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Recent experiments show that the deformation properties of a wide range of solid

materials are surprisingly similar. When slowly pushed, they deform via intermittent slips,

similar to earthquakes. The statistics of these slips agree across vastly different structures

and scales. A simple analytical model explains why this is the case. The model also

predicts which statistical quantities are independent of the microscopic details (i.e.,

they are “universal”), and which ones are not. The model provides physical intuition

for the deformation mechanism and new ways to organize experimental data. It also

shows how to transfer results from one scale to another. The model predictions agree

with experiments. The results are expected to be relevant for failure prediction, hazard

prevention, and the design of next-generation materials.
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INTRODUCTION

Different types of solids can have vastly different structures at the microscopic scale. Their atoms
may be arranged on a lattice, as in crystals, or sit in random positions, as in metallic glasses. At
longer length scales, solids can comprise densely packed grains, powders, or porous structures (e.g.,
in the case of many rocks). Despite these widely different structures, it appears these solids have
surprisingly similar deformation properties: under slow compressionmany deform via intermittent
slips, similar to earthquakes. Most earthquakes are small, some are of intermediate size, and
relatively few are large. Histograms of earthquake size follow the famous Gutenberg-Richter law,
which is a simple power-law function that extends over many decades in size. Lab-scale solids
behave in the same way. If you were to bend your fork and could listen to the acoustic emission,
you would hear crackling noise, which is the manifestation of small slips in the metal [1–3]. Recent
experiments on slowly compressed crystals showed that histograms of the slip sizes follow roughly
the sameGutenberg-Richter power law as earthquakes withmany other similar statistical properties
[1–5]. The same is true for millimeter-scale bulk metallic glasses [5, 6], centimeter-scale rocks [5],
and meter-scale granular materials [5, 7, 8]. Additionally in many solids such as these, the average
slip size grows with the applied force or stress (which is force per area). As you push harder on
the sample, the slips grow larger [3–5, 9, 10]. Again a related stress dependence is also reported for
earthquakes [11] on faults at different stress levels.
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The aforementioned observations suggest that a universality
class may exist for solids that show intermittent discrete
deformation events (often referred to as slips). Systems within
a single universality class show the same slip statistics and
dynamics, irrespective of the microscopic details. A number of
deformation models [see for example [12–22] and references
therein for an incomplete list] focus on the behavior near a
yield point, often in the steady state and in the absence of
shear bands. In this article, however, we review a particularly
simple model that has predicted and explained observed
similarities across scales [23] and that provides many predictions
for the slip dynamics. The model does not require fitting
parameters or operation in the steady state, and it allows for
the formation of shear bands. This model has also shown
agreement with experimental results for a number of materials
[e.g., 4–10].

The premise of the model is that most solids have weak spots
that are elastically coupled. Weak spots are regions that are prone
to slipping. In crystals they are dislocations, and in glasses or
granular materials they are zones where the atoms or grains are
especially susceptible to slipping under shear. If a weak spot slips,
it can trigger other weak spots to slip also, thereby resulting in a
slip avalanche. If the deformation takes place sufficiently slowly,
each avalanche is well-separated in time from the others [24, 25].

FIGURE 1 | Nanopillar compression tests from Friedman et al. [4]. (A,B)

Scanning electron micrographs of a 868-nm-diameter Nb pillar at 52◦ tilt,

before, and after compression, respectively. (C) Stress-strain curves for

increasing stress (each contains thousands of points) for four metals

compressed at different displacement rates. Negatively sloped lines connect

two points at the beginning and end of fast slips. The Nb stress-strain curve

corresponds to the pillar in (A,B). (D) Schematic of the compression test

methodology. For details, see [4] and references therein [Reprinted with

permission from Friedman et al. [4] Copyright (2012) by the American

Physical Society].

The model can be applied for either constant-displacement-rate
or constant-force-rate conditions.

The model assumes each weak spot is stuck until the local
force or stress exceeds a random threshold. For ductile materials
[such as nanoscale single crystals [4]], the thresholds on average
remain at a certain level, while for brittle materials (such as
metallic glasses), the thresholds can be weakened locally by
the slips [6, 23]. Whenever the local stress exceeds the local
threshold stress, a weak spot slips by a random amount and
subsequently re-sticks. The weak spots are coupled through
long-range elastic interactions. Through these interactions,
slipping weak spots trigger other weak spots to slip as well,
creating a slip avalanche. In most experiments, the slips
tend to localize along planes, shear bands, glide planes, or
earthquake fault zones. Such a simple model is successful
because using tools from the theory of phase transitions such
as the renormalization group, one can show that in this case,
the long-range interactions are so long range that mean-
field theory, which assumes infinite-range interactions, gives
the correct scaling behavior for the slip statistics [23, 26] on
scales that are large compared to the microscopic details of
the material. In short, the coarse-grained model is able to
predict the universal, detail-independent avalanche statistics. The
mean-field model can be solved analytically—and it provides
a long list of predictions for the slip statistics and their
dynamics. In the following, we first briefly review the model
equations and predictions [23], and then show comparisons to
recent experiments.

FIGURE 2 | Stress-binned complementary cumulative distribution C(S) of slip

sizes S for different bins of applied stress (note that “s” on the horizontal axis in

the main figure represents the slip size denoted “S” in the inset and also in this

review). The data was obtained from the compression of seven Mo nanopillars

of approximate diameter 800 nm, compressed at a 0.1 nm/s nominal

displacement rate. The inset shows a scaling collapse of the data using the

mean-field model predictions κ = 1.5 and σ = 0.5 onto the predicted

mean-field scaling function shown in gray. For details, see [4] and references

therein [Reprinted with permission from Friedman et al. [4] Copyright (2012) by

the American Physical Society].
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FIGURE 3 | Experimental setup and stress drops. (A) Schematic diagram of the experimental setup. Two tungsten carbide platens that are constrained by a steel

sleeve compress the metallic glass sample, see [6] and references therein for details. (B) Lower-right inset: applied stress vs. time. Main figure: magnification of the

data in the small window in the lower-right inset. Slip avalanches manifest as sudden drops in applied stress for constant-displacement-rate testing. Upper-left inset is

further magnification, showing one stress drop. Black curves indicate the raw, unfiltered stress-time series, and red curves indicate the time series after Wiener

deconvolution (see [6] and references therein) [Reprinted with permission from Antonaglia et al. [6] Copyright (2014) by the American Physical Society].

BRIEF SUMMARY OF MODEL EQUATIONS

Details of the model equations are given, for example, in Dahmen
et al. [23] and Fisher et al. [26] and the references therein. The
discrete version is particularly simple. Modeling the slip plane
with N lattice points, the local stress τl at a lattice point l is τl
= (J/N) [Σm (um – ul)] + F [23]. Here F is the applied (shear)
stress, and um is the accumulated local slip distance along the
slip plane at site m. Each lattice site slips when the local stress
exceeds the local failure (slip) stress τf ,l = τs,l (or τd,l). Here
τs,l is a static failure stress, and τd,l (τd,l < τs,l) is a weakened
dynamic failure stress. A site can then slip by a random amount
1ul resulting in a stress reduction τf ,l – τa,l ∼ 2G 1ul where
G ∼ J is the elastic shear modulus, and τa,l is the local random
arrest stress or sticking stress, at which the site resticks. For zero
weakening (i.e., weakening parameter ε = 0), the failure stress
takes a static value τf ,l = τs,l. For stress-controlled deformation
starting from a relaxed (zero stress) state, the external stress F
is increased, and the system approaches a “depinning transition”
at the critical yield stress Fc, which has been studied previously
in other contexts [4, 23]. For a fixed strain rate, the system
operates near the critical stress [23, 26]. At finite weakening (with
weakening parameter ε = (τs,l – τd,l)/(τs,l – τa,l) > 0) after a slip at
the static failure stress τs,l, the slip stress is reduced to the lower
dynamic threshold τf ,l = τd,l and it remains at that reduced value
until the ensuing slip avalanche is completed. Only afterward
does it reheal to its static threshold stress τf ,l = τs,l.

BRIEF SUMMARY OF MODEL
PREDICTIONS FOR STICK SLIP BEHAVIOR
IN SOLIDS

For the slow deformation of ductile solids, like copper, the
model predicts broad distributions of slip avalanche sizes,

following a power law distribution with a cutoff of a size
that grows with applied stress up to a maximum value
that is set by either the sample size or the work-hardening
of the material [3, 4, 23]. For somewhat brittle materials,
like bulk metallic glasses and rocks, and similarly also for
densely packed granular materials, we assume that the slip
thresholds are weakened upon slip (ε > 0) and in that
case the model predicts “stick-slip” behavior, with small
precursor slip avalanches and almost periodically recurring
large slip avalanches that reach the boundaries of the sample
[6, 23, 24].

In experiments, the slip-size distributions can be extracted
from measurements of time series of the stress or strain or
in some cases from acoustic emission or heat pulses. The
emission experiments use sound waves or heat pulses to extract
information about the size/energy and location of the slips
[4, 5].

POTENTIAL APPLICATIONS

For ductile materials the model predictions can be used to
extract the failure stress from the slip statistics measured at
lower stresses. Figures 1, 2 illustrate the main idea. Figures 1A,B
show images of a slowly compressed Nb nanopillar from an
experiment conducted as shown in Figure 1D by Andrew
Jennings and Julia Greer. Figure 1C shows the stress-strain
curves obtained in this way [4]. Stress-drops reflect the
slip avalanches. Figure 2 shows the fraction of slips larger
than size S for different windows of stress. Clearly the
average slip size increases as the failure stress is approached.
The model predicts this trend as shown in the inset.
The collapse of all slip distributions onto the predicted
gray function was obtained by rescaling the curves at low
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FIGURE 4 | The stress drop rate Ṡ vs. time for a single avalanche in the small

avalanche regime after Wiener filtering is performed. The unfiltered and

Wiener-filtered data for stress vs. time are also shown. The axes scales are

different for the plots. (A) This avalanche lasts ∼4.4ms with a stress drop size

of 0.7 MPa and a maximum stress drop rate of 0.34 GPa/s. (B) This avalanche

lasts ∼8.6ms with a stress drop size of 3.3 MPa and a maximum stress drop

rate of 0.88 GPa/s [Reprinted from Wright et al. [27], with the permission of

AIP Publishing].

stresses according to the model predictions. The material-
specific failure stress was extracted by varying it until the
curves collapsed.

APPLICATION OVER A WIDE RANGE OF
SCALES

The model has no intrinsic length scale nor any information
about the material’s microstructure. We therefore expect it
to apply equally well to amorphous materials, such as bulk
metallic glasses (BMGs), as to crystals. BMGs are metallic alloys
with amorphous structure and excellent strength properties.
Figure 3A shows an experimental setup for the compression of
mm-sized BMG samples, and Figure 3B shows stress vs. time
curves [6]. The inset shows the observed stick slip behavior that
is consistent with the model predictions for brittle materials. In
stick-slip, a random series of smaller slips precedes the roughly

FIGURE 5 | The individual avalanche profiles (in red) as well as the averaged

profile (in black) of those “large” avalanches within the bin 7 – 0.7ms ≤ T ≤ 7

+ 0.7ms and S ≥ 10 MPa, i.e., avalanches with duration of 7ms ± 0.7ms in

the large avalanche regime [Reprinted from Wright et al. [27], with the

permission of AIP Publishing].

periodically recurring large slips that cut through the sample
[6, 23, 24].

This particular experiment was performed at exceptionally
high time-resolution (100 kHz); a high data acquisition rate is
required to conduct a detailed study of the dynamics of individual
slips [6]. As predicted by the model, large and small slips have
very different propagation modes: Figures 4A,B show that the
small slips propagate in a very jerky way, i.e., intermittently with
a fluctuating stress drop rate, while the large ones shown in
Figure 5 have a smooth slip velocity–time profile, i.e., they zip
through the sample in crack-like fashion. Figure 6 shows the
rescaled average time profiles of the avalanches. In Figure 6A,
the profiles are averaged over all avalanches rescaled to the same
duration. Comparing the symmetric shape of the basic mean-
field model to predictions of different model variants as shown
in Figure 6B suggests that the slip dynamics are overdamped
[6, 26, 28, 29].

Figure 6C shows that the average time profiles of different-
size small avalanches are simple rescalings of each other,
as one expects for avalanches that are distributed according
to a power law. Using the model predictions, they can
be collapsed onto the predicted time profile, as shown in
the main figure. The agreement with the model predictions
is remarkable.

Similar scaling has been found for experiments at different
stresses and strain-rates [10]. Many more predictions about
both the statistics and the dynamics of these avalanches can
be tested in experiments. Thus, far about 15 different statistical
predictions have been tested and found to agree with the
behavior in experiments on BMGs [6, 10, 27]. Many more
predictions will be tested in future experiments. Since the model
predictions agree with the deformation properties of nanocrystals
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FIGURE 6 | Average avalanche profiles of “small” avalanches. (A) Orange curve: Stress-drop rate profiles divided by duration T averaged over all small avalanches in

the scaling regime. The model prediction is shown by the black curve. (B) Model predictions for average avalanche profiles for different model assumptions. (C) Inset

shows the unscaled average stress-drop rate profiles for different stress-drop sizes S, collapsed in the main figure (scaling both axes by a factor of S−1/2). The main

figure shows the agreement of the collapse with the predicted collapse scaling function (black curve, for non-universal values of the constants A = 3.98 × 1011 and B

= 2.18 × 1011) [Reprinted with permission from Antonaglia et al. [6] Copyright (2014) by the American Physical Society].

FIGURE 7 | Sketch of size scales of samples showing the same slip avalanche statistics and spanning 12–13 decades in length [Reprinted from Uhl et al. [5] licensed

under http://creativecommons.org/licenses/by/4.0/].

and BMGs on very different scales, there is no reason why it
should not also apply at even larger scales. Figure 7 illustrates
the size scales of samples of single-crystal nano- and micro-
pillars, mm-scale bulk metallic glasses (amorphous), cm-scale
rocks (polycrystalline), m-scale granular materials (amorphous)
[4, 5, 7–9, 19, 30, 31], and earthquakes on faults that may
span up to hundreds of kilometers in length [5]. Figure 8

demonstrates that for all of these different materials, the slip-
size distributions obtained at different values of the applied

stresses can be collapsed on top of each other and onto a scaling
function predicted by the model. The collapse was obtained by
rescaling the distributions according to the predicted mean-field
scaling forms.

Similar agreement with the model predictions has been
observed in ferroelastics with twin boundaries [32], and for
the motion of magnetic domain walls in soft magnets [32–
35]. Related results were also found for porous materials
[36], neurons [37] and even flickering stars [38]. Regrettably
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FIGURE 8 | Scaling collapse of the slip statistics (size CCDF) from different

stress-windows of five different materials on scales spanning 12 decades in

length, onto each other and onto the predicted scaling function of the

mean-field model (see [5] and references therein for details) [Reprinted from

Uhl et al. [5] licensed under http://creativecommons.org/licenses/by/4.0/].

space limitations in this brief review prevent the discussion
of many other recent models, e.g., those that focus on the
deformation of amorphous materials in the absence of shear
localization. The goal here is to highlight a particularly simple
model that provides intuition and is useful for organizing
experimental data and appears consistent with observations
in a wide range of experimental systems (Note that in some
experiments machine oscillations can skew the experimental
results [39]).

WHY DOES IT WORK?

Tools from the theory of phase transitions, such as the
renormalization group [35], can be used to coarse grain the
system to scales that are large compared to the microscopic
details. On these scales the dynamics are given by slip avalanches
of coupled weak spots. The model described here, as well as
models for a wide range of different materials, flow to the
same fixed point under this coarse-graining transformation [23,
26]. This fixed point is responsible for the observed universal
scaling behavior of the slip avalanche size distributions. The
renormalization group thus renders a mathematical explanation
for why a simple mean-field model for coupled weak spots with
failure thresholds can explain the agreement across scales and
material structures [5, 23], on scales that are large compared to
the microscopic details.

WHY DO WE CARE?

These results tell us that simple models are useful for describing
far-from-equilibrium avalanche statistics and dynamics. In
fact, the parameter range where critical scaling is seen is
often much larger in far-from equilibrium systems than in

typical equilibrium systems. In plasticity the power-law slip-
size distributions are often observed over a wide range of
stresses and strain rates. For both science and engineering,
many important insights and applications may emerge from
these results:

• We have already seen that the noise created by the slips at
low stresses contains information about the stress at which the
material will break.

• The simple model provides intuition for the deformation
process. It describes material failure as a non-equilibrium
phase transition, and identifies the relevant tuning parameters,
such as stress and strain-rate, that affect the size of the largest
slip avalanches [10, 23, 26].

• The model predictions for universal behavior can be used to
transfer results from one materials study to another and from
one scale to another. Thus, the model tells us how to use
laboratory experiments on bulk metallic glasses to interpret
the slip statistics and dynamics in granular materials and
even earthquakes.

• The model tells us how to organize experimental data. It
predicts which quantities are expected to be the same for
different materials and on different scales and which ones are
not. For example, the scaling exponents and collapse functions
are predicted to be the same for many different material
structures and scales, while the exact value of the failure
stress should depend on the microscopic details, and thus be
material specific.

• The model predicts how the statistical properties of the
slip avalanches are related. For example it gives exponent
relations that predict how the scaling behavior of the slip-
size distributions, the slip-duration distributions, and the
power spectra of acoustic emission during the deformation
are related. Knowledge about these connections is useful
for comparing experiments that use different experimental
measurement methods. For example, the model enables
us to predict the scaling behavior obtained from acoustic
emission experiments from stress drop measurements and
vice versa.

• The model provides an understanding of the deformation
mechanism from the slip statistics and the slip dynamics.
It can be used to predict whether inertia or frictional
delay effects play a significant role during the propagation
of the slips. For example, comparison of the experiments
on bulk metallic glasses with the predictions suggests that
the slips in the shear bands do not have frictional delay
effects [6].

• Potential deviations from the mean-field predictions that
may be discovered in future experiments can be used to
provide new insights into differences between avalanche
dynamics in various contexts. For example, neuron firing
avalanches in the brain have different slip statistics than the
slip avalanches in solid materials, even though both result
from coupled threshold processes. The reason is that in the
brain the individual cells are coupled through a complicated
network that affects the scaling behavior of the avalanche
statistics [37].
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• Similar modeling ideas and data analysis tools can be
applied to many other systems with avalanches, including
magnetic materials, neuron firing avalanches in the brain,
decision making processes, sociological conflicts, imbibition,
fracture front propagation, ferroelastics, power-grid failures,
and maybe even the stock-market [35].
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