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Over the years the field of non-Markovian stochastic processes and anomalous

diffusion evolved from a specialized topic to mainstream theory, which transgressed

the realms of physics to chemistry, biology and ecology. Numerous phenomenological

approaches emerged, which can more or less successfully reproduce or account

for experimental observations in condensed matter, biological and/or single-particle

systems. However, as far as their predictions are concerned these approaches are

not unique, often build on conceptually orthogonal ideas, and are typically employed

on an ad-hoc basis. It therefore seems timely and desirable to establish a systematic,

mathematically unifying and clean approach starting from more fine-grained principles.

Here we analyze projection-induced ergodic non-Markovian dynamics, both reversible

as well as irreversible, using spectral theory. We investigate dynamical correlations

between histories of projected and latent observables that give rise to memory in

projected dynamics, and rigorously establish conditions under which projected dynamics

is Markovian or renewal. A systematic metric is proposed for quantifying the degree of

non-Markovianity. As a simple, illustrative but non-trivial example we study single file

diffusion in a tilted box, which, for the first time, we solve exactly using the coordinate

Bethe ansatz. Our results provide a solid foundation for a deeper and more systematic

analysis of projection-induced non-Markovian dynamics and anomalous diffusion.

Keywords: Fokker-Planck equation, spectral theory, projection operator method, occupation time, single file

diffusion, Bethe ansatz, free energy landscape

1. INTRODUCTION

Over the past decades the field of anomalous diffusion and non-Markovian dynamics grew
to a mainstream physical topic [1–10] backed up by a surge of experimental observations
[11–16] (the list of works is anything but exhaustive). From a theoretical point of view the
description of anomalous and non-Markovian phenomena is not universal [1] and can be
roughly (and judiciously) classified according to the underlying phenomenology: (i) renewal
continuous-time randomwalk and fractional Fokker-Planck approaches [1–3, 17, 18], (ii) diffusion
in disorderedmedia [19–27], (iii) generalized Langevin equation descriptions [28–36], (iv) spatially
heterogeneous diffusion [37–43], and more recently also (v) the so-called diffusing diffusivity
models [44–50].

From a more general first-principles perspective non-Markovian dynamics in physical systems
are always a result of the projection of nominally deterministic and/orMarkovian high-dimensional
dynamics to a lower-dimensional subspace [51–60]. The projection in general induces a
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dependence of the dynamics on the initial conditions of the
latent degrees of freedom, i.e., those being integrated out, thereby
leading to memory [51, 54–56] and possibly (depending on the
system) also to anomalous diffusion [61–68].

Hallmarks of broken Markovianity are the non-validity of
the Chapman–Kolmogorov equation, and, on the level of
individual trajectories, correlations between histories of projected
observables and latent degrees of freedom [67]. The advantage
of a first principles approach is that it allows for a deeper
understanding and complete control over the origin and nature
of memory effects. It might, however, be difficult to integrate out
exactly degrees of freedom in a given microscopic model, and in
practice this seems to be only possible for simple models, e.g.,
harmonic systems (e.g., [69]), comb-models (e.g., [70–72]) or
simple obstruction models [61–67], to name but a few.

Here, instead of deriving effective evolution operators for
projected dynamics [51, 54–56] we use a spectral-theoretic
approach and focus on the consequences of the projection
directly on the level of probability density functions of projected
variables—both in a general setting as well as by means of a
simplistic yet non-trivial model of single file diffusion in a tilted
box. Using spectral theory we first present a rigorous and quite
general analysis of the problem and establish conditions, under
which the projection in fact leads to Markovian or renewal-
type dynamics. We then apply these general results to the
analysis of tagged particle diffusion in a single file confined in
a tilted box. We obtain an exact solution of the full many-body
and projected tagged particle propagators using the coordinate
Bethe ansatz, and provide exact results for tagged particle local
time statistics and correlations between tagged particle histories.
Finally, to asses the degree of non-Markovianity induced by
the projection, we compute the Kullback–Leibler divergence
between the exact tagged particle propagator and the propagator
of Markovian diffusion in the respective free energy landscape,
i.e., in the so-called free energy landscape perspective. Our results
provide a deeper understanding of projection-induced memory
and anomalous diffusion and highlight important pitfalls in
applications of free energy landscape-ideas in absence of a time-
scale separation.

2. THEORY

2.1. Notation and Mathematical
Preliminaries
Although all presented result hold identically for discrete-state
jump dynamics governed by a Markovian master equation we
will here throughout be interested in projections of strongly
Markovian diffusion in continuous time and in a continuous
domain � ∈ R

d in a vector field F(x) :Rd → R
d (not

necessarily a potential field), which is either nominally confining
(in this case � is open) or is accompanied by corresponding
reflecting boundary conditions at ∂� (in this case � is closed)
thus guaranteeing the existence of an invariant measure and
hence ergodicity. The dynamics are governed by the (forward)
Fokker-Planck operator L̂ :V → V or its adjoint (or backward)

operator L̂
†
:W → W, where V is a complete normed linear

vector space with elements f ∈ C2(Rd), and W is the space dual
to V . In particular,

L̂ = ∇ ·D∇ − ∇ · F(x), L̂
†
= ∇ ·D∇ + F(x) · ∇ , (1)

where D is the symmetric positive-definite diffusion matrix.
L̂ propagates probability measures µt(x) in time, which will
throughout be assumed to posses well-behaved probability
density functions P(x, t), i.e., dµt(x) = P(x, t)dx [thereby posing
some restrictions on F(x)]. On the level of individual trajectories
Equation (1) corresponds to the Itô equation dxt = F(xt)dt +
σdWt with Wt being a d-dimensional vector of independent
Wiener processes whose increments have a Gaussian distribution
with zero mean and variance dt, i.e., 〈dWt,idWt′ ,j〉 = δijδ(t −
t′)dt, and where σ is a d × d symmetric noise matrix such that
D = σσT/2.Moreover, we assume that F(x) admits the following
decomposition into a potential (irrotational) field−D∇ϕ(x) and
a non-conservative component ϑ(x), F(x) = −D∇ϕ(x) + ϑ(x)
with the two fields being mutually orthogonal ∇ϕ(x) · ϑ(x) = 0
[73]. By insertion into Equation (1) one can now easily check that
L̂e−ϕ(x) = 0, such that the stationary solution of the Fokker-
Planck equation (also referred to as the steady state [74, 75],
which is the terminology we adopt here) by construction does not
depend on the non-conservative part ϑ(x). Before proceeding we
first establish the decomposition of the drift field F(x) of the full
dynamics, which with the knowledge of ϕ(x) can be shown to
have the form

F(x) = −D∇ϕ(x)+ eϕ(x)jss(x), (2)

jss(x) denoting the steady-state probability current and
ϑ(x) ≡ eϕ(x)jss(x) being incompressible. The proof follows
straightforwardly. We take ϑ(x) = F(x) + D∇ϕ(x)
and use ϕ(x) to determine the steady-state current
jss(x) = (ϑ(x) − D∇ϕ(x))e−ϕ(x) + D∇e−ϕ(x), such
that immediately ϑ(x) = eϕ(x)jss(x) and in turn follows
F(x) in Equation (2). To check for incompressibility we
note that jss(x) is by definition divergence free and so
∇ · ϑ(x) = eϕ(x)(jss(x) · ∇ϕ(x)) ≡ ϑ(x) · ∇ϕ(x) = 0, i.e.,
eϕ(x)jss(x) is divergence-free, as claimed.

We define the forward and backward propagators by Û(t) =

eL̂t and Û
†
(t) = eL̂

†
t such that L̂ and L̂

†
are generators of a

semi-group Û(t + t′) = Û(t)Û(t′) and Û
†
(t + t′) = Û

†
(t)Û

†
(t′),

respectively. L̂ propagates probability measures µt(x) in time,

whereas L̂
†
propagates observables A(xt) in time, which is best

seen from the definition of the expectation

〈A(xt)〉 ≡

∫

A(x)dµt(x) =

∫

A(x)eL̂tP(x, 0)dx =

∫

P(x, 0)eL̂
†
t
A(x)dx ≡

∫

dµ0(x0)〈A(x0, t)〉, (3)

where 〈A(x0, t)〉 was defined to give a correct behavior after
averaging over the realizations of the Itô process but before
averaging over the initial conditions P(x, 0) for the forward in
time process (or end-point conditions for the adjoint, backward
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in time process). The propagation of measures by L̂ corresponds
to the “Schrödinger” picture of quantum mechanics, whereas the
propagation of observables resembles the “Heisenberg” picture.

For convenience we introduce the bra-ket notation with the
“ket” |f 〉 representing a vector in V (or W, respectively) written
in position basis as f (x) ≡ 〈x|f 〉, and the “bra” 〈g| as the integral
∫

dxg†. The scalar product is defined as 〈g|f 〉 =
∫

dxg†(x)f (x).
Therefore we have, in operator notation, the following evolution
equation for the conditional probability density function starting

from an initial condition |p0〉: |pt〉 = eL̂t|p0〉. Since the process is

ergodic we have limt→∞ eL̂t|p0〉 = |ss〉, where we have defined
the equilibrium or non-equilibrium steady state, L̂|ss〉 = 0 and

〈ss|L̂
†

= 0, as a result of the duality. The steady state refers
to a probability density function 〈x|ss〉 of the invarant measure,
whichmight carry a time-independent non-vanishing probability
current jss(x). We also define the (typically non-normalizable)
“flat” state |–〉, such that 〈x|–〉 = 1 and 〈–|pt〉 = 1. Hence,

∂t〈–|pt〉 = 0 and 〈–|L̂ = 0 and L̂
†
|–〉 = 0. We define the Green’s

function of the process as the conditional probability density
function for a localized initial condition 〈x|p0〉 = δ(x− x0) as

G(x, t|x0, 0) = 〈x|Û(t)|x0〉 ≡ 〈x0|Û
†
(t)|x〉, (4)

such that the conditional probability density starting from
a general initial condition |p0〉 becomes P(x, t|p0, 0) =

〈x|Û(t)|p0〉 ≡
∫

dx0p0(x0)G(x, t|x0, 0). Moreover, as F(x) is
assumed to be sufficiently confining (i.e., limx→∞ P(x, t) = 0,∀t
sufficiently fast), such that L̂ corresponds to a coercive and

densely defined operator on V (and L̂
†
on W, respectively) [76–

78]. Finally, L̂ is throughout assumed to be normal, i.e., L̂
†
L̂ −

L̂L̂
†

= 0 and thus henceforth V = W, where for reversible

system (i.e., those obeying detailed balance) we have L̂ ⇔ L̂
†
.

Because any normal compact operator is diagonalizable [79], we

can expand L̂ (and L̂
†
) in a complete bi-orthonormal set of left

〈ψL
k
| and right |ψR

k
〉 (〈ψR

k
| and |ψL

k
〉, respectively) eigenstates

L̂|ψR
k 〉 = −λk|ψ

R
k 〉, L̂

†
|ψL

k 〉 = −αk|ψ
L
k 〉, (5)

with Re(λk) ≥ 0, and according to our definition of the scalar
product we have

〈ψL
k |L̂|ψ

R
k 〉 = −λk〈ψ

L
k |ψ

R
k 〉 =

(

〈ψR
k |L̂

†
|ψL

k 〉
)†

= −α
†
k
〈ψR

k |ψ
L
k 〉

(6)

and hence the spectra of L̂ and L̂
†
are complex conjugates,

αk = λ
†
k
. Moreover, λ0 = 0, |ψR

0 〉 = |ss〉, 〈ψL
0 | = 〈–|,

and 〈ψL
k
|ψR

l
〉 = δkl. Finally, we also have the resolution

of identity 1 =
∑

k |ψ
R
k
〉〈ψL

k
| and the propagator Û(t) =

∑

k |ψ
R
k
〉〈ψL

k
|e−λkt . It follows that the spectral expansion of the

Green’s function reads

G(x, t|x0, 0) =
∑

k

ψR
k (x)ψ

L†
k
(x0)e

−λkt ≡
∑

k

ψL
k (x0)ψ

R†
k
(x)e−λ

†
k
t ,

(7)

We now define, P̂x(Ŵ; q), a (potentially oblique) projection
operator into a subspace of random variables – a mapping q =

Ŵ(x) :Rd → R
a to a subset of coordinates q lying in some

orthogonal system in Euclidean space, q ∈ 4(Ra) ⊂ �(Rd)
with a < d. For example, the projection operator applied to some
function R(x) ∈ V gives

P̂x(Ŵ; q)R(x) =

∫

�

dxδ(Ŵ(x)− q)R(x). (8)

The spectral expansion of L̂ (and L̂
†
) in the bi-orthogonal

Hilbert space alongside the projection operator P̂x(Ŵ; q) will
now allow us to define and analyze projection-induced non-
Markovian dynamics.

2.2. General Results
2.2.1. Non-Markovian Dynamics and (Non)Existence

of a Semigroup
Using the projection operator P̂x(Ŵ; q) defined in Equation (8)
we can define the (in general) non-Markovian Green’s function of
the projected dynamics as the conditional probability density of
projected dynamics starting from a localized initial condition q0

Qp0 (q, t|q0, 0) =
Qp0 (q, t, q0, 0)p0

Q0
p0 (q0)

≡
P̂x(Ŵ; q)P̂x0 (Ŵ; q0)G(x, t|x0, 0)p0(x0)

P̂x0 (Ŵ; q0)p0(x0)
, (9)

which demonstrates that the time evolution of projected
dynamics starting from a fixed condition q0 depends on the
initial preparation of the full system p0(x0) as denoted by the
subscript. This is a first signature of the non-Markovian and non-
stationary nature of projected dynamics and was noted upon
also in [55]. Obviously,

∫

4
dqQp0 (q, t|q0, 0) = 1 for any initial

condition q0. We will refer to q as the projected degrees of
freedom, whereas those integrated out will be called latent. For
the sake of simplicity we will here mostly limit our discussion to
a stationary preparation of the system, i.e., p0(x0) = pss(x0) =

〈x0|ss〉. In order to avoid duplicating results we will explicitly
carry out the calculation with the spectral expansion of L̂ but note

that equivalent results are obtained using L̂
†
. Using the spectral

expansion Equation (7) and introducing 9kl(q), the elements of
an infinite-dimensional matrix

9kl(q) = 〈ψL
k |δ(Ŵ(x)− q)|ψR

l 〉 (10)

we find from Equation (9)

Qpss (q, t|q0, 0) =
∑

k

90k(q)(9k0(q0)/900(q0))e
−λkt (11)

with 900(q0) = Q0
pss
(q0). If one would to identify 90k(q) =

9R
0k
(q) and 900(q0)

−190k(q) = 9L
0k
(q), Equation (11) at first

sight looks deceivingly similar to the Markovian Green’s function
in Equation (7). Moreover, a hallmark of Markovian dynamics
is that it obeys the Chapman–Kolmogorov equation and indeed,
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since 〈ψL
k
|ψR

l
〉 = δkl, we find from the spectral expansion

Equation (7) directly for any 0 < t′ < t that

∫

�

dx′G(x, t|x′, t′)G(x′, t′|x0, 0)

=
∑

k,l

ψR
k (x)〈ψ

L
k |ψ

R
l 〉ψ

L†
l
(x0)e

−λk(t−t′)−λlt
′

≡ G(x, t|x0, 0). (12)

For non-Markovian dynamics with a stationary p0(x) we here
prove the following

Proposition 2.2.1.1. Let the full system be prepared in a steady
state, p0(x) = pss(x), and let non-Markovian Green’s function
be defined by Equation (9). We take 9kl(q) as defined in
Equation (10) and define a scalar product with respect to a
Lebesgue measure w as 〈f |g〉w ≡

∫

dxw(x)f †(x)g(x). Then the
Green’s function of the projected process will obey the Chapman–
Kolmogorov equation if and only if 〈9l0|9k0〉9−1

00
= 0,∀k, l.

We need to prove if and under which conditions

∫

4

dq′Qpss (q, t|q
′, t′)Qpss (q

′, t′|q0, 0) (13)

can be equal to Qpss (q, t|q0, 0). As this will generally not be
the case this essentially means that the projected dynamics
is in general non-Markovian. The proof is established by

noticing that 9kl(q
′) = 9

†
lk
(q′) such that 〈9l0|9k0〉9−1

00
≡

∫

4
dq′900(q

′)−190l(q
′)9k0(q

′). As a result Equation (13) can be
written analogously to the first equality in Equation (12) as

∑

k,l

90k(q)〈9l0|9k0〉9−1
00
(9†

0l
(q0)/900(q0))e

−λk(t−t′)−λlt
′
. (14)

But since the projection mixes all excited eigenstates with k > 0
(to a k-dependent extent) with the left and right ground states
[see Equation (10)], the orthogonality between900(q)

−1/290l(q)
and 900(q)

−1/29k0(q) is in general lost, and 〈9l0|9k0〉9−1
00

6= 0

for k 6= l as claimed above. The Chapman–Kolmogorov equation
can hence be satisfied if and only if 〈9l0|9k0〉9−1

00
= 0 for all

k 6= l.
The possibility that the Chapman–Kolmogorov equation

remains valid for non-Markovian process has been demonstrated
previously on the hand of specific models (see e.g., [80, 81]). Here
we establish the necessary and sufficient conditions for this to be
the case in a quite general setting. In turn, even if 〈9l0|9k0〉9−1

00
=

0,∀k 6= l that this does not guarantee that the projected process is
actuallyMarkovian. The computation of higher-order probability
densities is necessary in order to check for Markovianity.

2.2.2. When Is the Projected Dynamics Markovian or

Renewal?
A) Projected Dynamics is Markovian

A particularly useful aspect of the present spectral-theoretic
approach is its ability to establish rigorous conditions for the
emergence of (exactly) Markovian and (exactly) renewal-type

dynamics from a microscopic, first principles point of view.
Note that in this section we assume a general, non-stationary
preparation of the system [i.e., p0(x0) 6= pss(x0)]. By inspection
of Equations (10) and (11) one can establish that:

Theorem 2.2.2.1. The necessary and sufficient condition for the
projected dynamics to be Markovian if is that the projection
P̂x(Ŵ; q) (whatever its form) nominally projects into the nullspace
of latent dynamics. In other words, the latent and projected
dynamics remain decoupled and orthogonal for all times. This
means that (i) there exists a bijective map y = f (x) to a
decomposable coordinate system y = (q, q′′), in which the forward
generator decomposes to L̂ = L̂p + L̂l, where L̂p only acts and

depends on the projected degrees of freedom q ∈ 4(Ra) ⊂ �(Rd)
with a < d and L̂l only acts and depends on the latent coordinates
q′′ ∈ 4c(Rd) ⊂ �(Rd) (with,4 ∩4′′ = ∅,� = 4 ∪4′′), (ii) the
boundary conditions on ∂4 and ∂4c are decoupled, and (iii) the
projection operator P̂y(·; q) =

∫

dq′′ onto the subset of coordinates
q ∈ 4(Ra) ⊂ � corresponds to an integral over the subset of latent
coordinates q′′ ∈ 4c(Rd−a) ⊂ �, which does not mix projected
and latent degrees of freedom, or alternatively L̂lp0(q0, q

′′
0) = 0.

The statement of the theorem is intuitive and has most likely
already been presented elsewhere in the existing literature,
althoughwewere not able to find it in the present form. The proof
is rather straightforward and follows from the fact that if (and
only if) the projected dynamics is Markovian it must be governed
as well by a formal (Markovian) Fokker-Planck generator L̂p as
in Equation (1), in which the projected and latent degrees of
freedom are separable L̂ = L̂p + L̂l, and that the full Hilbert
space is a direct sum of Hilbert spaces of the V = Vp ⊕ Vl, that

is L̂ :V → V , L̂p :Vp → Vp and L̂l :Vl → Vl and Vp ∩ Vl = ∅.
This also requires that there is no boundary condition coupling
vectors from Vp and Vl. In turn this implies assertion (i) above.

If P̂y(·; q) is such that it does not mix eigenfunctions in Vp

and Vl (i.e., it only involves vectors from Vp) then ecause of bi-

orthonormality and the fact that 〈–|L̂ = 0 the projected Green’s
function in full space Q(q, t|q0) for q ∈ 4(Ra) will be identical
to the full Green’s function in the isolated domain G(x, t|x0) for
x ∈ 4(Ra) and the non-mixing condition is satisfied. The effect is
the same if the latent degrees of freedom already start in a steady
state, L̂lp0(q0, q

′′
0) = 0. This establishes sufficiency. However, as

soon as the projectionmixes the twoHilbert spacesVp andVl, the
generator of projected dynamics will pick up contributions from
L̂l and will, upon integrating out the latent degrees of freedom,
not be Markovian. This completes the proof.
B) Projected Dynamics is Renewal

We can also rigorously establish sufficient conditions for the
projected dynamics to poses the renewal property. Namely, the
physical notion of a waiting time or a random change of time-
scale (see e.g., [2, 3]) can as well be attributed a microscopic
origin. The idea of a random waiting time (or a random change
of time scale) nominally implies a period of time and thereby the
existence of some subdomain, during which and within the latent
degrees evolve while the projected dynamics does not change.
For this to be the case the latent degrees of freedom must be
perfectly orthogonal to the projected degrees of freedom, both
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in the two domains as well as on their boundaries (a prominent
simple example is the so-called comb model [70–72]). Moreover,
the projected degrees of freedom evolve only when the latent
degrees of freedom reside in some subdomainϒ ⊂ 4c(Rd−a). In
turn, this means that the dynamics until a time t ideally partitions
between projected and latent degrees of freedom, which are
coupled solely by the fact that the total time spent in each must
add to t, which effects the waiting time. In a comb-setting the
motion along the backbone occurs only when the particle is in
the center of the orthogonal plane. In the context of a low-
dimensional projection of ergodic Markovian dynamics, we can
in fact prove the following general theorem:

Theorem 2.2.2.2. Let there exists a bijective map y = f (x) to
a decomposable coordinate system y = (q, q′′) as in A) with
the projected q ∈ 4(Ra) and latent degrees of freedom q′′ ∈

4c(Rd−a) ≡ �(Rd) \ 4(Ra). Furthermore, let ϒ ⊂ 4c(Rd−a)
and let 1ϒ (q

′′) denote the indicator function of the region ϒ (i.e.,
1ϒ (q

′′) = 1 if q′′ ∈ ϒ and zero otherwise). Moreover, let the
full system be prepared in an initial condition p0(q, q

′′). Then
a sufficient condition for renewal-type dynamics is (i) that the
forward generator in (q, q′′) decomposes L̂ = 1ϒ (q

′′)L̂p + L̂l,

and where L̂p only acts and depends on q and L̂l only acts and
depends on q′′, and (ii) the boundary conditions do not cause
a coupling of latent and projected degrees of freedom (as in the
Markov case above).

Theorem 2.2.2.2 and lemma 2.2.2.2.1 below appear to be new,
and the proof can be established by an explicit construction
of the exact evolution equation for the projected variables.
Let Gl(q

′′, t|q′′0) denote the Green’s functions of the Markovian
problem for the latent degrees of freedom, Gl(q

′′, t|q′′0) =

〈q′′|eL̂lt|q′′0〉 =
∑

k〈q
′′|ψ l,R

k
〉〈ψ l,L

k
|q′′0〉e

−λl
k
t and let g̃(s) =

∫ ∞
0 e−stg(t)dt denoted the Laplace transform of a function
g(t). The projection operator in this case corresponds to
P̂q′′ (·; q) =

∫

4c dq
′′. We introduce the shorthand notation

p0(q) =
∫

4c dq
′′
0p0(q0, q

′′
0) and define the conditional initial

probability density p0(q
′′
0 |q0) = p0(q0, q

′′
0)/p0(q0). The Green’s

function of projected dynamics becomes Qp0 (q, t|q0) =
∫

4c dq
′′
∫

4c dq
′′
0G(q, q

′′, t|q0, q
′′
0)p0(q0, q

′′
0)/p0(q0). We then have

the following

Lemma 2.2.2.2.1. Under the specified assumptions Q(q, t|q0)
exactly obeys the renewal-type non-Markovian Fokker-Planck
equation

∂tQp0 (q, t|q0) =

∫ t

0
dτKp0 (t − τ )L̂pQp0 (q, τ |q0), (15)

with the memory kernel

Kp0 (t) = (δ(t)+ ∂t)

∫

ϒ

dq′′
∫

4c
dq′′0p0(q

′′
0 |q0)〈q

′′|eL̂lt|q′′0〉

=
∑

k

(∫

4c
dq′′0ψ

l,L†
k

(q′′0)p0(q
′′
0 |q0)

)

(∫

ϒ

dq′′ψ l,R
k
(q′′)

)

(δ(t)− λlke
−λl

k
t) (16)

that is independent of q. Moreover, Q(q, t|q0) > 0 for all t > 0
and for all q, q0 ∈ 4.

To prove the lemma we Laplace transform equation (t →

u) ∂tG(q, q
′′, t|q0, q

′′
0) = L̂G(q, q′′, t|q0, q

′′
0) and realize that

the structure of L̂ implies that its solution with initial
condition δ(q − q0)δ(q

′′ − q′′0) in Laplace space factorizes

G̃(q, q′′, u|q0, q
′′
0) = fu(q|q0)gu(q

′′|q′′0) with gu and fu to

be determined. Note that
∫

4
dq

∫

4c dq
′′G̃(q, q′′, u|q0, q

′′
0) =

∫

4
dqfu(q|q0)

∫

4c dq
′′gu(q

′′|q′′0) = u−1 and we can chose,
without any loss of generality that

∫

4
dqfu(q|q0) = 1. Plugging

in the factorized ansatz and rearranging leads to

gu(q
′′|q′′0)

(

ufu(q|q0)− 1ϒ (q
′′)L̂pfu(q|q0)

)

−fu(q|q0)L̂lgu(q
′′|q′′0)− δ(q− q0)δ(q

′′ − q′′0) = 0. (17)

Noticing that
∫

4
dqL̂pf (q|q0) = 0 as a result of the divergence

theorem (as we assumed that F(x) is strongly confining implying
that the current vanishes at the boundaries) we obtain, upon
integrating Equation (17) over q

ugu(q
′′|q′′0)− δ(q

′′ − q′′0)− L̂lgu(q
′′|q′′0) = 0, (18)

implying that gu(q
′′|q′′0) = G̃l(q

′′, u|q′′0). As G̃l(q
′′, u|q′′0)

is the Laplace image of a Markovian Green’s function we
use

∫

4c dq
′′G̃l(q

′′, u|q′′0) = u−1 in order to deduce that

Q̃p0 (q, u|q0) = fu(q|q0)/u. The final step involves using the
identified functions fu and gu in Equation (17), multiplying
with p0(q

′′
0 |q0), integrating over q′′ and q′′0 while using the

divergence theorem implying
∫

4c dq
′′L̂lG̃l(q

′′, u|q′′0) = 0 (as
before) to obtain

uQ̃p0 (q, u|q0)− δ(q− q0)

=

(

u

∫

ϒ

dq′′
∫

4c
dq′′0G̃l(q

′′, u|q′′0)p0(q
′′
0 |q0)

)

L̂pQ̃p0 (q, u|q0).

(19)

Finally, since the Laplace transform of ∂tg(t) + δ(t)g(0)
corresponds to ug̃(u), taking the inverse Laplace transform of
Equation (19) finally leads to Equations (15) and (16) and
completes the proof of the lemma, since now we can take
Qp0 (q, t|q0) > 0 by definition because Equation (15) is an
identity of Equation (1) integrated over q′′. Moreover, the rate
of change of the Green’s function Qp0 (q, t|q0) in Equation (15)
depends, at any instance t, position q and for any initial condition
q0 only on the current position q and a waiting time (or random
time-change) encoded in the memory kernel K(t); Qp0 (q, t|q0)
is the Green’s function of a renewal process. This completes the
proof of sufficiency.

Furthermore, for the situation where the full system is
prepared in a stationary state, i.e., p0(x) = ps(x), we have
the following

Corollary 2.2.2.2.1. Let the system and projection be defined as in
Theorem 2.2.2.2. If the full system is prepared such that the latent
degrees of freedom are in a stationary state p0(q0, q

′′
0), such that
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L̂lp0(q
′′
0 |q0) = 0,∀q0 ∈ 4 and hence also p0(q

′′
0) = pss(q

′′
0), then

p0(q
′′
0 |q0) = ψ

l,R
0 (q′′0) and consequently Kp0 = δ(t)

∫

ϒ
dq′′0pss(q

′′
0),

and therefore the projected dynamics is Markovian. Moreover, if
the system is prepared such that the latent degrees of freedom are
not in a stationary state, i.e., p0(q0|q

′′
0) 6= pss(q

′′
0),∀q0, there exists

a finite time tM > 0 after which the dynamics will be arbitrarily
close to being Markovian.

The statement of this corollary is again intuitive. The proof of
the first part follows from the bi-orthogonality of eigenfunctions

of latent dynamics 〈ψ l,R
k
|ψ l,R

0 〉 = δk,0, rendering all terms in
Equation (16) in Lemma 2.2.2.2.1 identically zero except for
k = 0 with λl

k
= 0. The second part is established by the fact

that for times tM ≫ 1/λl1, with −λl1 being the largest (i.e., least
negative) non-zero eigenvalue, all terms but the k = 0 term in
Equation (16) in Lemma 2.2.2.2.1 become arbitrarily small.

Having established sufficiency, we now also comment on
necessity of the conditions (i) and (ii) above for renewal
dynamics. It is clear that the splitting of L̂ into L̂p and L̂l,

where L̂l does not act nor depend on projected variables, is
also necessary condition for renewal. This can be established by
contradiction as loosening these assumptions leads to dynamics
that is not renewal. This can be understood intuitively, because
it must hold that the latent degrees of freedom remain entirely
decoupled from the projected ones (but not vice versa) and
that the motion along both is mutually orthogonal. To illustrate
this think of the paradigmatic comb model (see schematic in
Figure 1) [70–72] and realize that renewal will be violated as soon
as we tilt the side-branches for some angle from being orthogonal
to the backbone.

However, since it is difficult to establish the most general
class of admissible functions h(q′′) used in L̂ = h(q′′)L̂p +

L̂l, we are not able to prove necessity. Based on the present

FIGURE 1 | Schematics of a generalized comb model. For the sake of clarity

only a couple of side-branches are shown, whereas the model is to be

understood in the sense of densely populated side-branches. (top) As long as

the projected q and latent q′′ degree of freedom remain orthogonal, the

projected dynamics will be of renewal-type. However, as soon as this ceases

to be the case the projected dynamics will not be renewal.

analysis it seems somewhat difficult to systematically relax the
assumptions for projected dynamics to be renewal without
assuming, in addition, some sort of spatial discretization. We
therefore hypothesize that the sufficient conditions stated in
Theorem 2.2.2.2, potentially with some additional assumptions
on h(q′′) are also necessary conditions. Notably, however, that
microscopic derivations of non-Markovian master equations of
the form given in Equation (15) often start in discretized space
or ad-hoc introduce a random change in time scale (see e.g.,
[2, 17, 82]). We end this section with the following final

Remark 2.2.2.1. An arbitrary projection P̂x(Ŵ; q) defined in
Equation (8) will most likely lead to dynamics that is neither
Markovian nor renewal.

This follows from the strong assumptions required for
Markovian and renewal dynamics, respectively. The properties of
the corresponding general evolution operator will be described
in a separate publication.

2.2.3. Markovian Approximation and the Degree of

Non-Markovianity
In order to quantify the degree of non-Markovianity induced by
the projection we propose to compare the full non-Markovian
dynamics with projected dynamics evolving under a complete
time-scale separation, i.e., under the assumption of all latent
degrees of freedom being in the stationary state. To do so we
proceed as follows. The projected coordinates q are now assumed
to represent a subset of another d-dimensional orthogonal system
in Euclidean space q′ ∈ R

d, and we assume the map q′(x) is
bijective. We denote the conditional probability density in this
system by G′(q′, t|q′0, 0). The underlying physical idea is that an
observer can only see the projected dynamics, which since it is
non-Markovian stems from a projection but not necessarily onto
Cartesian coordinates. Therefore, from a physical perspective not
too much generality seems to be lost with this assumption.

As a concrete example one can consider the non-spherically
symmetric Fokker-Planck process in a sphere, corresponding
to the full Markovian parent system projected onto angular
variables (either one or both). This way one first transforms from
x ∈ R

3 to spherical coordinates q′ = (r,φ, θ) and then, e.g.,
projects on the the lines q = φ ∈ [0, 2π).

Since the transformation of the Fokker-Planck equation
under a general change of coordinates is well-known [83] the
task is actually simple. Under the complete map q′ = Ŵ(x)
with Ŵ :R

d → R
d the forward Fokker-Planck operator in

Equation (1) transforms as L̂
′
= ∇q′ ⊗ ∇q′ : D̃(q

′) − ∇q′ · F̃(q
′),

where ⊗ and : denote, respectively, the tensor and double-dot
product, and the transformed drift field and diffusion tensor can
be written as

(F̃(q′))k =

d
∑

i=1

∂q′
k

∂xi
Fi +

d
∑

i,j=1

Dij
∂2qk

∂xi∂xj
,

(D̃(q′))kl =

d
∑

i,j=1

Dij

∂q′
k

∂xi

∂q′
l

∂xj
. (20)
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We note that unless the mapping is linear, the old diffusion
matrix affects the new drift vector and the diffusion matrix
picks up a spatial dependence. For an excellent account of the
transformation properties in the more general case of a position
dependent diffusion matrix [i.e., D → D(x)] we refer the reader
to [84]. We now want to marginalize over the remaining (i.e.,
non-projected) coordinates q′′ ∈ � \4 but beforehand make the
Markovian approximation G′(q′, t|q0, 0) ≈ QM(q, t|q0)pss(q

′′).

Then we have L̂
′
G′(q′, t|q0, 0) ≈ pss(q

′′)L̂
′
QM(q, t|q0), implying

that the operator L̂
′
approximately splits into one part operating

on the projected coordinates alone, L̂
′

M , and one operating only

on the latent stationary coordinates, L̂
′′
, for which L̂

′′
pss(q

′′) = 0.
The physical idea behind the Markovian approximation is that
the latent degrees of freedom relax infinitely fast compared to
the projected ones. Therefore, we can straightforwardly average
the Fokker-Planck operator over the stationary latent coordinates

q′′, 〈L̂
′

M〉q′′ , where we have defined the latent averaging operation

〈·〉q′′ ≡
∫

dq′′pss(q
′′)·. Note that the remaining dependence of L̂

′

on the latent stationary coordinates q′′ is only due to F̃(q′) and
D̃(q′). The averaged drift field and diffusion matrix now become

〈F̃(q)〉k =

d
∑

i=1

〈

∂q′
k

∂xi
Fi

〉

q′′
+

d
∑

i,j=1

Dij

〈

∂2qk

∂xi∂xj

〉

q′′
,

〈D̃(q)〉kl =

d
∑

i,j=1

Dij

〈

∂q′
k

∂xi

∂q′
l

∂xj

〉

q′′
. (21)

We can further decompose the effective drift field into a
conservative and a non-conservative part

〈

∂q′
k

∂xi
Fi

〉

q′′
= −

〈

∂q′
k

∂xi
(D∇ϕ)i

〉

q′′
+

〈

eϕ
∂q′

k

∂xi
(jss)i

〉

q′′
, (22)

which establishes the Markovian approximation also for a broad
class of irreversible systems. The approximate effective Fokker-
Planck operator for the projected dynamics in turn reads

〈L̂
′
〉q′′ = ∇q ⊗∇q :〈D̃(q)〉q′′ − ∇q · 〈F̃(q)〉q′′ . (23)

By design the kernel of 〈L̂
′
〉q′′ is equal to pss(q) ≡ P̂x(Ŵ; q)pss(x),

hence 〈L̂
′
〉q′′ governs the relaxation toward the steady-state

density (not necessarily equilibrium) evolving from some initial
state q0 in the Markovian approximation with the corresponding

Green’s function QM(q, t|q0, 0) ≡ 〈q|e〈L̂
′
〉q′′ t|q0〉.

In order to quantify the departure of the exact dynamics from
the corresponding Markovian behavior we propose to evaluate
the Kullback–Leibler divergence between the Green’s functions
of the exact and Markovian propagator as a function of time

Dt(Q||QM) =

∫

4

dqQ(q, t|q0, 0) ln

(

Q(q, t|q0, 0)

QM(q, t|q0, 0)

)

. (24)

By definition Dt(Q||QM) ≥ 0 and since the non-Markovian
behavior of the exact projected dynamics is transient with a life-
time λ−1

1 , we have that limt→∞ Dt(Q||QM) = 0. Our choice

of quantifying the departure of the exact dynamics from the
corresponding Markovian behavior is not unique. The Kullback–
Leibler divergence introduced here can hence be used to quantify
how fast the correlation of the latent degrees of freedom with
the projected degrees of freedom dies out. Notably, in a related
manner the Kullback–Leibler divergence was also used in the
context of stochastic thermodynamics in order to disprove the
hypothesis about the monotonicity of the entropy production as
a general time evolution principle [85].

2.2.4. Functionals of Projected Dynamics
In order to gain deeper insight into the origin and manifestation
of non-Markovian behavior it is instructive to focus on the
statistics of time-average observables, that is functionals of
projected dynamics. As in the previous sections we assume that
the full system was prepared in a (potentially non-equilibrium
current-carrying) steady state. To that end we have, using
Feynman-Kac theory, recently proven a theorem connecting any

bounded additive functional 8t[q(τ )] = t−1
∫ t
0 Z(q(τ ))dτ (with

a function Z :4(Ra) → R locally strictly bounded in 4) of
projected dynamics q(τ ) of a parent Markovian diffusion x(t) to
the eigenspectrum of theMarkov generator of the full dynamics L̂

or L̂
†
[67]. The central quantity of the theory is θt(s), the so-called

local time fraction spent by a trajectory q(τ ) in a infinitesimal
volume element ds centered at s up until a time t enabling

θt(s) = t−1

∫ t

0
dτ1s(q(τ )) → 8t[q(τ )] =

∫

4

dsZ(s)θt(s),

(25)
where the indicator function 1s(q) = 1 if q = s and zero
otherwise. We are here interested in the fluctuations of θt(s)
and correlation functions between the local time fraction of a
projected observable q(t) at a point s and θ ′′(s′), the local time
some latent (hidden) observable q′′(t) a the point s′:

σ 2
t (s) = 〈θ2t (s)〉 − 〈θt(s)〉

2, Ct(s; s
′)

= 〈θt(s)θ
′′
t (s

′)〉 − 〈θt(s)〉〈θ
′′
t (s

′)〉, (26)

where 〈·〉 now denotes the average over all forward paths starting
from the steady state |q0〉 = |ss〉 (and ending anywhere, i.e.,
〈q| = 〈–|), or, using the backward approach, all paths starting
in the flat state |q〉 = |–〉 and propagating backward in time
toward the steady state 〈q0| = 〈ss|. We note that any correlation
function of a general additive bounded functional 8i

t[q(τ )] of

the form 〈8i
t[q(τ )]8

j
t[q

′′(τ )]〉 (as well as the second moment of
8i

t[q(τ )]) follows directly from the local time fraction, namely,

〈8i
t[q(τ )]8

j
t[q

′′(τ )]〉 =
∫

4

∫

4
dsds′Zi(s)Zj(s

′)〈θt(s)θ
′′
t (s

′)〉. For
details of the theory and corresponding proofs please see [67],
here we will simply state the main result:

Theorem 2.2.4.1. Let the Green’s function of the full parent
dynamics x(t) be given by Equation (7) and the local time fraction
θt(s) by Equation (25), then the variance and correlation function
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defined in Equation (26) is given exactly as

σ 2
t (s) = 2

∑

k>0

〈–|1s|ψ
R
k
〉〈ψL

k
|1s|ss〉

λkt

(

1−
1− e−λkt

λkt

)

Ct(s; s
′) =

∑

k>0

〈–|1s|ψ
R
k
〉〈ψL

k
|1′′s′ |ss〉 + 〈–|1′′s′ |ψ

R
k
〉〈ψL

k
|1s|ss〉

λkt

(

1−
1− e−λkt

λkt

)

, (27)

and analogous equations are obtained using the backward
approach [67].

The usefulness of Equation (27) can be understood as follows.
By varying s and s′ one can establish directly the regions in
space responsible for the build-up (and subsequent decay) of
memory in projected dynamics and simultaneously monitor
the fluctuations of the time spent of a projected trajectory in
said regions. Note that because the full process is assumed
to be ergodic, the statistics of θt(s) will be asymptotically
Gaussian obeying the large deviation principle. This concludes
our general results. In the following section we apply the
theoretical framework to the analysis of projected dynamics in
a strongly-correlated stochastic many-body system, namely to
tagged particle dynamics in a single file confined to a tilted box.

3. SINGLE FILE DIFFUSION IN A TILTED
BOX

We now apply the theory developed in the previous section (here
we use the backward approach) to the paradigmatic single file
diffusion in a unit interval but here with a twist, namely, the
diffusing particles experience a constant force. In particular, the
full state-space is spanned by the positions of all N-particles
defining the state vector x0 = (x0,1, . . . , x0,N)

T ∈ [0, 1]N and
diffusion coefficients of all particles are assumed to be equal and
the thermal (white) fluctuations due to the bath are assumed to
be independent, i.e., D = D1. In addition to being confined in
a unit interval, all particles experience the same constant force
F(x0) = −βDF with β = (kBT)

−1 is the inverse thermal energy.
The evolution of the Green’s function is governed by the Fokker-
Planck equation Equation (1) equipped with the external and
internal (i.e., non-crossing) reflecting boundary conditions for

the backward generator L̂
†
=

∑N
i=1 D(∂

2
x0,i

− β F∂x0,i ):

∂x0,1G(x, t|x0)|x0,1=0 = ∂x0,NG(x, t|x0)|x0,N=1 = 0,

lim
x0,i→x0,j

(∂x0,i+1 − ∂x0,i )G(x, t|x0) = 0, (28)

where we adopted the notation in Equation (7). The boundary
conditions in Equation (28) restrict the domain to a hypercone
x0 ∈ 4 such that x0,i ≤ x0,i+1 for i = 1, . . . ,N − 1. The
dynamics is reversible, hence the steady state current vanishes
and all eigenvalues and eigenfunctions are real. Moreover, for
systems obeying detailed balance ϕ(x) corresponds to the density
of the Boltzmann-Gibbs measure and it is known that |ψL

k
〉 ≡

e−ϕ(x)|ψR
k
〉. The single file backward generator already has a

separated form L̂
†

=
∑N

i=1 L
†
i and the coupling between

particles enters solely through the non-crossing boundary
condition Equation (28) and is hence Bethe-integrable [86].
However, because the projected and latent degrees of freedom
are coupled through the boundary conditions Equation (28) the
tagged particle dynamics is not of renewal type.

3.1. Diagonalization of the Generator With
the Coordinate Bethe Ansatz
Specifically, the backward generator L̂

†
can be diagonalized

exactly using the coordinate Bethe ansatz (see e.g., [67]). To that
end we first require the solution of the separated (i.e., single

particle) eigenvalue problem L
†
i |ψ

L
ki
〉 = −λki |ψ

L
ki
〉 under the

imposed external boundary conditions. Since ϕ(x0,i) = Fx0,i +
const we find that pss(x0,i) = βFe−βFx0,i (1−e−βF)−1 and because
of the confinement we also have λ0,i = 0 as well as ψL

0i
(x0,i) ≡

〈x0,i|ψ
L
0i
〉 = 1 and ψR

0i
(x0,i) ≡ 〈ψR

0i
|x0,i〉 = pss(x0,i). We are

here interested in the role of particle number N and not of the
magnitude of the force F, therefore we will henceforth set, for
the sake of simplicity, βF = D = 1. The excited separated
eigenvalues and eigenfunctions then read

λki = π2k2i +
1

4
,

ψL
ki
(x0,i) =

ex0,i/2

(2π2k2i + 1/2)1/2

(

sin(kiπx0,i)− 2kiπ cos(kiπx0,i)
)

,

∀ki ∈ Z
+, (29)

with ψR
ki
(x0,i) = e−x0,iψL

ki
(x0,i). It is straightforward to check

that 〈ψR
ki
|ψL

li
〉 = δki ,li . Denoting by k = (ki, k2, . . . , kN)

the N-tuple of all single-state indices ki one can show by
direct substitution that the many-body eigenvalues are given by
λk =

∑N
i=1 λki and the corresponding orthonormal many-body

eigenfunctions that obey the non-crossing internal boundary
conditions Equation (28) have the form

ψL
0(x0) = 1, ψR

0 (x0) = N!

N
∏

i=1

e−x0,i

1− e−1

ψL
k(x0) =

∑

{ki}

N
∏

i=1

ψL
ki
(x0,i),ψ

R
k (x0) = mk!

∑

{ki}

N
∏

i=1

ψR
ki
(x0,i),

(30)

where
∑

{ki}
denotes the sum over all permutations of the

elements of the N-tuple k and mk! =
∏

imki ! is the respective
multiplicity of the eigenstate with mki corresponding to the
number of times a particular value of ki appears in the tuple. It
can be checked by explicit computation that the eigenfunctions
defined in Equation (30) form a complete bi-orthonormal set,
that is 〈ψR

k |ψ
L
l 〉 = δk,l and

∑

k ψ
L
k(x0)ψ

R
k (x) = δ(x− x0).

3.2. Projection-Induced Non-Markovian
Tagged Particle Dynamics
In the case of single file dynamics the physically motivated
projection corresponds to the dynamics of a tagged particle
upon integrating out the dynamics of the remaining particles. As
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before, we assume that the full system is prepared in a steady state.
The projection operator for the dynamics of the j-th particle is
therefore defined as

P̂x(δ; qj) =

∫

4

dxδ(xj − qj) =

[

Ô

N
∏

i=1

∫ 1

0
dxi

]

δ(xj − qj), (31)

where the operator Ô orders the integration limits
∫ 1
0 dxN

∫ xN
0 dxN−1 · · ·

∫ x2
0 dx1 since the domain4 is a hypercone.

Here, the projection is from R
N to R. Integrals of this kind

are easily solvable with the so-called ’extended phase-space
integration’ [62, 87]. The non-Markovian Green’s function is
defined as

Q(qj, t|q0,j) =
P̂x(δ; qj)P̂x0 (δ; q0,j)G(x, t|x0)pss(x0)

P̂x0 (δ; q0,j)pss(x0)
(32)

and can be computed exactly according to Equation (10) to give

Q(qj, t|q0,j) = 900(q0,j)
−1

∑

k

90k(qj)9k0(q0,j)e
−λkt , (33)

where the sum is over all Bethe eigenstates. If we denote the
number of left and right neighbors by NL = (N − j + 1) and
NR = j−1, respectively, all terms in Equation (33) read explicitly

900(qj) =
N!

NL!NR!(1− e−1)N
e−qj (1− e−qj )NL (e−qj − e−1)NR

9k0(qj) =
N!

NL!NR!(1− e−1)N

∑

{ki}

T(qj)

j−1
∏

i=1

L(qj)

N
∏

i=j+1

R(qj)

(34)

and 90k(qj) ≡ 9
†
k0(qj) = mk!(1−e−1)N

N! 9k0(qj). In Equation (34)
we have introduced the auxiliary functions

T(qj) = δλj ,0e
−qj + (1− δλj ,0)

e−qj/2

√

1/2+ 2π2λ2j
(

sin(λjπqj)− 2λjπ cos(λjπqj)
)

L(qj) = δλj ,0(1− e−qj )− 2(1− δλj ,0)
e−qj/2 sin(λjπqj)
√

1/2+ 2π2λ2j

R(qj) = δλj ,0(e
−qj − e−1)+ 2(1− δλj ,0)

e−qj/2 sin(λjπqj)
√

1/2+ 2π2λ2j

(35)

To the best of our knowledge, Equations (33) to (35) delivering
the exact non-Markovian Green’s function for the dynamics
of the j-th particle in a tilted single file of N particles, have
not yet been derived before. Note that one can also show that
∫ 1
0 dqj90k(qj)9l0(qj) 6= 0 and hence the Chapman–Kolmogorov
equation is violated in agreement with Equation (13) confirming
that the tagged particle diffusion is indeed non-Markovian on
time-scales t . λ−1

1 .

3.3. Markovian Approximation and Degree
of Broken Markovianity
Since the projection leaves the coordinates untransformed
the effective Markovian approximation in Equation (23) is
particularly simple and corresponds to diffusion in the presence
of an effective force deriving from the free energy of the tagged
particle upon integrating out all the remaining particles assumed
to be in equilibrium 〈F(qj)〉x′′ = −〈βDFδ(xj − qj)〉x′′ or, since
−βDFpss(x) = ∂xjpss(x), explicitly defined as

〈F(qj)〉x′′ =

∫

4
dxδ(xj − qj)∂xjpss(x)

∫

4
dxδ(xj − qj)pss(x)

≡
∂qj

∫

4
dxδ(xj − qj)pss(x)

∫

4
dxδ(xj − qj)pss(x)

.

(36)
Upon taking as before D = βF = 1, and noticing that 900(qj) =
∫

4
dxδ(xj − qj)pss(x) we find

〈L̂〉q′′ = ∂2qj + ∂qj
{

∂qj ln900(qj)
}

,

〈L̂
†
〉q′′ = ∂2qj −

{

∂qj ln900(qj)
}

∂qj (37)

where the curly bracket {·} denotes that the operator inside
the bracket only acts within the bracket. The Markovian
approximation of the Green’s function thus becomes

QM(qj, t|q0,j) = 〈q0,j|e
〈L̂

†
〉x′′ t|qj〉 and is to be compared

to the exact non-Markovian Green’s function (33) via the
Kullback–Leibler divergence in Equation (24).

Our focus here is to asses how the “degree” of the projection,
i.e., d = N, a = 1 and thus d − a = N − 1 –
the number of latent degrees of freedom (here positions of
non-tagged particles) being integrated out affects the time-
dependence of the Kullback–Leibler divergence. Since the
Markovian generator cannot be diagonalized analytically we
used a finite element numerical method cross-checked with
Brownian dynamics simulations to calculate QM(qj, t|q0,j). The
corresponding Kullback–Leibler divergence (24) was in turn
calculated by means of a numerical integration. We present
results for the time dependence Dt(Q||QM) in two different
representations, the absolute (dimensionless) time t and in units
of the average number of collisions t̃ = t/N2, tagging the third
particle (j = 3). The reason to adopt this second choice as the
natural physical time-scale is that collisions in fact establish the
effective dynamics and hence a typical collision time sets the
natural time-scale.

Before going into details we comment on the following.
Because we start from the same initial condition for projected
coordinate (i.e., tagged particle) in both, the non-Markovian and
Markovian setting, it follows trivially that limt→0 Dt(Q||QM) =

0. A zero Dt(Q||QM) would persist until the typical time
of occurrence of the first collision event. This collision time
is, however, much shorter than t/N2 because we start from
equilibrium initial conditions on the full, many-body level
implying a continuous (Boltzmann-weighted) distribution of
initial distances of the tagged particle to its nearest neighbors.
Using a spectral expansion, however, such vanishingly short
time-scales are very difficult to capture, i.e., it would require
an astronomically large number of eigenstates, which is
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computationally not feasible. Conversely, because the tagged-
particle invariant measures are by definition the same for the
single file and its Markovian approximation [i.e.,900(qj) is equal
for both; the first of Equation (34) enters Equation (37)], it also
follows that limt→∞ Dt(Q||QM) = 0. The relaxation time λ−1

1

in the many-body problem corresponds to the exploration of the
entire system of length L (here set to unity); for further details
see [67]. For a finite single file deviations from Markovianity are
therefore transient, starting at zero, passing through a maximum,
and decaying back to zero at times longer than the relaxation time
λ−1
1 of the full, many-body model.
The results for Dt(Q||QM) for intermediate and long times

are shown in Figure 2. From Figure 2, we confirm that the
Markovianity is broken transiently (on time-scales t . λ−1

1 ,
which holds for any ergodic dynamics in the sense of generating
an invariant measure. Notably, the relaxation time λ1 does not
depend on N and is hence equal for all cases considered here.
Moreover, as expected, the magnitude of broken Markovianity
increases with the “degree” of the projection (here with the
particle number N), as is best seen on a natural time-scale (see
Figure 2B). Conversely, on the absolute time-scale the relaxation
rate of the Markovian approximation, describing diffusion on
a free energy landscape f (q3) = −β ln900(q3), which can be
defined as

λM1 = − lim
t→∞

t−1 ln(QM(qj, t|q0,j)−900(qj)) (38)

increases with increasing N (see inset in Figure 2B). Therefore,
while both have by construction the same invariant measure, the
Markovian approximation overestimates the rate of relaxation.
This highlights the pitfall in using free energy landscape ideas in
absence of a time-scale separation.

3.4. Tagged Particle Local Times Probing
the Origin of Broken Markovianity
In order to gain deeper insight into the origin and physical
meaning of memory emerging from integrating out latent
degrees of freedom we inspect how a given tagged particle
explores the configuration space starting from a stationary
(equilibrium) initial condition. To that end we first compute the
variance of local time of a tagged particle, θt(qj) in Equation (25),
given in the general form in Equation (26), which applied to
tagged particle diffusion in a tilted single file reads:

σ 2
t (qj) = 2

∑

k

90k(qj)9k0(qj)

λkt

(

1−
1− e−λkt

λkt

)

(39)

where 9k0(qj) is given by Equation (34) and 90k(qj) =
mk!
N! 9k0(qj). Note that since the process in ergodic we have
〈θt(qj)〉 = 900(qj), and because the projected dynamics
becomes asymptotically Gaussian (i.e., the correlations between
θt(qj) at different t gradually decorrelate) we also have the

large deviation limt→∞ tσ 2
t (qj) = 2

∑

k λ
−1
k 90k(qj)9k0(qj) 6=

f (t). Moreover, because of detailed balance the large deviation
principle represents an upper bound to fluctuations of time-

average observables σ 2
t (qj) ≤ 2

∑

k
90k(qj)9k0(qj)

λkt
,∀ t.

In order to gain more intuition we inspect the statistics of
θt(qj) for a single file of four particles (see Figure 3) at different
lengths of trajectory t (plotted here on the absolute time-scale). In
Figure 3, we show 〈θt(qj)〉with full lines, and the region bounded
by the standard deviation±σt(qj) with the shaded area.

The scatter of θt(qj) is largest near the respective free
energy minima.

To understand further how this coupling to non-relaxed latent
degrees of freedom arises we inspect the correlations between

FIGURE 2 | The Kullback–Leibler divergence between the exact non-Markovian Green’s function Q(q3, t|q0,3) and the Markovian approximation QM (q3, t|q0,3) as a

function of time (measured in units of collision time) for increasing values of particle numbers N: (A) results shown on the absolute (dimensionless) time-scale and (B)

on the natural time-scale, that is, expressed in units of collision time t̃. Inset: λM1 , the slowest relaxation rate of QM (q3, t|q0,3) compared to the corresponding

eigenvalue λ1 of the exact Q(q3, t|q0,3).
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FIGURE 3 | Statistics of tagged particle local time for all members of a single file of four particles starting from stationary initial conditions; 〈θt (qj )〉 is represented by full

lines and the region bounded by the standard deviation ±σt (qj ) with the corresponding shaded area. The color code is: j = 1 violet, j = 2 blue, j = 3, green and j = 4

yellow. The relaxation time corresponds to λ−1
1 ≃ 0.1. Therefore, panel (A) depicts fluctuations on a time scale much shorter that λ−1

1 , whereas (B,C) already belong

deeply into the ergodic large deviation regime.

tagged particle histories

Ct(qi; qj) =
∑

k

90k(qi)9k0(qj)+90k(qj)9k0(qi)

λkt

(

1−
1− e−λkt

λkt

)

,

(40)

where as before limt→∞ tCt(qi; qj) ≡ Ct(qi; qj) =
∑

k λ
−1
k (90k(qi)9k0(qj) + 90k(qj)9k0(qi)) 6= f (t) as a

manifestation of the central limit theorem, since θt(qi) and
θt(qj) asymptotically decorrelate. In other words, taking
Ct(qi; qi) ≡ σ 2

t (qi), the complete large deviation statistics of
θt(qi) (i.e., on ergodically long time-scales) is a N-dimensional
Gaussian with covariance matrix t−1Ct(qi; qj).

To visualize these results we present in Figures 4, 5 two-
tag nearest neighbor and next-nearest correlations, Ct(q1; q3)
and as Ct(q2; q3) respectively, for a single file of N = 4 and
N = 7 particles at two different trajectory lengths. We find that,
alongside the fact that correlations intuitively increase with theN,
both the magnitude and the sign of Ct depend on which particles
we tag and even more so, where we tag these particles. Along the
(upward shifted) diagonal Ct is positive, implying the two tagged
particles along a stochastic many-body trajectory effectively (in
the sense of the local time)move together, such that if one particle
spends more time in a given region, so will the other. At fixed
F (here assumed to be equal to 1) the magnitude of the upward
shift depends on which particles we tag as well as on N. This

Frontiers in Physics | www.frontiersin.org 11 November 2019 | Volume 7 | Article 182

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Lapolla and Godec Manifestations of Projection-Induced Memory

FIGURE 4 | Two-tag local time correlations Ct (q1;q3) (left) and Ct (q2;q3) (right) for a single file of N = 4 (top) and N = 7 (bottom) particles for a (very short)

trajectory length t = 0.01. The relaxation time corresponds to λ−1
1 ≃ 0.1. The dashed lines denote the positions of the two free energy minima.

intuitive idea is backed up mathematically by realizing that the
lowest excited Bethe-eigenfunctions correspond to collective (“in
phase”) motion (see Equations 29, 30). Furthermore, defining
the free energy minima of the tagged particles with qmin

i and
qmin
i (see dashed lines in Figures 4, 5) we would expect, if the
particles were to explore their respective free energy minima,
a peak localized at (qmin

i , qmin
i ) (i.e., at the crossing of dashed

line in Figures 4, 5). We find, however, that this is not the case,
all together implying that the tagged particles do not, along a
many-body trajectory, explore their respective free energy minima.
Instead, as mentioned above, they move collectively close to
each other. The collective dynamics is therefore non-trivial and
the tagged particle dynamics cannot be, at least for t . λ−1

1
coarse grained to a Markovian diffusion on −β ln900(qj), the
free energy landscape of the tagged particle j. Conversely, the fact
that all correlations (positive and negative) die our as qi,j → 1 is
a straightforward consequence of the tilting of the confining box.

Focusing now on the dependence on the length of the
trajectory we see at very short time (much shorter than the
relaxation time) the correlations are stronger, and that positive
correlations peak further away from the two respective tagged
particle free energy minima (compare Figure 4 and Figure 5).
In addition, the maximum of Ct(qi; qj) appears to be somewhat
more localized at longer (nearly ergodic) times (see Figure 5). In
addition, the tagged particle dynamics seem to be localized more
strongly near the free energy minimum if we tag the first particle

and if N is larger, presumably because of a faster relaxation due
to the presence of the wall effecting more frequent collisions with
the wall, during which the particle eventually loses memory.

4. SUMMARY AND OUTLOOK

Non-Markovian dynamics and anomalous diffusion are
particularly ubiquitous and important in biophysical systems
[1–16]. There, however, it appears that the quite many
non-Markovian observations are described theoretically by
phenomenological approaches with ad-hoc memory kernels,
which in specific cases can lead to mathematically unsound or
even unphysical behavior [82]. It therefore seems timely and
useful to provide a theoretical perspective of non-Markovian
dynamics starting from more fine-grained principles and
considering a projection to some effective lower-dimensional
configuration space.

The ideas presented here are neither new nor completely
general. Projection-operator concepts date back to the original
works by Zwanzig, Mori, Nakajima, van Kampen, Hänggi and
other pioneers. However, these seminal contributions focused
mostly on the derivation and analysis of effective non-Markovian
evolution operators, whereas here we provide a thorough analysis
of the manifestations of the projection on the level of Green’s
functions with the aim to somewhat relieve the need for
choosing a particular model based solely on physical intuition.
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FIGURE 5 | Two-tag local time correlations Ct (q1;q3) (left) and Ct (q2;q3) (right) for a single file of N = 4 (top) and N = 7 (bottom) particles for a trajectory length

comparable to the relaxation time t = 0.12 ≃ λ−1
1 . The relaxation time corresponds to λ−1

1 ≃ 0.1. The dashed lines denote the positions of the two free energy minima.

Furthermore, we rigorously establish conditions under which the
projected dynamics become Markovian and renewal-type, and
derive Markovian approximations to projected generators. As a
diagnostic tool we propose a novel framework for the assessment
of the degree of brokenMarkovianity as well as for the elucidation
of the origins of non-Markovian behavior.

An important remark concerns the transience of broken
Markovianity, which is a consequence of the fact that we assumed
that the complete dynamics is ergodic. First we note that (i) for
any finite observation of length t it is de facto not possible to
discern whether the observation (and the dynamics in general)
will be ergodic or not on a time scale τ > t. (ii) All physical
observations are (trivially) finite. (iii) In a nominally ergodic
dynamics on any finite time scale t, where the dynamics starting
from some non-stationary initial condition x0 has not yet reached
the steady state (in the language of this work t < λ−1

1 ), it is not
possible to observe the effect of a sufficiently distant confining
boundary ∂�(x) (potentially located at infinity if the drift field
F(x) is sufficiently confining) that would assure ergodicity (in
the language of this work ∀t ≪ λ−1

1 such that G(lmin, t|x0, 0) ≃

0 where |lmin| ≡ minx|x0 − ∂�(x)|). Therefore no generality
is lost in our work by assuming that the complete dynamics is
nominally ergodic, even in a rigorous treatment of so-called
weakly non-ergodic dynamics with diverging mean waiting times
(see e.g., [1, 6]) or generalized Langevin dynamics with diverging

correlation times (see e.g., [29–34]) on finite time-scales. As a
corollary, in the description of such dynamics on any finite time-
scale it is a priori by no means necessary to assume that the
dynamics is non-ergodic or has a diverging correlation time. This
does not imply, however, that the assumption of diverging mean
waiting times or diverging correlation times cannot render the
analysis of specific models simpler.

Notably, our work considers parent dynamics with a
potentially broken time-reversal symmetry and hence includes
the description of projection-induced non-Markovian dynamics
in non-equilibrium (i.e., irreversible) systems. In the latter case
the relaxation process of the parent microscopic process might
not be monotonic (i.e., may oscillate), and it will be very
interesting to explore the manifestations and importance of these
oscillations in projected non-Markovian dynamics.

In the context of renewal dynamics our work builds on firm
mathematical foundations of Markov processes and therefore
provides mathematically and physically consistent explicit (but
notably not necessarily the most general) memory kernels
derived from microscopic (or fine-grained) principles, which
can serve for the development, assessment and fine-tuning
of empirical memory kernels that are used frequently in
the theoretical modeling of non-Markovian phenomena (e.g.,
power-law, exponential, stretched exponential etc; [2, 82]). In
particular, power-law kernels are expected to emerge as transients
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in cases, where the latent degrees of freedom relax over multiple
time-scales with a nearly continuous and self-similar spectrum.
Conversely, the quite strongly restrictive conditions imposed
on the microscopic (parent) dynamics that lead to renewal
dynamics, which we reveal here, suggest that renewal type
transport in continuous space (e.g., continuous-time random
walks [1, 2]) might not be the most abundant processes
underlying projection-induced non-Markovian dynamics in
physical systems, but aremore likely to arise due to some disorder
averaging. In general, it seems natural that coarse graining
involving some degree of spatial discretization should underly
renewal type ideas.

From a more general perspective beyond the theory of
anomalous diffusion our results are relevant for the description
and understanding of experimental observables a(q) coupled to
projected dynamics q(t) in presence of slow latent degrees of
freedom (e.g., a FRET experiment measuring the distance within
a protein or a DNA molecule [88]), as well as for exploring
stochastic thermodynamic properties of projected dynamics with
slow hidden degrees of freedom [89–91]. An important field
of applications of the spectral-theoretic ideas developed here
is the field of statistical kinetics in the context of first passage
concepts (e.g., [92–94]), where general results for non-Markovian
dynamics are quite sparse [46, 49, 95–100] and will be the subject
of our future studies.
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