 has

dimension [W/m · K], that is the same as in the Fourier law. The

dimension of k2 (and a2) needs a special attention and this will be

discussed in section 9.4.
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9.3. Extended Fading Memory Concept and
Effect of the Kernel
9.3.1. Exponential Kernel
With the general construction (186) and exponential kernel (190) we get

∂T(x, t)

∂t
= a1

∂2T(x, t)

∂x2
− a2

τ

t∫

0

e−(
t−s
τ )
∂2T (x, s)

∂x2
ds,

a1 =
k1

ρcp
, a2 =

k2

ρcp
(210)

The result (210) matches (196) obtained with the simple fading memory

concept and the extended exponential kernel (194).

9.3.2. Power-Law Kernel
The exponential memory function (190) is a bonded kernel since for

t → 0+ it approach unity. However, the power-law memory kernel

tα−1/Ŵ(α) (with 0 < α < 1) is unbounded at t → 0+ and time-scale

invariant (the exponential function is not time scale invariant).

Constructing the basic equation of the fading memory concept (183)

with a power-law function we get

q(x, t) = −K1∇C(x, t)− Kα
1

Ŵ(α)

t∫

0

1

(t − τ )1−α ∇T(x, τ )dτ (211)

The second term in (211) is the Riemann-Liouville fractional integral

[117] and the heat flux gradient dq/dx is

dq (x, t)

dx
= −K1

∂2T(x, t)

∂x2
− Kα

1

Ŵ(α)

t∫

0

1

(t − τ)1−α
∂2T(x, τ )

∂x2
dτ

(212)
Then, applying the energy balance equation we get

ρcp
∂T(x, t)

∂t
= K1

∂2T(x, t)

∂x2︸ ︷︷ ︸
instantaneous conduction

+

+ Kα
1

Ŵ(α)

t∫

0

1

(t − τ)1−α
∂2T(x, τ )

∂x2
dτ

︸ ︷︷ ︸
damped heat conduction (elastic term)

(213)

For large times, when the memory kernel vanishes, equation (213)

reduces to the Fourier model.

9.4. On the Dimensionality in Constitutive
Equations With Fading Memory Operators
The dimensions of the coefficients with temporal relaxations in both the

fractional Taylor series and fading memory operators were mentioned

several times, but now we like to stress the attention especially on this

point. When the flux damping is modeled by either SPL or DPL in

integer-order or fractional manner we have

q = q0 + λq
∂αq(x, t)

∂tα
, 0 < α ≤ 1 (214)

the fading memory is incorporated in the construction of the fractional

derivative. In this case the dimensionality of λq is [s
α], thus the second

term in (214) has a dimension of heat flux, that is
(
W/m2

)
.

Similarly, when the temperature gradient is damped by SPL or DPL,

we have

k
∂T

∂x
= k

∂T(x, t)

∂x
+ kα

∂αT(x, t)

∂tα
, 0 < α ≤ 1 (215)

where kα has dimension of (W/m · K) sα , that is kα = k · λT .
Alternatively, we may write

K = k+ kα = k

(
1+ kα

k

)
= k (1+ λT) (216)

The term (1+ λT) is valid only during the short time relaxation defined

by λT and has a temporal dimension defined by λT . Therefore, for

times coinciding with the relaxation (damping) period (0 < t ≤ λT)

the dimension of K is (W/m · K) sα in contrast to the long-time case

(t > λT) when the dimension is (W/m · K). This is strongly related to

the fact that the two terms in the right-side hand of (214) (the same in

(215) are transient but:

(1) The local first term (with coefficient to k) is transient due the

change in the boundary condition at t = 0, while

(2) The second one (with the memory) (with a lower terminal of the

integral at t = 0 due to the causalty condition) is also transient but it is

non-local and is related to the time history of the flux.

If the medium relaxation time is zero, that is an instantaneous reaction

of the disturbed body is observed, this means that, for instance, with

λT = λq we get K = k (see Equation 216). In this context, we

may say something related to the heat conduction problem and the

dimensionality of the coefficients involved.

In the classical heat conduction, since the time of Fourier, the

dimension of the heat conductivity is time-independent and when

a transient heat conductivity appears in constitutive equation with

memory, this may cause ambiguities and cast doubts. The simple

explanations are:

(a) The traditional time-independent conductivity occurs in

problems when the transient processes are larger that the time duration

of the action at the boundary (it is well-known that the Fourier heat

conduction equation works only for large time, and fails for short times,

as well as is thermodynamical inconsistent). That is, there is no need

to know what is the relationship between the time of the action at

the boundary, the total transient time of the process and the specific

relaxation time (the accommodation time) of the materials, i.e., now

knowledge about the process history is needed (memoryless process).

Recall also the comments just after Equations (78) and (79).

(b) However, when the time duration of the action at the boundary

is comparable with the material thermal relaxation time, then the

damping of the heat flux should be taken into account and this is well

described by a hereditary integral (a technique know since the time of

Boltzmann [143]).

(c) Better understanding of the thoughts above, could be attained if

we consider the heat transfer by conduction when the heat flux is related

to the temperature gradient by the thermal diffusivity aT = k/ρcp. Then,

we may write the well-known time-fractional heat-wave equation

∂αT

∂tα
= aαT

∂2T

∂x2
(217)

where the dimensionality of aαT is m2/sα , and the time fractional

derivative is either from Riemann-Liouville or Caputo type.

From (217) it follows that of the heat balance equation is ∂T/∂t =
−∂q/∂x then the heat flux should be related to the thermal gradient by

the relation q = −aαT (∂T/∂x).
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Hence, there is no contradiction with the classical heat condition, but

only development of the existing knowledge. This is a simple example

involving a time-fractional derivative, as a more familiar operator to the

people working in fractional modeling, but the same philosophy remains

when fractional integral of Riemann-Liouville type appears in application

of the fading memory principle. Obviously, the physics of the heat flux

relaxation should be correctly approximated by the type of the memory

kernel and the definition of the temporal dimension of coefficient in front

of the fractional integral.

This short section only marks the problem and comments issues

relevant to the discussed topic since for many readers the appearance

of time-fractional-dependent heat conductivity (or thermal diffusivity),

for instance, will be quite unusual and heretic, or at least erroneous.

Formore studies and examples involving fractional (non-local problems)

and fractal (local problems) dimensions we refer to Westerlund [147],

Muslih and Baleanu [148], Ebaid et al. [149], Gomez-Aguilar et al.

[150, 151], Dokoumetzidis and Macheras [152], and Liu [153].

10. FADING MEMORY CONCEPT TO
BIO-HEAT EQUATIONS: EXAMPLES

Now, at the end of this long analysis we present two examples how the

fading memory concept works in the formulation of bio-heat equations

with memories.

10.1. Pennes’ Equation With a Fading
Memory
10.1.1. Extended Fading Memory Concept
Let us consider equation (22) in section 3.1. Assuming that the non-local

perfusion term and the metabolic heat are not relaxing, and applying the

fading memory principle we get

ρFcF
∂TF (x, t)

∂t
= kt

∂2TF (x, t)

∂x2
+ Kα

∫ t

0
R(t, τ )

∂2TF (x, τ)

∂x2
dτ

− hF
PF

AF
[TF (x, t)− T∞] (218)

Now, applying different memory kernels R(t, τ ) wemay obtain equations

in different forms with different fractional operators, but recall the choice

of R(t, t) should be physically motivated. The application of the fading

memory principle to the Pennes equation results in a nice-lookingmodel,

but it still retains its main deficiency: the already commented problems

with the perfusion term.

10.1.2. Simple Fading Memory Concept
In this simple case there is no instantaneous heat flux component, that is

first therm in (218) is zero. Then, we have

∂TF (x, t)

∂t
= Kα

ρFcF

∫ t

0
R(t, τ )

∂2TF (x, τ)

∂x2
dτ − hF

ρFcF

PF

AF

[TF (x, t)− T∞] , aαT = Kα

ρFcF
(219)

where aαT is the thermal diffusivity with a dimension m2/sα . Hence,

only the damping term remains. The relaxation function R(t, τ ) strongly

depends on the physical concept assumed in the heat conduction

modeling, precisely what should be the heat conduction transfer

mechanism. With the power-law kernel, for instance, as in (213),

accepting the random walk concept, we get Riemann-Liouville integral

and consequently the time-fractional heat-wave equation with a sink. It

is easy to check different versions of (219) by change in the memory

kernel, but this should be seriously motivated in regards what type of

tissue will be considered and how the relaxation function is related to its

real thermal behavior.

10.2. Wulff’s Model With a Fading Memory
10.2.1. Extended Fading Memory Concept
Let us start with Wulff formulation of the heat flux (33) [21, 29, 32].

Applying the fading memory principle we have

q =
[
−kt∇Tt + ρbhhvh

]
︸ ︷︷ ︸

instantaneous heat transfer

− Kα

∫ t

0
R(t, τ )∇Tt(x, τ )dτ +

∫ t

0
R(t, τ )ρbhhvhdτ

︸ ︷︷ ︸
elastic heat transport

(220)

Thus, the energy balance ρbcb
∂Tt
∂t = −∇ · q reads

ρbcb
∂Tt

∂t
=
[
kt
∂2Tt

∂x2
− ρbhh

∂vh

∂x

]
+ Kα

∫ t

0
R(t, τ )

∂2Tt(x, τ )

∂x2
dτ

−Kv

∫ t

0
R(t, τ )ρbhh

∂vh

∂x
dτ + Qm (221)

which is the Wulff equation with a fading memory. The coefficients

Kα and Kv depend on the type of the memory function used in the

hereditary integrals. Applying different memory kernels (with strong

physical motivation) equation (221) can be expressed in terms of

different fractional operators. However, this draw new research lines

which are out of the scope of this work.

11. SOME COMMENTS ON THE
FRACTIONALIZATION APPROACHES

Now, after the performed analyzes in sections 7 and 7.2 (and the related

results in sections 8 and 9) we may draw some conclusions on feasibility

of the fractionalization approaches and emerging problems, namely

(1) The simple replacement of time-derivatives in existing integer-order

models by fractional counterparts, irrespective of the type of the

memory kernels used is blind and erroneous approach without

physical background.

(2) Fractionalization by fractional Taylor series expansion of both the

heat flux and the temperature gradient is logical, mathematically

correct and based on analogies already used in the Maxwell-

Cattaneo approach resulting in the hyperbolic heat-wave model and

in the Dual-Phase Lag (DPL) model.

(3) Fractionalization by additional mixed time-space derivative is useful

approach based on analogies of the modeling equations of the

non-Newtonian fluid flow (second order fluid) and the fact that

lagging can be obtained by Taylor series (in time) expansion of the

temperature gradient. The result is a simple equation with only one

damping term in contrast the results of the preceding (point 1 and

point 2) final models (see the model of Ezzat, for example).

(4) The fading memory approach is not restrictive in the initial step

of fractionalization, as in the cases when fractional Taylor series

are applied; it is based on rigorous thermodynamic principles and

gives a freedom to apply different memory kernels depending on

the experimentally exhibited responses (relaxation function) of the

materials (tissues) where the heat conduction should be modeled. A

good example is the Wulff models with a fading memory derived

here since it demonstrates that both the heat diffusion (conduction)
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and the perfusion blood flux can exhibit relaxations (i.e., these fluxed

have finite speeds of propagation). There are a lot attractive and

challenging problems in this area that should be solved.

(5) The fractionalization problem discussed are oriented only to

damping heat fluxes in the time domain, that is the tissues where

the heat transfer should take place are assumed as homogenous.

To some extent, the spacial non-homogeneity of the tissues are

modeled by effective transport coefficients (such as in the models of

Wulff, Klinger and Weinbaum-Jiji) thus facilitating the process of

fractionalization. Space-fractional models are open problems [154]

waiting correct build-ups with correct physical analyzes of the both

the tissue structures and vascular architectures.

12. FINAL COMMENTS

Finally, after the long route through the beautiful forest of bio-heat

models we may say that the first goal of the analysis done is successfully

attained. Precisely, a direct parallel between the existing integer-order

models and the corresponding fractional versions was drawn. To some

extent, the existing fractional bio-heat models are not systematically

derived, excluding the attempt of Ezzat which falls into one of the

systematic way how fractionalization could be done. Actually, the

good understanding of the contributions of different terms of the

discussed models needs nondimensalization since this allows to see

the contributions of different processes involved in the heat transfer

in tissues. This a standard procedure in mathematical modeling but

sometimes the reported studies define the dimensionless variables ad

hoc without deep physical analysis and consequent order of magnitude

analysis. Last but not least, collecting dispersed studies in both bio-heat

model formulations, their analyzes, solution and fractionalizations (if

this is well motivated) is a difficult task. We hope the work done here

and its results will serve as a good source of information and new ideas,

and we may expect that the systematic approach in the formulation

of the time-fractional models will draw more correct approaches, from

mathematical and physical viewpoints, of course. The correct model

formulation is of primary importance inmathematical modeling and this

goal has a priority over calculation techniques.
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