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Boğaziçi University, Turkey

*Correspondence:

Fabiano M. Andrade

fmandrade@uepg.br

Specialty section:

This article was submitted to

Mathematical Physics,

a section of the journal

Frontiers in Physics

Received: 31 March 2019

Accepted: 18 October 2019

Published: 06 November 2019

Citation:

Salem V, Costa RF, Silva EO and

Andrade FM (2019) Self-Adjoint

Extension Approach for Singular

Hamiltonians in (2 + 1) Dimensions.

Front. Phys. 7:175.

doi: 10.3389/fphy.2019.00175

Self-Adjoint Extension Approach for
Singular Hamiltonians in (2 + 1)
Dimensions
Vinicius Salem 1,2, Ramon F. Costa 2, Edilberto O. Silva 3 and Fabiano M. Andrade 4*

1 ICFO-Institut de Ciències Fotòniques, Mediterranean Technology Park, Castelldefels, Spain, 2 Programa de Pós-Graduação

em Ciências/Física, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil, 3Departamento de Física, Universidade

Federal do Maranhão, São Luís, Brazil, 4Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa,

Ponta Grossa, Brazil

In this work, we review two methods used to approach singular Hamiltonians in (2 + 1)

dimensions. Both methods are based on the self-adjoint extension approach. It is very

common to find singular Hamiltonians in quantum mechanics, especially in quantum

systems in the presence of topological defects, which are usually modeled by point

interactions. In general, it is possible to apply some kind of regularization procedure,

as the vanishing of the wave function at the location of the singularity, ensuring that

the wave function is square-integrable and then can be associated with a physical state.

However, a study based on the self-adjoint extension approach can lead to more general

boundary conditions that still gives acceptable physical states.We exemplify themethods

by exploring the bound and scattering scenarios of a spin 1/2 charged particle with an

anomalous magnetic moment in the Aharonov-Bohm potential in the conical space.

Keywords: curved space, self-adjoint operator, scattering, bound state, singular Hamiltonian operator, spin,

anomalous magnetic moment

1. INTRODUCTION

Singular and pathological Hamiltonians are quite common in quantummechanics and already have
a long history [1]. Probably, the first work to deal with δ-like singularities was in the Kronig-Penny
model [2] for the description of the band energy in solid-state physics. Since then, point interactions
have been of great interest in various branches of physics for their relevance as solvable models
[3]. For instance, in the famous Aharonov-Bohm (AB) effect [4] of spin-1/2 particles [5–7] a two-
dimensional δ function appears as the mathematical description of the Zeeman interaction between
the spin and the magnetic flux tube [8, 9]. The presence of this δ function cannot be discarded when
the electron spin is taken into account and it leads to changes in the scattering amplitude and cross-
section [6]. This question can also be understood in connection with the quantum mechanics of a
particle in a δ function potential in one dimension. When we wish to solve the problem for bound
states, it is well-known that such a function guarantees at least one bound state [10, 11], and this
property is maintained when studying the quantum mechanics of other physical systems in the
presence of external magnetic fields. The inclusion of the spin element in the approach of the AB
problem allows us to establish an exact equivalence with another well-known effect in the literature,
namely the Aharonov-Casher (AC) effect [12]. In the AC effect, a spin-1/2 neutral particle with a
magnetic moment is placed in an electric field generated by an infinitely long, an infinitesimally
thin line of charge. The interaction term involving the particle spin with the electric field in the
AC Hamiltonian is proportional to the δ function. Some works in the literature state that point
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interaction does not affect the scattering cross-section [13].
However, as in the spin-1/2 particle AB problem, the solution of
the equation of motion via the self-adjoint extension in the spin-
1/2 neutral particle AC problem reveals that the presence of the δ
function changes the scattering phase shift and consequently the
S-matrix [14, 15].

The study of physical systems with singular Hamiltonians
appears in various contexts of physics. In reference [16], the
discrete spectrum of a massive particle trapped in an infinitely
long cylinder with two attractive delta-interactions in the
cosmic string spacetime is studied. The authors showed that
the physical effects due to the cosmic string background are
similar to those of the AB effect in quantum mechanics. This
is verified when the cosmic string determines a deviation on
the trajectory of a particle, despite the locally flat character of
the manifold. In reference [17], the one-dimensional spinless
Salpeter Hamiltonian with finitely many Dirac delta potentials
was solved using the heat kernel techniques and self-adjoint
extension method. As in the case involving a single δ potential,
the model requires a renormalization to be made. They
investigated the problem in the context of bound states and
showed that the ground state energy is bounded from below.
Besides, they also showed that there exists a unique self-adjoint
operator associated with the resolvent formula and obtained an
explicit wave function formula forN centers. The approach using
this model to the scattering problem was addressed in reference
[18]. Such a model is a generalization of the work in reference
[19], where the Schrödinger equation for a relativistic point
particle in an external one-dimensional δ-function potential was
studied using dimensional regularization.

The physical regularization used in these models is consistent
with the self-adjoint extension theory and the idea can also be
used to study other versions of the Kronig-Penney model in
condensed matter physics. Different forms of Kronig-Penney-
type Hamiltonians can be found in the literature [20, 21]. To
approach singular Hamiltonian, it is more convenient to apply
von Neumann’s theory of self-adjoint extensions [3, 22, 23]. In
general, if we ignore the singularity, the resulting Hamiltonian
is self-adjoint and positive definite [24], its spectrum is R+ and
there are no bound states. The situation changes if we consider
the delta function because the singularity is physically equivalent
to an extraction of a single point from the plane R

2, which
leads to the loss of the self-adjointness of the Hamiltonian. This
has important consequences in the spectrum of the system [25].
However, the self-adjointness is necessary to have a unitary time
evolution. So, we must guarantee that the Hamiltonian is self-
adjoint, which here is done employing the self-adjoint extension
of symmetric operators. With this approach, a new family of
self-adjoint operators labeled by a real parameter is obtained.

The situation discussed above occurs, for instance, in the AB
scattering of a spin-1/2 particle, where it is well-known that for
all real values of the self-adjoint extension parameter, there is
an additional scattering amplitude [6], which results from the
interaction between the spin and the magnetic flux tube [26].
Moreover, there is one bound state solution with negative energy
when this parameter is <0. This situation can be considered
quite strange, however, it can be mathematically proved the

existence of this negative eigenvalue [3, 5, 27–36]. It is interesting
to comment that in reference [29], an equivalence between the
renormalization and the self-adjoint extension is discussed.

In this paper, we review some elements of the self-adjoint
extension theory which are necessary to address singular
Hamiltonians in relativistic and non-relativistic quantum theory.
As an application, we consider the model of a spin-1/2 particle
with an anomalous magnetic moment in an AB potential in the
cosmic string spacetime. As already mentioned above, in this
model, a δ function potential arises in the equation of motion
[4]. We derive the Dirac equation for this model and solve it
for the scattering and bound states on the non-relativistic limit
using the self-adjoint extensionmethod. Themain goal is to study
the physical implications of both the cosmic string background
and singularity on the properties of the system. Our application
example is motivated by the importance of studying cosmic
strings [37], which has been the usual framework for investigating
the effects of localized curvature in physical systems. There is
a significant number of articles in the literature that study the
influence of topology on physical systems using the cosmic string
as a background.

Recently, a detailed study to study geometric phase for an open
system of a two-level atom interacting with a massless scalar field
in the background spacetime of the cosmic string spacetime with
torsion was proposed in reference [38]. The authors showed that
the geometric phase depends not only on the inherent properties
of the atom, but also on the topological properties of background
spacetime. For this model, it was found that the correction to the
geometric phase of the present system derives from a composite
effect, which contains the cosmic string and screw dislocation
associated with the curvature and torsion, respectively. The
authors also showed that the phase depends on the initial state
of this atom and, in particular, there is no geometric phase
acquired for the atom if the initial state is prepared in the excited
state. Another physical model of current interest that has several
studies in cosmic string spacetime is the Dirac oscillator [39]. It is
known that the Dirac oscillator is a kind of tensor coupling with
a linear potential which leads to the simple harmonic oscillator
with a strong spin-orbit coupling problem in the non-relativistic
limit. The Dirac oscillator is an exactly soluble model and can
be an excellent example in the context of many-particle models
in relativistic and non-relativistic quantum mechanics [40]. In
reference [41], it was studied the relativistic quantum dynamics
of a Dirac oscillator subject to a linear interaction for spin-1/2
particles in a cosmic string spacetime. The authors showed in
this model that the geometric and topological properties of these
spacetimes lead to shifts in the energy spectrum and the wave-
function. In reference [42], the self-adjoint extension method
was used to study the effects of spin on the dynamics of a
two-dimensional Dirac oscillator in the magnetic cosmic string
background. For other important studies in the cosmic string
spacetime, the reader may refer to the references [43–46] and in
the context of non-relativistic quantum dynamics of a quantum
particle constrained to move on a curved surface using da Costa’s
approach [47] to the references [48–50].

The rest of this work is organized as follows. In section 2
the theory of the self-adjoint extensions is presented and two
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different methods, both based on the self-adjoint extension,
are discussed. In section 3 the Dirac equation that describes
the motion of a spin-1/2 charged particle with an anomalous
magnetic moment in the curved space is developed. The methods
presented in the previous section are then applied to this system
and the scattering and bound states scenarios are discussed. The
scattering matrix and the expression for the bound state energy is
presented. Finally, in the section 4 we present our conclusions.

2. THE SELF-ADJOINT EXTENSION
APPROACH

In this section, we review some important concepts and results
from the von-Neumann-Krein theory of self-adjoint extensions.
Let A and B two operators. If the domain of A contains the
domain of B, i.e., D(A) ⊇ D(B), and in the domain of B the
operators are equals, then we say that A is an extension of B. The
domain of an operator A is called dense if for each vector ψ in
this domain, there is a sequence ψn in such a way that ψn → ψ .
If an operator A has a dense domain, the domain of its adjoint
A†, is the set of all vectors ψ for which there is a vector A†ψ

that satisfies

(φ,A†ψ) = (Aφ,ψ), (1)

for all vectors φ ∈ D(A). Equation (1) defines A†ψ . On the other
hand, an operator with dense domain A is symmetric if

(φ,Aψ) = (Aφ,ψ), (2)

for every φ and ψ in its domain. In this case A†ψ is defined as
A†ψ = Aψ for all ψ ∈ D(A), and A† is said to be an extension
of A. If A† = A, then A is called self-adjoint or Hermitian. It is
interesting to comment that in physics it is common to assume
that Hermitian is the same as self-adjointness. However, they are
different notions in mathematics literature and only the word
Hermitian could be used for symmetric.

An important point here is that a symmetric operator can fail
to be a self-adjoint operator. For A to be a self-adjoint operator it
has to be symmetric, A = A†, and the domains of the operator
and its adjoint have to be equal as well, D(A) = D(A†). So,
in the same way as a function needs a rule, a domain and a
codomain to be defined, an operator needs not only its action
but also its domain (Hilbert space) to be completely defined.
Several traditional textbooks on quantum mechanics [51–54]
do not mention the problems that could arise by the incorrect
or incomplete definition of the operators. An exception being
the textbook of the author Ballentine [55]. The mathematical
framework of quantum mechanics is that of linear operators
in Hilbert spaces and the problems and paradoxes that could
arise come from the use of simplified rules described in many
textbooks. As an example of this is the use of the theory if
bounded operators to deal with unbounded operators [56].

2.1. The Weyl-Von Neumann’s Theorem
Following the concept of self-adjoint extension, the question we
want to answer is how many extensions, if any, are admitted by
an operator. The answer to this question lies in the concept of

deficiency index of an operator. Let A be a symmetric operator
with domain D(A) and the corresponding adjoint operator A†

with domain D(A†). The deficiency subspaces N± are defined
by [56]

N± =
{

ψ± ∈ D(A†), A†ψ± = z±ψ±, Im(z±) ≷ 0
}

, (3)

with dimensions dim {N±} = n±. The pair of non-negative
integers (n+, n−) are called deficiency indices of A. The exact
value of z± is not important as long as z+ (z−) belongs to the
upper (lower) half complex plane. For simplicity, it is chosen
as z± = ±iz0, with z0 an arbitrary positive real number, used
for dimensional reasons. In this manner, to access the deficiency
indices, all we have to do is to solve the eigenvalue equation

A†ψ± = ±iz0ψ±, (4)

and then count the number of linearly independent solutions that
belong to the domain of the adjoint operator in the Hilbert space
in question, i.e., those that are square integrable.

Theorem 1. (Weyl and Von Neumann [56]) Consider an
operator A with deficiency index (n+, n−):

1. If n+ = n−, A is essentially self-adjoint;
2. If n+ = n− = n ≥ 1, A posses an infinity number

of self-adjoint extensions parameterized by a unitary matrix
U :N+ → N− of dimension n with n2 real parameters;

3. If n+ 6= n−, A does not admit a self-adjoint extension.

Therefore, the domain of A† is

D(A†) = D(A)⊕N+ ⊕N−. (5)

So, it is important to note that even for Hermitian operators,
A = A†, its domains might be different. In this manner, the self-
adjoint extension essentially consists of extending the domain of
A using the deficiency subspacesN± to match the domain of A†.

Now that we have discussed some general concepts about
the self-adjoint extension approach, we restrict our discussion
to the specific case of singular Hamiltonian operators H in (2
+ 1) dimensions. In these cases, the singularity is characterized
by the presence of a two-dimensional δ function localized at the
r = 0. It is well-known in the literature that these Hamiltonians
are not self-adjoint and admit a one-parameter family of self-
adjoint extension [22]. Thus, our main goal is to solve the
time-independent Schrödinger equation

Hψ = Eψ , (6)

with H the Hamiltonian, ψ the wave function and E the energy.
To do so, we shall discuss two methods to characterize the
family of self-adjoint extensions of H. In both methods, the delta
function singularity is replaced by a boundary condition at the
origin. In the first one, proposed by Bulla and Gesztesy (BG) in
[57], the boundary condition is a mathematical limit allowing
divergent solutions for the Hamiltonian H at isolated points,
provided they remain square-integrable. In the second one,
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proposed by Kay and Studer (KS) in [58], the boundary condition
is a match of the logarithmic derivatives of the zero-energy
solutions for the regularized Hamiltonian and the solutions for
the Hamiltonian H without the delta function plus a self-adjoint
extension. As we shall show, the comparison between the results
of the two methods allows us to express the self-adjoint extension
parameter (a mathematical parameter that characterizes the self-
adjoint extension) in terms of the physics of the problem.

2.2. The BG Method
Let us consider the radial singular Schrödinger operator in
L2((0,∞)) given by

h = − d2

dr2
+ ℓ(ℓ− 1)

r2
+ γ

r
+ β

ra
+W, (7)

withW ∈ L∞((0,∞)) real valued and 1/2 ≤ ℓ < 3/2, β , γ ∈ R,
0 < a < 2. Bulla and Gesztesy showed that this operator, in
the interval 1/2 ≤ ℓ < 3/2, is not self-adjoint having deficiency
indices (1, 1). Thus admitting a one-parameter family of self-
adjoint extensions. The following theorem characterizes all the
self-adjoint extension of h.

Theorem 2. (Bulla and Gesztesy [3, 57]) All the self-adjoint
extension hν of h can be characterized by

hν = − d2

dr2
+ ℓ(ℓ− 1)

r2
+ γ

r
+ β

ra
+W, (8)

with domain

D(hν) =
{

g ∈ L2 ((0,∞))
∣

∣g, g′ ∈ ACloc ((0,∞)) ; (9)

− g′′ + ℓ(ℓ− 1)

r2
g + γ

r
g + β

ra
g ∈ L2 ((0,∞))

}

(10)

with ACloc((a, b)) denoting the set of locally absolutely
continuous functions on ((a, b)) and the function g satisfies
the boundary condition

νg 0,ℓ = g1,ℓ, (11)

and

−∞ < ν ≤ ∞,
1

2
≤ ℓ <

3

2
, β , γ ∈ R, 0 < a < 2. (12)

The boundary values in (11) are defined by

g 0,ℓ = lim
r→0+

g(r)

G
(0)
ℓ (r)

, (13)

and

g1,ℓ = lim
r→0+

g(r)− g0,ℓG
B
ℓ (r)

F
(0)
ℓ (r)

. (14)

The boundary condition g0,ℓ = 0 (i.e., ν = ∞) represents the
Friedrichs extension of h.

The functions F
(0)
ℓ (r) and G

(0)
ℓ (r) are given by

F
(0)
ℓ (r) = rℓ, (15)

and

G
(0)
ℓ (r) =







−r1/2 ln(r), ℓ = 1
2 ,

r1−ℓ

(2ℓ− 1)
, 1

2 < ℓ < 3
2 .

(16)

GB
ℓ (r) denotes the asymptotic expansion of Gℓ(r) for r → 0+ up

to rt , with t ≤ 2ℓ− 1.

2.3. The KS Method
The authors Kay and Studer studied, in the context of self-adjoint
extensions, the boundary conditions for singular Hamiltonians in
conical spaces and fields around cosmic strings [58]. Among the
studied problems, are the AB like problems in two dimensions.

The KS method starts by considering a regularization
procedure for the point interaction at the origin. Thus, for the
regularized Hamiltonian, where the point interaction is shifted
from the origin by a finite very small radius r0, the method is
applied in the following manner [59]:

1. We temporally forget the point interaction at the origin
substituting the singular Hamiltonian by the corresponding
non-singular one;

2. We solve the Equation (4) for the deficiency spaces of the
non-singular Hamiltonian;

3. The solutions obtained in the previous step are
used to complete the space of solutions for the
non-singular Hamiltonian;

4. In the last step, a boundary condition matching the
logarithmic derivatives of the zero-energy solutions for the
regularized Hamiltonian of step 1 and the general solutions
obtained in step 3 is employed:

lim
r0→0+

r0
ġ0

g0

∣

∣

∣

∣

r=r0

= lim
r0→0+

r0
ġρ

gρ

∣

∣

∣

∣

r=r0

. (17)

In the above equation, gρ are the solutions obtained in step 3
and g0 are the zero-energy solutions (ġ = dg/dr).

Now that we have discussed the self-adjoint extension approach
and the BG and KS methods, in what follows we exemplify
the application of both methods to the problem of a spin-1/2
charged particle with an anomalous magnetic moment under the
influence of an AB field in conical space.

3. THE DIRAC EQUATION FOR THE AB
SYSTEM IN THE CONICAL SPACE

In this section, we shall obtain the Dirac equation to describe
the motion of a spin-1/2 charged particle with mass M and
anomalous magnetic moment µB interacting with an AB field in
the cosmic string spacetime. The line element that describes this
universe written in cylindrical coordinates is given by

ds2 = dt2 − dr2 − α2r2dϕ2 − dz2, (18)
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with −∞ < (t, z) < ∞, r ≥ 0 and 0 ≤ ϕ ≤ 2π . The parameter
α in the metric (18) is related to the linear mass density m̄ of the
cosmic string through the formula α = 1 − 4m̄ and it stands for
two situations:

• It describes the surface of a cone if 0 < α < 1. This is
equivalent to removing a wedge angle of 2π(1 − α) and the
defect presents a positive curvature.

• It describes the surface of an anticone or the figure of a saddle-
like surface when α > 1. This situation corresponds to the
addition of an excess angle of 2π(α − 1) and, in this case, the
defect represents a negative curvature.

In this work, we shall discuss the case of a conical surface, so that
0 < α ≤ 1, with the equality corresponding to the flat space.

The metric in (18) can also be read as the Minkowski
spacetime with a conic singularity at r = 0 [60]. Because of this
characteristic, the only non-zero components of the curvature
tensor is found to be

Rr,ϕr,ϕ = 1− α
4α

δ2(r), (19)

where δ2(r) is the two-dimensional delta function in flat space.
The conical singularity in the tensor (19) reveals that the
curvature is concentrated on the cosmic string axis and in all
other regions it is null.

Since the spacetime is not flat, we must take into account the
spin connection in the Dirac equation. To implement this, we
need to construct a frame which allows us to obtain the Dirac
gamma matrices γ µ in the Minkowskian spacetime (defined in
terms of the local coordinates) in terms of global coordinates.

This is done by using the tetrad base e
(a)
µ (x), which allows to

contract the matrices γ µ with the inverse tetrad e
µ

(a) (x) through
the relation

γ µ (x) = e
µ

(a) (x) γ
(a), (20)

satisfying the generalized Clifford algebra

{

γ µ (x) , γ ν (x)
}

= 2gµν (x) , (21)

with

gµν (x) = e(a)µ (x) e
(b)
ν (x) η(a)(b), (22)

being the metric tensor of the spacetime in the presence of the
background topological defect, where η(a)(b) is the metric tensor

of the flat space, and (µ, ν) = (0, 1, 2, 3) represent tensor indices
while (a, b) = (0, 1, 2, 3) are tetrad indices. The tetrad and its
inverse satisfy the following properties:

e(a)µ (x) e
µ

(b)
(x) = δ

(a)

(b)
e
µ

( a) (x) e
(a)
ν (x) = δµν . (23)

Thematrices γ (a) =
(

γ (0), γ (i)
)

in Equation (20) are the standard
Dirac matrices in Minkowski spacetime, those representation is

γ (0) =
(

I 0
0 −I

)

, γ (i) =
(

0 σ i

−σ i 0

)

, (i = 1, 2, 3), (24)

where σ i =
(

σ 1, σ 2, σ 3
)

are the standard Pauli matrices and I is
the 2× 2 identity matrix.

To write the generalized Dirac equation in the cosmic string
background, we have to take into account the minimal and non-
minimal couplings of the spinor to the electromagnetic field
embedded in a classical gravitational field. The Dirac equation
then reads

[

iγ µ (x)
(

∂µ + Ŵµ (x)
)

− eγ µ (x)Aµ (x)

−aeµB

2
σµν (x) Fµν (x)−M

]

9 (x) = 0, (25)

where e is the electric charge,

ae =
ge − 2

2
= 0, 00115965218091, (26)

is the anomalous magnetic moment defined, with ge being the
electron’s g-factor [61],

Aµ (x) = (A0,−A) , (27)

is the 4-potential of the external electromagnetic field, with A

being the vector potential and A0 the scalar potential,

Fµν = ∂µAν − ∂νAµ, (28)

is the electromagnetic field tensor whose components are
given by

(

F0i, Fij
)

=
(

Ei, εijkB
k
)

, (29)

and the operator

σµν (x) = i

2
[e
µ

(a) (x) γ
(a), eν

(b)
(x) γ (b)]

= i

2

[

e
µ

(a)γ
(a)eν
(b)
(x) γ (b) − eν

(b)
(x) γ (b)e

µ

(a) (x) γ
(a)

]

,

(30)

those components are given by

σ 0i = iαj = i

(

0 σ i

σ i 0

)

, (31)

σ ij = −ǫijk6k = −
(

ǫijkσ
k 0

0 ǫijkσ
k

)

, (32)

where

6k =
(

σ k 0

0 σ k

)

(33)

is the spin operator. The spinor affine connection in Equation
(25) is related with the tetrad fields as [62]

Ŵµ (x) =
1

8
ωµ(a)(b) (x)

[

γ (a), γ (b)
]

, (34)
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where ωµ(a)(b) is the spin connection, which can be calculated

from the relation

ωµ(a)(b) (x) = η(a)(c)e
(c)
ν (x) eτ

(b)
(x) Ŵντµ

−η(a)(c)e(c)ν (x) ∂µe
ν

(b)
(x) , (35)

and Ŵντµ are the Christoffel symbols.
Now, we need of the tetrad fields to write the Dirac equation

in curved space. For the cosmic string spacetime they are chosen
to be [63]

e(a)µ =









1 0 0 0
0 cosϕ −αr sinϕ 0
0 sinϕ αr cosϕ 0
0 0 0 1









,

e
µ

(a)
=









1 0 0 0
0 cosϕ sinϕ 0
0 − sinϕ/αr cosϕ/αr 0
0 0 0 1









. (36)

Using (36), the matrices γ µ (x) in Equation (20) are written more
explicitly as

γ 0 = β ≡ γ t , (37)

γ z ≡ γ z , (38)

γ 1 ≡ γ r = γ (2) cosϕ + γ (2) sinϕ, (39)

γ 2 ≡ γ ϕ

αr
= 1

αr

(

−γ (1) sinϕ + γ (2) cosϕ
)

, (40)

γ 3 ≡ γ z . (41)

The matrices (37)–(40) satisfy condition ∇µγ µ = 0, which
means that they are covariantly constant. The Pauli matrices σ i

in Equation (31) have the following representation:

σ r =
(

0 e−iϕ

eiϕ 0

)

, (42)

σ ϕ = 1

αr

(

0 −ie−iϕ

ieiϕ 0

)

. (43)

Using the basis tetrad (36), the affine connection (34) is found to
be [64]

Ŵ =
(

0, 0,Ŵϕ , 0
)

, (44)

where

Ŵϕ = 1

2
(1− α) γ(1)γ(2) = −i

(1− α)
2

σ z , (45)

arises as the only non-zero component.
For simplicity, let us assume that the particle interacts with

the AB potential, which is generated by a solenoid along the z
direction. Since the motion is translationally invariant along this
direction, we require that pz = z = 0 and, in Equation (29), we

take Ei = 0 for i = 1, 2, 3. Thus, the particle has a purely planar
motion. Equation (25) takes the form

[

−i∂0 + α ·
[

1

i
(∇α + Ŵ)− eA

]

−aeµBγ
06 · B+ γ 0M

]

9(x) = 0. (46)

It is well-known that, in the non-relativistic limit, the large energy
M is the driving term in Equation (46). So, writing

9 = e−iEt

(

χ

8

)

, (47)

we obtain the coupled equations system

σ ·
[

1

i
(∇α + Ŵ)− eA

]

8 = (i∂0 + aeµBσ · B) χ , (48)

σ ·
[

1

i
(∇α + Ŵ)− eA

]

χ = (i∂0 − aeµBσ · B+ 2M)8. (49)

On the right side of Equation (49), if we assume that 2M ≫
(i∂0 − aeµBσ · B), we solve it as

8 = 1

2M
σ ·

[

1

i
(∇ + Ŵ)− eA

]

χ . (50)

Substituting (50) into (48), we get

1

2M
σ ·

[

1

i
(∇α + Ŵ)− eA

]

σ ·
[

1

i
(∇ + Ŵ)− eA

]

χ

−aeµBσ · Bχ = i∂0χ . (51)

Using the relation for Pauli’s matrices

(σ · a) (σ · b) = a · b+ iσ · (a× b) , (52)

where a and b are arbitrary vectors, Equation (51) becomes

1

2M

[

1

i
(∇α + Ŵ)− eA

]2

χ− e

2M
(1+ ae) σ ·Bχ = i∂0χ . (53)

Now we need to define the field configuration. We consider the
magnetic field generated by an infinity long cylindrical solenoid
in the metric (18). Thus, in the Coulomb gauge, the vector
potential reads

eA = − e8

2παr
ϕ̂ = − φ

αr
ϕ̂, A0 = 0, (54)

and

eB = − e8

2πα

δ(r)

r
ẑ = −φ

α

δ(r)

r
ẑ, (55)

with φ = 8/80 being the magnetic flux and 80 = 2π/e is
the quantum of magnetic flux. As we can observe, this magnetic
field is singular at the origin. The presence of this singularity (a
point interaction) in the Hamiltonian, demands that it must be
treated by some kind of regularization or, more appropriately, by
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using the self-adjoint extension approach. We can note that χ in
Equation (53) is an eigenfunction of σ z , with eigenvalues s = ±1.
In this way, we can write σ zχ = ±χ = sχ . We can take the
solutions in the form

χ (t, r,ϕ) = e−iEt

(

χ+ (r,ϕ)
χ− (r,ϕ)

)

= e−iEtχs (r,ϕ) . (56)

Substituting (45), (54), (55), and (56) in Equation (53), we obtain

1

2M

[

1

i
∇α −

(1− α)
2αr

sϕ̂ + φ

αr
ϕ̂

]2

χs +
1

2M

gesφ

2α

δ(r)

r
χs (r,ϕ)

= Eχs (r,ϕ) . (57)

Therefore, the eigenvalues equation associated with Equation
(25) is (k2 = 2ME)

Hχs = k2χs, (58)

with

H =
[

−i∇α −
(1− α)
2αr

sϕ̂ + φ

αr
ϕ̂

]2

+ gesφ

2α

δ(r)

r
. (59)

By expanding the above equation, we arrive at the Laplace-
Beltrami operator in the curved space

∇2
α = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

α2r2
∂2

∂ϕ2
. (60)

In the present system, the total angular momentum is the sum of
the angular momentum and the spin, J = −i∂/∂ϕ + s/2. Since J
commutes with H, we seek solutions of the form

χs =
∑

m

ψm(r) e
imϕ , (61)

with m = 0,±1,±2,±3, . . . being the angular momentum
quantum number and ψs(r) satisfies the differential equation

hψm(r) = k2ψm(r), (62)

with

h = h0 + λ
δ(r)

r
, (63)

and

h0 = − d2

dr2
− 1

r

d

dr
+ j2

r2
. (64)

The parameter j represents the effective angular momentum

j = m+ φ
α

− (1− α)s
2α

, (65)

and

λ = geφs

2α
. (66)

By observing equation (65), one can verify that the presence
of the spin element in the model leads to the appearance of a
δ function potential. The quantity λδ(r)/r in Equation (63) is
interpreted as the interaction between the spin of the particle
and the AB flux tube. As pointed out by Hagen [6, 7] in flat
space (α = 1), this interaction affects the scattering phase shift.
In this work, by using the self-adjoint extension approach, we
shall confirm these results and show that this delta function also
leads to bound states. This approach had to be adopted to deal
with singular Hamiltonians in previous works as, for example,
in the study of spin 1/2 AB system and cosmic strings [5, 65],
in the Aharonov-Bohm-Coulomb problem [33, 34, 66, 67], and
the study of the equivalence between the self-adjoint extension
method and renormalization [29].

3.1. Application of the BG Method
In this section, we employ the KS method to find the S-matrix
and from its poles we obtain an expression for the bound states.
To apply the BG method, we need first transform the operator
h0 in (64) to compare with the form in Equation (7). This is
accomplished by employing a similarity transformation bymeans
of the unitary operator U : L2(R+, rdr) → L2(R+, dr), given by
(Uξ )(r) = r1/2ξ (r). Thus, the operator h0 becomes

h̃0 = UH0U
−1 = − d2

dr2
+

(

j2 − 1

4

)

1

r2
, (67)

and by comparing with (7) we must have γ = β = W = 0 and

ℓ(ℓ− 1) = j2 − 1

4
. (68)

It is well-known that the radial operator h0 is not essentially self-
adjoint for ℓ(ℓ − 1) < 3/4, otherwise it is essentially self-adjoint
[22]. Therefore, using the above equation in this inequality,
we have

|j| < 1. (69)

Before we going to the application of Theorem 2, it is interesting
to get a deeper understanding of the significance of the above
equation for it informs us for which values of the angular
momentum quantum number m the operator h0 is not self-
adjoint. From Equation (65), we see that these values are
dependent on the magnetic quantum flux φ, the value of α and
the spin parameter s. By employing the decomposition of the
magnetic quantum flux as

φ = N + β , (70)

with N being the largest integer contained in φ and

0 ≤ β < 1, (71)

the inequality in Equation (69), becomes

πAB
− (α,β) < m < πAB

+ (α,β), (72)

with

Frontiers in Physics | www.frontiersin.org 7 November 2019 | Volume 7 | Article 175

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Salem et al. Singular Hamiltonians in (2 + 1) Dimensions

FIGURE 1 | In this figure we show the graphs of the planes πAB
± (α,β) for the AB (top panel) and the planes πAC

± (α,β) for the AC (bottom panel) effects. The figures on

the left are for s = −1 and on the right is for s = +1. The planes delimit the region where h0 is not self-adjoint.

πAB
± (α,β) = ±α − (N + β)+ (1− α)s

2
. (73)

The planes πAB
± (α,β) delimit the region in which h0 is not self-

adjoint. Given the exact equivalence of the spin 1/2 AB and
AC effects [68], Equation (73) should be compared with the
corresponding planes obtained for the AC effect in the conical
space. In reference [14] it was shown that the planes for the AC
effect are given by1

πAC
± (α,β) = ±α − s(N + β)+ (1− α)s

2
. (74)

Although the equations for the planes are very similar, there is
an additional dependence on the spin parameter s in the AC
effect. In Figure 1 we show the planes for AB (top panel) and AC
(bottom panel) effects as a function of β and it is possible to see
in the AB effect the s parameter changes the values ofm in which
h0 is not self-adjoint and the planes are decreasing functions
of β whatever the value of s while in the AC effect, besides of
changing the values of m, it also controls the inclination of the
planes (compare the figures at the bottom panel of Figure 1). We
can have even more information about the affected m values (in
the sense of which values of it h0 is not self-adjoint) by looking

1There is a missprint in the signal of the term sN in π±(α,β) in reference [14].

at some specific values of α. Thus, in Figures 2, 3 we show cross
sections of Figure 1 for s = −1 and s = +1, respectively. In
Figures 2, 3 we can see that for s = −1 (s = +1) and α = 0.25
only for m = −N − 1 (m = −N) the operator h0 is not self-
adjoint. On the other hand, for α = 0.50 for both values of
m = −N and m = −N − 1 the operator h0 is not self-adjoint.
In fact, the minimum value of α in which h0 is not self-adjoint
for both values of m is αmin = 1/3. Moreover, for α = 1
(flat space), the operator h0 is not self-adjoint for both values of
angular momentum for all range of β , which is a very well-known
result [3, 69–71].

Now that we have discussed in detail the significance of
inequality |j| < 1, we can return to our main discussion. Thus, in
the subspace where |j| < 1, we must apply Theorem 2, in such a
way that all the self-adjoint extensions h0,ν of h0 are characterized
by the boundary condition at the origin

νψ0,j = ψ1,j, (75)

with−∞ < ν ≤ ∞,−1 < j < 1 and the boundary values are

ψ0,j = lim
r→0+

r|j|ψm(r),

ψ1,j = lim
r→0+

1

r|j|

[

ψm(r)− ψ0,j
1

r|j|

]

.
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FIGURE 2 | Cross sections of Figure 1 (top left panel) with s = −1 for: α = 0.25 (top left panel), α = 0.50 (top right panel), α = 0.75 (bottom left panel), and α = 1

(bottom right panel). The area of the stripe detached in the figure represents the region in which the operator h0 is not self-adjoint. The dashed lines refer to the values

of angular momentum quantum number.

Physically, it turns out that we can interpret 1/ν as the scattering
length of h0,ν [3]. For ν = ∞ (the Friedrichs extension of
h0), we obtain the free Hamiltonian (the case describing spinless
particles) with regular wave functions at the origin (ψm(0) =
0). This scenario is similar to imposing the Dirichlet boundary
condition on the wave function and recovers the original result
of Aharanov and Bohm [4]. On the other hand, if |ν| < ∞,
h0,ν characterizes a point interaction at r = 0 and the boundary
condition permits a r−|j| singularity in the wave functions at this
point [72].

Now that we have a suitable boundary condition, we can
return to Equation (62) and look for its solutions. Equation (62)
is nothing more than the Bessel differential equation for r 6= 0.
Thus, the general solution for r 6= 0 is given by

ψm(r) = amJ|j|(kr)+ bmJ−|j|(kr), (76)

where Jν(z) is the Bessel function of fractional order and am and
bm are the coefficients corresponding to the contributions of the
regular and irregular solutions at r = 0, respectively. By means
of the boundary condition in Equation (75), we obtain a relation
between am and bm,

bm = −µνam, (77)

which is valid in the subspace |j| < 1. The term µν is given by

µν =
k2|j|Ŵ(1− |j|) sin(|j|π)

4|j|Ŵ(1+ |j|)ν + k2|j|Ŵ(1− |j|) cos(|j|π) , (78)

where Ŵ(z) is the gamma function. In Equation (78) one can
verify that µν controls, through ν, the contribution of the
irregular solution J−|j| for the wave function. Thus, the solution
in this subspace reads

ψm(r) = am
[

J|j|(kr)− µν J−|j|(kr)
]

. (79)

We can observe that for ν = ∞, we obtain µ∞ = 0 and, in
this case, there is no contribution of the irregular solution at the
origin for the wave function. Consequently, in this case, the total
wave function becomes

ψ =
∞
∑

m=−∞
amJ|j|(kr)e

imϕ . (80)

The coefficient am in Equation (80) must be chosen in such a way
that ψ represents a plane wave that is incident from the right. In
this case, we find the following result:

am = e−i|j|π/2. (81)
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FIGURE 3 | Cross sections of Figure 1 (top left panel) with s = +1 for: α = 0.25 (top left panel), α = 0.50 (top right panel), α = 0.75 (bottom left panel), and α = 1

(bottom right panel). The area of the stripe detached in the figure represents the region in which the operator h0 is not self-adjoint. The dashed lines refer to the values

of angular momentum quantum number.

The scattering phase shift can be obtained from the asymptotic
behavior of Equation (80). This leads to

δm = π

2
(|m| − |j|). (82)

This is the scattering phase shift of the AB effect in the cosmic
string spacetime [26, 59]. It is important to mention that, for
α = 1, it reduces to the phase shift for the usual AB effect in
flat space δABm = π(|m| − |m+ φ|)/2 [4].

On the other hand, for |ν| < ∞, the contribution of the
irregular solution changes the scattering phase shift to

δνm = δm + arctan(µν). (83)

Thus, from standard results for the S-matrix, one obtains

Sνm = e2iδ
ν
m = e2iδm

(

1+ iµν

1− iµν

)

, (84)

which is the expression for the S-matrix given in terms of phase
shift. It can be seen in (84) that there is an additional scattering
for any value of the self-adjoint extension parameter ν. By
choosing ν = ∞, we find the S-matrix for the AB effect in the
cosmic string spacetime, as it should be.

Having obtained the S-matrix, the bound state energies can
be identified as the poles of it in the upper half of the complex
k plane. To find them, we need to examine the zeros of the
denominator in Equation (84), 1 − iµν , with the replacement
k → iκb with κb = √

2MEb. Therefore, for ν < 0, the bound
state energy is given by

Eb = − 2

M

[

−ν Ŵ(1+ |j|)
Ŵ(1− |j|)

]1/|j|
. (85)

Thus, for a fixed negative value of the self-adjoint extension
parameter ν, there is a single bound state and the value
2|ν|1/|j|/M fixes the energy scale. The result in Equation (85)
coincides with the bound state energy found in references [26, 59]
for the AB effect in curved space and is similar that one found in
contact interactions of anyons [73]. It is also possible to express
the S-matrix in terms of the bound state energy. The result is seen
to be

Sνm = e2iδm
[

e2iπ |j| − (κb/k)
2|j|

1− (κb/k)
2|j|

]

. (86)

It is important to comment that the above results for the
scattering matrix and the bound state energy (for ν < 0) are valid
only when |j| < 1. Moreover, all the results are dependent on a
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free parameter, the self-adjoint extension parameter ν. In what
follows we shall show that by employing the KS method, we can
find an expression relating the self-adjoint extension parameter
with physical parameters of the system.

3.2. Application of the KS Method
In this section, we employ the KS approach to find the bound
states for the Hamiltonian in Equation (63). Following the
discussion in section 2.3, we temporarily forget the δ-function
potential in h and substitute the problem in Equation (62) by the
eigenvalue equation for h0,

h0ψρ = k2ψρ , (87)

plus self-adjoint extensions. Here, ψρ is labeled by the parameter
ρ of the self-adjoint extension, which is related to the behavior
of the wave function at the origin. To turn h0 into a self-adjoint
operator its domain of definition has to be extended by the
deficiency subspace, which is spanned by the solutions of the
eigenvalue equation (cf. Equation 4)

h†
0ψ± = ±ik20ψ±, (88)

where k20 ∈ R is introduced for dimensional reasons. Since h0 is

Hermitian, h†
0 = h0, the only square integrable functions which

are solutions of Equation (88) are the modified Bessel functions
of second kind,

ψ± = K|j|(
√
∓ik0r), (89)

with Im
√
±i > 0. These functions are square integrable only

in the range j ∈ (−1, 1), for which h0 is not self-adjoint.
The dimension of such deficiency subspace is thus (n+, n−) =
(1, 1), in agreement with the results of the previous sections.
In this manner, D(hρ,0) in L2(R+, rdr) is given by the set of
functions [22]

ψρ(r) = ψm(r)+ C
[

K|j|(
√
−ik0r)+ eiρK|j|(

√
ik0r)

]

, (90)

where ψm(r), with ψm(0) = ψ̇m(0) = 0, is the regular wave
function and the mathematical parameter ρ ∈ [0, 2π) represents
a choice for the boundary condition. For different values of ρ,
we have different domains for h0. and the adequate boundary
condition will be determined by the physical system [5, 35,
36, 48]. Thus, in this direction, we use a physically motivated
regularization for the magnetic field. So, we replace the original
potential vector of the AB flux tube by the following one [6–8, 68]

eA =







− φ

αr
ϕ̂, r > r0,

0, r < r0.
(91)

where r0 is a length that defines the defect core radius [35, 58],
which is a very small radius smaller than the Compton wave
length λC of the electron [31]. So one makes the replacement

δ(r)

r
→ δ(r − r0)

r0
. (92)

This regularized form for the delta function allows us to
determine an expression for ρ. To do so, we consider the zero-
energy solutions ψ0 and ψρ,0 for h with the regularization in (92)
and h0, respectively,

[

− d2

dr2
− 1

r

d

dr
+ j2

r2
+ λδ(r − r0)

r0

]

ψ0 = 0, (93)

[

− d2

dr2
− 1

r

d

dr
+ j2

r2

]

ψρ,0 = 0. (94)

The value of ρ is determined by the boundary condition

lim
r0→0+

r0
ψ̇0

ψ0

∣

∣

∣

r=r0
= lim

r0→0+
r0
ψ̇ρ,0

ψρ,0

∣

∣

∣

r=r0
. (95)

The left-hand side of Equation (95) can be obtained by the direct
integration of (93) from 0 to r0. The result seems to be

lim
r0→0+

r0
ψ̇0

ψ0

∣

∣

∣

r=r0
= λ. (96)

The right-hand side of Equation (95) is calculated as follows.
First, we seek the solutions of the bound states for the
Hamiltonian h0. These solutions will allow us to obtain the
solutions of the bound states for h. As before, for the bound state,
we consider k as a pure imaginary quantity, k → iκb. So, we have

[

d2

dr2
+ 1

r

d

dr
−

(

j2

r2
+ κ2b

)]

ψρ(r) = 0, (97)

The solution for the above equation is the modified
Bessel functions

ψρ(r) = K|j| (κbr) . (98)

Second, we observe that these solutions belong to D(hρ,0), such
that it is of the form (90) for some ρ selected from the physics
of the problem. So, we substitute (98) into (90) and compute
limr0→0+ r0ψ̇ρ/ψρ |r=r0 by using the asymptotic representation
for Kν(z) in the limit z → 0, which is given by

Kν(z) ∼
π

2 sin(πν)

[

z−ν

2−νŴ(1− ν) −
zν

2νŴ(1+ ν)

]

. (99)

After a straightforward calculation, we have the relation

lim
r0→0+

r0
ψ̇ρ,0

ψρ,0

∣

∣

∣

r=r0
=

|j|
[

r
2|j|
0 Ŵ(1− |j|)(κb/2)|j| + 2|j|Ŵ(1+ |j|)

]

r
2|j|
0 Ŵ(1− |j|)(κb/2)|j| − 2|j|Ŵ(1+ |j|)

= λ,

(100)

where we used Equations (95) and (96). Then, solving the above
equation for Eb, we find the sought bound state energy

Eb = − 2

Mr20

[(

λ+ |j|
λ− |j|

)

Ŵ(1+ |j|)
Ŵ(1− |j|)

]1/|j|
. (101)
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Now, that we have the bound state energy obtained from BG and
KS methods we can compare their results. Thus comparing (85)
with (101) we have the following relation

ν = − 1

r
2|j|
0

(

λ+ |j|
λ− |j|

)

. (102)

So, we have obtained a relation between the self-adjoint extension
parameter and physical parameters of the system.

4. CONCLUSIONS

In this work, we have discussed the self-adjoint extension
approach to deal with singular Hamiltonians in (2 + 1)
dimensions. Two different methods, both based on the self-
adjoint extension approach were discussed in details. The BG
and KS methods were applied to solve the problem of a spin-
1/2 charged particle with an anomalous magnetic moment in
the curved space. The presence of the spin gives rise to a
point interaction, requiring the use of the self-adjoint extension
approach to solving the problem. In the BG method, the S-
matrix was determined and from its poles, one bound state
energy expression was obtained. These results were obtained
by imposing a suitable boundary condition and depend on the
self-adjoint extension parameter, which can be identified as the
inverse of the scattering length of the Hamiltonian. Nevertheless,
from the mathematical point of view, this parameter is arbitrary.

Then, by applying the KS method, an expression for the bound
state energy for the same system was obtained, and it is given
in terms of physical parameters of the system. Thus comparing
the results from both methods a relation between the self-adjoint
extension parameter and physical parameters was obtained.
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