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Self-propelled or active particles are referred to as the entities which exhibit anomalous

transport violating the fluctuation-dissipation theorem by means of taking up an athermal

energy source from the environment. Currently, a variety of active particles and their

transport patterns have been quantified based on novel experimental tools such as

single-particle tracking. However, the comprehensive theoretical understanding for these

processes remains challenging. Effectively the stochastic dynamics of these active

particles can be modeled as a Langevin dynamics driven by a particular class of

active noise. In this work, we investigate the corresponding Langevin dynamics under

a telegraphic active noise. By both analytical and computational approaches, we study

in detail the transport and nonequilibrium properties of this process in terms of physical

observables such as the velocity autocorrelation, heat current, and the mean squared

displacement. It is shown that depending on the properties of the amplitude and duration

time of the telegraphic noise various transport patterns emerge. Comparison with other

active dynamics models such as the run-and-tumble and Lévy walks is also presented.

Keywords: active bath, anomalous diffusion, Langevin dynamics, telegraphic noise, Lévy walks, run-and-tumble

1. INTRODUCTION

Anomalous diffusion disobeying the fluctuation-dissipation theorem has been widely observed in
active systems. Prominent examples are the motor-driven transport in living cells, crawling and
swimming dynamics of a cell in free or confined space, the motion of artificial micro-swimmers
like Janus particles, and the diffusion of an enzyme during catalysis [1–3]. It can be understood
that these active dynamics, typically observed on a mesoscopic time & length scale, are collective
phenomena resulted from complicated,myriad interactions among the components comprising the
system in the presence of nonequilibrium energy sources. A currently attracting issue is to model
the stochastic dynamics of individual active (self-propelled) particles at a coarse-grained level, in
which a physical picture is that a single particle is immersed in an active bath, i.e., a heat bath in
the presence of an extra nonequilibrium noise [4–8]. A closely connected issue to this problem
in other fields is the study of quantifying superdiffusion in the complex (biological) systems [9].
Examples include the motor-driven transport of bio-materials in a cell [10, 11], the run-and-
tumble motion of a bacterium [12], foraging motion of motile cells and animals [13], anomalous
diffusion of ultracold atoms [14], and the dispersal of a banknote [15]. It has been shown that the
displacement distributions often follow a (truncated) Lévy distribution and, thus, the models in the
class of continuous-time random walks such as the Lévy flights and Lévy walks explain essential
features of the observed stochastic dynamics [16]. In this description, the effect of the active or out-
of-equilibrium noise is implicitly taken into account in the PDFs of displacement lengths and/or
sojourn times.
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In the above studies of the active anomalous diffusion, its
stochastic dynamics is often modeled by the Langevin equation
of the following form:

mv̇ = −γ v+ ξ (t)+ f (t). (1)

This equation describes the dynamics of a particle ofmassm(= 1)
in a viscous heat bath comprised of passive and active noises. ξ (t)
is a thermal (gaussian) noise satisfying the zero mean (〈ξ 〉 = 0)
and the variance 〈ξ (t)ξ (t′)〉 = 2γβ−1δ(t − t′) [γ : frictional
coefficient, β = 1/kBT the inverse temperature where kB is
the Boltzmann constant and T is the absolute temperature].
The active noise f (t) is responsible for the nonequilibrium
source in the system, of which statistical properties characterize
the nature of active dynamics under consideration. Here, it
is assumed that the two noises are independent each other
such that the nonequilibrium environment caused by the active
noise does not seriously change the characteristics of ξ (t).
For a representative example, the tracer dynamics in an active
bath containing E Coli micro-swimmers was modeled with
the gaussian colored noise fOU(t), often referred to as the
Ornstein-Ulenbeck noise, characterized by 〈fOU〉 = 0 and
〈fOU(t′)fOU(t′ + t)〉 ∝ exp(−t/tc) [17]. Regarding subdiffusive or
superdiffusive dynamics of the particles embedded in a crowded,
viscoelastic medium, their stochastic dynamics can be modeled
with fractional gaussian noise fH(t) [18] having a power-law
decaying autocorrelation 〈fH(t′)fH(t′ + t)〉 ∝ (2H − 1)t−1+2H

with the Hurst exponent H (0 < H < 1) [19–23]. For
animal or self-propelled particles (e.g., molecular-motor-driven
cargo) exhibiting Lévy statistics, the f is a Lévy noise having the
characteristics P(f ) ∝ 1/f 1+µ [24, 25].

In this work, we investigate the stochastic dynamics of single
particles governed by Equation 1 with a telegraphic (i.e., step-
like) noise f (t) as illustrated in Figure 1. Here the characteristics
of the noise is described by its PDFs of noise amplitude P(f ) and
of duration time P(τ ). It is noted that by adjusting the PDFs P(τ )
and P(f ) our nonequilibrium noise f (t) can become a shot-noise
[26, 27] as well as a dichotomous noise [26, 28]. Hence, in general
our model links these two distinct noises. Furthermore, we show
that our model with P(τ ) ∼ 1/τ 1+α (0 < α < 2) serves a model
for a Lévy walk superimposed with the thermal noise.

The current paper is organized as follows. In section 2
we present our path integral approach to solve the Langevin
equation 1with a telegraphic active force f (t). Dynamic quantities
such as the velocity autocorrelation, heat rate, and the mean-
square displacement (MSD) are derived in the underdamped
level. Then we introduce the overdamped version of Equation 1
and investigate in detail the long-time dynamics of the particle.
In section 3 complementary numerical study is provided. Here
we generate the active force f (t) for a few distinct cases of
P(τ ) and simulate the corresponding Langevin equations. The
results are compared and explained with the analytic studies in
section 2. Lastly, in section 4, we summarize themain results with
a discussion on the connection between our Langevin model and
other active dynamics models.

FIGURE 1 | The schematic description of the telegraphic active noise f (t)

considered in our Langevin equation 1. The protocol of the noise is given by

f (t) = fi for t ∈ [ti , ti+1], where the noise strength fi and the duration time

τi ≡ ti+1 − ti are random variables specifying the statistical properties of f (t). It

is a renewal process such that the sequences of {fi} and {τi} are i.i.d.s

obtained from the PDF P (f ) and P(τ ), respectively.

2. LANGEVIN DYNAMICS

In section 2 we analytically investigate the active dynamics of
our Langevin model 1 under a telegraphic noise f (t). Prior to
this, we briefly look at the autocorrelation property of f (t) and
also introduce useful truncated statistics that used throughout the
paper. In section 2.2 our path integral formalism to the Langevin
equation 1 is presented with several analytic main results. In
section 2.3 we propose the overdamped version of the original
Langevin equation 1 and explicitly derive transport quantities for
the three distinct types of f (t) (introduced in Table 1).

2.1. Noise Correlation of f(t)
A given time series of a telegraphic noise f (t) can be uniquely
defined by its duration time sequence {τi} and the amplitude
{fi}, see Figure 1. First, let us consider the ensemble-averaged
autocorrelation of f (t), denoted as 〈f (t)f (t + 1t)〉fi ,τi . In this
expression, the symbol of 〈·〉fi ,τi represents the average over the
active noise f (t) for the noise amplitudes fi and the duration
times τi. Since the PDFs P(f ) and P(τ ) are independent, the
corresponding two averages are independent. Exploiting this
property, let us first calculate the fi-averaged autocorrelation
function 〈f (t)f (t+1t)〉fi for a given sequence {τi}. In this case, the
corresponding active noise f (t)s have the same transition events,
given by the {τi}, so that the number of transitions n until T
is determined by the inequality

∑n−1
i=0 τi < T <

∑n
i=0 τi. For

this set of f (t)s, the noise-amplitude averaged autocorrelation is
given by

〈f (t)f (t + 1t)〉fi = σ

n−1
∑

i=0

2(t − ti)2(ti+1 − t − 1t)

+σ2(t − tn)2(T − t − 1t) (2)

where 2(x) is the Heaviside step function [2(x) = 1 for x > 0,
otherwise zero] and 〈flfm〉fi = σδlm is used.

To get the full ensemble-averaged autocorrelation, one has
to average Equation 2 over all possible sequences of {τi}.
This average can be effectively obtained by performing the
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TABLE 1 | The three duration time PDFs considered in our telegraphic noise f (t) and their statistical properties.

Statistics PT (τ ) [τ ]T 〈f(t)f(t + 1)〉 (T → ∞)

Poissonian 1
τc(1−e−T/τc )

e−τ/τc τc − T

(eT/τc−1)
σe−1/τc

Gaussian τc −
√

2σ2
τ

πA20
e−(T−τc )

2/2σ2
τ σB0

√

π
2 e

−τ2c /2σ2
τ Erfc[ 1−τc√

2σ2
τ

](τc − 1)

√

2
πσ2

τ A
2
0

e−(τ−τc )
2/2σ2

τ −
√

+ 2σ2
τ

πA20
e−τ2c /2σ2

τ + σστB0e
−1(1−2τc )/2σ2

τ

Power-law α

(τ−α
m −T−α)

τ−(1+α) α
α−1 τm

[

1−
(

τm
T

)α−1
]

σ
α

(

τm
1

)α−1

In the above expressions, A0 = Erf

[

(T − τc )/
√

2σ 2
τ

]

+ Erf

[

τc/

√

2σ 2
τ

]

, B0 = 2/

[

2στ +
√

2πτ2c e
τ2c /2σ2

τ

(

1+ Erf[τc/
√

2σ 2
τ ]

)]

.

time average of Equation 2 with an assumption that T is
sufficiently large enough to have many transition events (n is
large). For nonequilibrium systems this ergodic relation may
not be generally guaranteed [1, 4, 29], but we have numerically
confirmed this for the telegraphic active noises investigated in
this study. We leave the ergodicity test and further discussions
in the Appendix A2.C. Accordingly, we obtain the expression

〈f (t)f (t + 1t)〉fi =
σ

T − 1t

∫ T−1t

0
dt 〈f (t)f (t + 1t)〉fi ,

=
σ

T − 1t

[

n−1
∑

i=0

(τi − 1t)2(τi − 1t)

+ (η − 1t) 2(η − 1t)
]

, (3)

where η = T −
∑n−1

i=0 τi. To evaluate the finite summation in
the above expression, we define the average number of events
N(≫ 1) in the time window [0, T] where N = T/[τ ]T and
[τ ]T is the mean duration time of τi in [0, T], given by the
self-consistent equation

[τ ]T =
∫ T

0
dτ τPT(τ ) . (4)

Here, PT(τ ) is the truncated PDF defined in the interval [0, T]

from the original one P(τ ), i.e., PT(τ ) = P(τ )/
[

∫ T
0 dτ P(τ )

]

.

Note that N (or n) is large, so we are allowed to replace the

summation in Equation 3 by 1
n

∑n−1
i=0 →

∫ T
0 dτPT(τ ). Then,

using n ≈ N and 1t/[τ ]T ≪ N, we obtain the time-averaged
autocorrelation function

〈f (t)f (t + 1t)〉fi =
σ

[τ ]T

∫ T

1t
dτ (τ − 1t)PT(τ ) . (5)

For the definition and the autocorrelation properties of the three
types of f (t) considered in this work, refer to Table 1. It is noted
that the time-averaged expression 5 is valid and fulfills ergodicity
since the duration time PDF of f (t) in our study has a finite mean.
Our study below is restricted to this case.

2.2. Path Integral Formalism and the
Underdamped Langevin Dynamics
Analogously to section 2.1, let us start to solve the Langevin
equation 1 with f (t) observed in [0, T] under the condition that
the sequences of {fi} and {τi} were predetermined.

First, consider the particle dynamics for an infinitesimal time
interval δt(≪1) during which the f (t) is a constant. In this case,
according to Onsager and Machlup [30], the propagator of v is
given by

5
[

v′|v
]

=

√

β

4πγ δt
exp

[

−
(

v′ − v+ γ vδt − fiδt
)2

4γβ−1δt

]

(6)

where v = v(t), v′ = v(t+δt), and f (t) = fi. Next, we look for the
propagator 5 of v(t) and v(t + 1t) for an arbitrary time interval
1t during which f (t) is allowed to havemultiple transitions.With
a given f (t), it can be shown that the propagator is written as [31]

5
[

v′|v
]

=

√

β

2πw(1t)
exp

[

−
(

v′ − e−γ1tv− λ(t′, t)
)2

2β−1w(1t)

]

(7)

where w(1t) =
(

1− e−2γ1t
)

and λ(t′, t) is the convolution
integral of f (t), given by

λ(t′, t) =
∫ t′

t
ds e−γ (t′−s)f (s) . (8)

The derivation of Equation 7 is described in the Appendix A1.
For example, when ti < t < ti+1 and tj < t′ < tj+1 (i < j),
λ(t′, t) reads

λ(t′, t) = λi(t)e
−γ (t′−ti+1) + e−γ (t′−tj)

j−1
∑

k=i+1

λk

j−1
∏

l=k+1

e−γ τl

+
fj

γ

(

1− e−γ (t′−tj)
)

, (9)

where λk = λk(tk) is given by

λk =
fk

γ

(

1− e−γ (tk+1−tk)
)

=
fk

γ

(

1− e−γ τk
)

(10)
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and λi(t) = fi
γ

(

1− e−γ (ti+1−t)
)

. If f (t) has no transition event

in [t, t′] where ti < t < t′ < ti+1, Equation 9 is reduced to

λ(t′, t) = fi
γ

(

1− e−γ (t′−t)
)

. Given λ(t, t0), the conditional PDF

of v is similarly obtained with the initial condition p(v0|λ) =
δ(v0) as

p
(

v|λ(t, t0)
)

=

√

β

2πw(t − t0)
exp

[

−
(

v− λ(t, t0)
)2

2β−1w(t − t0)

]

. (11)

Heat is defined as the energy gain from a heat bath to the particle.
Heat rate is given by [32]

Q̇ = −(−γ v+ ξ ) ◦ v , (12)

where ◦ denotes the Stratonovich calculus. Using (−γ v+ξ )◦v =
(−γ v + ξ )(v + (1/2)v̇ dt) and averaging over the thermal noise,
we obtain the conditional heat rate, 〈Q̇〉ξ , where 〈·〉ξ stands for
the thermal average over ξ for given protocol f (t),

〈Q̇〉ξ = γ 〈v2〉ξ −
1

2
〈ξ 2〉ξ dt = γ

(

〈v2〉ξ − β−1
)

. (13)

Here, the equal-time correlation function in Equation 13 is given
by 〈v2〉ξ =

∫

dv v2p
(

v|λ(t, t0)
)

, which reads

〈v2(t)〉ξ = β−1w(t − t0)+ [λ(t, t0)]
2 . (14)

In R.H.S, the first term explains the relaxation kinetics toward
thermal equilibrium and the second term describes the energy
input from the active force f (t). In the limit of t → ∞, w(t −
t0) → 1 at which the heat rate 〈Q̇〉ξ becomes γ

[

λ(t, t0)
]2
.

The average over the noise amplitude (fi) can be further
evaluated on the condition that the sequence {τi} is quenched.
About the active force term λ2(t, t0), its averaged quantity over
P(f ) is calculated to

〈
[

λ(t, t0)
]2 〉ξ ,fi =

σ

γ 2
e−2γ (t−ti)

i−1
∑

k=0

(

1− e−γ τk
)2

i−1
∏

l=k+1

e−2γ τl

+
σ

γ 2

(

1− e−γ (t−ti)
)2

, (15)

where the index i represents the transition time (of f (t))
specifying ti < t < ti+1. The notation 〈·〉ξ ,fi denotes the average
over both the thermal noise ξ (t) and the amplitude fi of f (t),
henceforth. From this relation, we identify that the averaged heat
rate has the relation

〈Q̇(t → ∞)〉ξ ,fi = lim
t→∞

γ 〈
[

λ(t, t0)
]2〉ξ ,fi . (16)

This relation tells that the system has a non-vanishing heat
rate (at t → ∞) from the telegraphic noise; it acts as a non-
conservative force to the system, driving the particle out of
equilibrium constantly and leading to a non-vanishing heat rate.
According to Equation 15, however, there is an exceptional case
where the heat rate can be vanishing. This happens in the limit

of [τ ]T → 0 where all the exponential terms in Equation 15 are
unity (τk, τl, and t − ti go to zero). In this case, the telegraphic
noise is no longer telegraphic and the effect of f (t) to the system
is negligible compared to the thermal noise.

Using Equation 15, the noise-amplitude averaged v2 is
given by

〈v2(t)〉ξ ,fi = β−1w(t − t0)+ 〈[λ(t, t0)]2〉ξ ,fi . (17)

As time is increased to infinity, both terms of w(t − t0) and
λ2(t, t0) decay out and v2 reaches a stationary value. This
value can be evaluated in the limit of t − t0 → ∞ where, in
Equation 15, τi in the exponential terms are approximated

to [τ ]T , yielding
∑i−1

k=0

(

1− e−γ τk
)2∏i−1

l=k+1 e
−2γ τl ≈

(

1− e−γ [τ ]T
)2∑∞

k=0 e
−2kγ [τ ]T = (1 − e−γ [τ ]T )/(1 + e−γ [τ ]T ).

Subsequently, we further perform the average over the duration
time {τi} by way of time-averaging and finally obtain the

time-averaged 〈v2〉ξ ,fi at t → ∞

〈v2〉ξ ,fi = β−1 +
σ

γ 2

(

1−
1− e−γ [τ ]T

γ [τ ]T

)

. (18)

This result will be confirmed in section 3 by the numerical study.
Velocity autocorrelation function (VACF) for v = v(t) and

v′ = v(t + 1t) for a given f (t) can be obtained from the
propagator (Equation 7), which is

〈vv′〉ξ = e−γ1t〈v2〉ξ + λ(t′, t)λ(t, t0) . (19)

The noise-amplitude averaged VACF is then found to be

〈v′v〉ξ ,fi = e−γ1t
[

β−1w(t − t0)

+〈
[

λ(t, t0)
]2〉ξ ,fi

]

+ 〈λ(t′, t)λ(t, t0)〉ξ ,fi (20)

where 〈λ(t′, t)λ(t, t0)〉means

〈λ(t′, t)λ(t, t0)〉ξ ,fi =
σ

γ 2
e−γ (t′−ti+1)

(

1− e−γ (ti+1−t)
) (

1− e−γ (t−ti)
)

(21)

for ti < t < ti+1 < t′ and

〈λ(t′, t)λ(t, t0)〉ξ ,fi =
σ

γ 2

(

1− e−γ (t′−t)
) (

1− e−γ (t−ti)
)

(22)

for ti < t < t′ < ti+1.
The mean squared displacement (MSD) of the particle in the

interval [t, t + 1t] can be obtained via the double integral
of VACF

〈[1x(1t; t)]2〉ξ ,fi =
∫ t+1t

t
ds

∫ t+1t

t
du 〈v(s)v(u)〉ξ ,fi . (23)

Within a short time interval 1t ≪ 1, Equation 23 can be
expanded to

〈1x2〉ξ ,fi ≈
〈

(

v(t)+ v(t + 1t)

2

)2
〉

ξ ,fi

1t2 . (24)
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Using
[

v(t)+ v(t + 1t)
]

/2 ≈ v+ v̇1t/2, we obtain the MSD up
to the next leading order,

〈1x2〉ξ ,fi ≈ 〈v2〉ξ ,fi1t2

+
[ 〈λ(t, t0)f (t)〉ξ ,fi

2
+ γβ−1 − γ 〈v2〉ξ ,fi

]

1t3. (25)

This result suggests that the MSD always starts to grow
ballistically in the beginning where the amplitude 〈v2〉ξ ,fi is given
by Equation 18.

For the other extreme limit of 1t → ∞ together with t ≫ t0,
we find that up to the order of 1/γ 3 the MSD, Equation 23, grows
with 1t in the form of

〈1x2〉ξ ,fi ≈
2β−1

γ
1t−

2β−1

γ 2
+

σ

γ 2

n
∑

i=1

[

τ 2i +
4τi

γ
e−γ τi

]

. (26)

Here, the boundary terms are neglected and n is the number
of events in [t, t + 1t]. This is the expression for a quenched
sequence of {τi}. Equation 26 suggests that in the long-time
limit where 1t ≫ γ−1 (which is the momentum relaxation
time m/γ ) the MSD dynamics is eventually determined by the
first linear term (thermal) and the sum of τ 2i (active). The
active part term can be reasonably rewritten as

∑n
i=1 τ 2i →

n[τ 2]T ≈ ([τ 2]T/[τ ]T)1t. Therefore, the second moment of
duration time plays a crucial role in the long-time transport.
Further development will be presented in the following
section 2.3.

Equation 26 also suggests that the long-time limit dynamics of
our underdamped Langevin model can be alternatively obtained
by taking the overdamped limit: γ → ∞ (or m/γ →
0) while 1/[βγ ] and σ/γ 2 keep finite. It is shown below
that the MSD Equation 26 in this limit is identical to the
MSD (Equation 35) of the overdamped version of the original
underdamped Langevin equation 1. In the following section, we
introduce this overdamped Langevin equation and investigate its
MSD dynamics in a precise manner.

2.3. Overdamped Limit
Using the rescaled noises, ξ̃ = ξ/γ and f̃ (t) = f (t)/γ , from our
Langevin equation 1 we obtain the equation of motion for the
overdamped dynamics as such

ẋ = ξ̃ + f̃ (t) , (27)

where the gaussian white noise has the autocorrelation property
〈ξ̃ (t)ξ̃ (t′)〉 = 2Dδ(t− t′) withD = β−1/γ . Akin to the v(t) in the
underdamped case, when the time series of f̃ (t) is given, the PDF
for x(t) is evaluated to

p
(

x|λ̃(t, t0)
)

=
√

1

4πDt
exp






−

(

x− λ̃(t, t0)
)2

4Dt






, (28)

where x(t0) = 0 and

λ̃(t, t0) =
∫ t

t0

ds f̃ (s) . (29)

Therefore, λ̃(t, t0) means the mean drifted distance for given
f (t) and the PDF of x(t) is a gaussian distribution centered at
λ̃(t, t0). However, the noise-averaged PDF of x has a complicated
structure beyond the simple gaussian. This will be discussed with
the simulation in the next section. In the special case where

P(τ ) = e−τ/τc/τc and the two-state amplitudeP(f̃ ) = 1
2δ(f̃−f̃0)+

1
2δ(f̃ + f̃0), f̃ (t) can be treated as a dichotomous noise switching
between the two states with a constant transition rate (2τc)

−1.
This model was analytically studied in a recent work [33] within
the approach using a generalized telegrapher’s equation.

In the limit of γ /m ≫ 1 (while 1/[βγ ] and σ/γ 2 are finite),
we find that the heat rate 〈Q̇〉ξ ,fi in Equation 16 is reduced

to 〈Q̇〉ξ ,fi = γ σ̃ . The same conclusion is drawn from the
overdamped equation, Equation 27, yielding

〈Q̇〉
ξ̃ ,f̃i

=
〈(

γ ẋ− γ ξ̃
)

◦ ẋ
〉

ξ̃ ,f̃i
= γ σ̃ (30)

where 〈·〉
ξ̃ ,f̃i

denotes the double average over the thermal noise ξ̃

and the amplitude f̃i of the active noise f̃ (t). The PDF Equation 28
tells that the MSD is given by

〈1x2(1t; t)〉ξ̃ = 2D1t +
[

λ̃(t′, t)
]2

, (31)

where t′ = t+1t. By performing the average of Equation 31 over
the noise amplitude P(f ), we obtain

〈1x2〉
ξ̃ ,f̃i

= 2D1t + σ̃



(t′ − tj)
2 +

j−1
∑

k=i+1

τ 2k + (ti+1 − t)2





(32)
where ti < t < ti+1 and tj < t′ < tj+1 (i < j); for ti = tj,
〈1x2〉

ξ̃ ,f̃i
= 2D1t + σ̃1t2.

From Equation 32, we finally find the analytic form of
MSD averaged over the noise duration time with P(τ ). Direct
evaluation of the τ -average on Equation 32 is, however, not
straightforward. In this work, we obtain this average by self-
averaging Equation 32 over time at the large-T limit. This
task is essentially same as finding the time-averaged MSD of
Equation 32

〈1x2〉
ξ̃ ,f̃i

=
1

T − 1t

∫ T−1t

0
dt〈[1x(1t; t)]2〉

ξ̃ ,f̃i
. (33)

To calculate this, we follow the trick used in finding the
autocorrelation of f (t). Consider a sequence {τ0, . . . , τn} where
n is the last event satisfying

∑n−1
i=0 τi < T <

∑n
i=0 τi. In the

assumption of periodic B.C. (where the sequence of τi in [0, 1t]
appears again in [T − 1t, T]), we find that Equation 33 is
evaluated to

〈1x2〉
ξ̃ ,f̃i

≡ 〈1x2〉 = 2D1t +
σ̃

T − 1t





∑

τi<1t

(

τ 2i 1t −
τ 3i

3

)

+
∑

τi>1t

(

τi1t2 −
1t3

3

)



 . (34)
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From now on, for simplicity, we drop the subscript ξ̃ , f̃i in
expressing the multiple average of 〈·〉

ξ̃ ,f̃i
. In the long observation

time limit where n ≫ 1, the statistics is sufficient enough so as
to replace the summation above by integral with the truncated
PDF PT(τ ) defined in [0, T], see Table 1. Using this, we obtain
the expression of the fully averaged MSD in terms of PT(τ ) as

〈1x2〉 = 2D1t +
σ̃

[τ ]T

[∫ 1t

0
dτ PT(τ )

(

τ 21t −
τ 3

3

)

+
∫ T

1t
dτ PT(τ )

(

τ1t2 −
1t3

3

)

]

(35)

where [τ ]T =
∫ T
0 dτ τ PT(τ ) is the average duration time

observed in [0, T].

2.3.1. Poissonian and Gaussian PDFs

Plugging the corresponding PT(τ )s in Table 1 into Equation 35
we can in principle obtain the explicit form of the time-averaged
MSDs (not shown). For P(τ )s having a well-defined time scale
τs(∼ [τ ]T), the MSD is shown to have the following universal
structures at the two extreme time scales:

〈1x2〉 ≈
{

2D1t + σ̃1t2 − σ̃
3[τ ]T

1t3 , 1t ≪ τs

2D1t + σ̃ [τ 2]T
[τ ]T

1t − σ̃ [τ 3]T
3[τ ]T

, 1t ≫ τs
. (36)

The result suggests that the overdamped dynamics have the
Fickian behavior at both limiting time scales, with different
diffusivities. For1t≪ τs, the active noise effects negligibly, where
the particle has the bare diffusivity D. For the opposite limit of
1t ≫ τs, the particle ultimately attains a larger Fickian transport
with an apparent diffusivity

DL = D+
σ̃ [τ 2]T

2[τ ]T
. (37)

Detailed information about the profile of P(τ ) is irrelevant for
the nature of long-time transport; it only affects DL through the
first and second moments of the duration time. An example
belonging to this class is the two-state active system with a
constant transition rate (2τc)

−1 introduced in Malakar et al. [33].
This system can be modeled in our Langevin description with

P(τ ) = τ−1
c e−τ/τc and f̃i = ±f̃0. For this model, we analytically

evaluate the MSD 35 with T → ∞ and obtain the identical form
of MSD reported in Malakar et al. [33]

〈1x2〉 = 2(D+ τc f̃
2
0 )1t − 2τ 2c f̃

2
0 (1− e−1t/τc ). (38)

This expression shows that, for 1t ≪ τc, 〈1x2〉 = 2D1t +
f̃ 20 1t2 − f̃ 20

3τc
1t3 while, for 1t ≫ τc, 〈1x2〉 = 2(D+ τc f̃

2
0 )1t −

2τ 2c f̃
2
0 where the apparent diffusivity is D + τc f̃

2
0 . These results

are reproduced by plugging [τ q]T→∞ = τ−1
c

∫∞
0 τ qe−t/τc into

Equations 36 and 37.

2.3.2. Power-Law PDFs

Considering PT(τ ) ∝ τ−1−α in [τm, T], the finite-time
expectations, [τ ]T and [τ 2]T , are obtained in terms of α, T, and
τm (Table 1). For the large-time limit of 1t → ∞, we obtain the
asymptotic scaling relations of MSD depending on α:

〈1x2〉 ≈















a1 + a21tα + a31t + a41t2 , 0 < α ≤ 1
b1 + b21t + b31t3−α , 1 < α ≤ 2
c1 + c21t3−α + c31t , 2 < α ≤ 3

d1 + d21t , 3 < α

. (39)

Here, {ai}, {bi}, {ci}, and {di} are constants expressed with α,
D, and other time constants (we omit providing these lengthy
expressions except for c3 = d2 = 2DL). The above expression
explains that the long-time motion is akin to that of the Lévy
walk [9], sensitively depending on the value of α. For a heavy-
tailed PDF of a diverging mean [τ ]T ∼ T1−α (0 < α < 1),
the ballistic dynamics dominates over the other corrections as
1t approaches to T. For 1 < α ≤ 2, the mean duration time
is finite ([τ ]T = ατm/(α − 1)), but the second moment is
diverging ([τ 2]T ∼ T2−α). In this case, the long-time dynamics
is ultimately governed by the sub-ballistic superdiffusion term of
1t3−α . These superdiffusive dynamics in the range of α between
0 and 2 can emerge for a particle in a fluid in the hydrodynamic
regime [9, 34, 35]. For all α > 2, the first and second moments
of τ are all finite, which, thus, results in the Fickian long-time
dynamics (∼ 1t) as in the cases of poissonian and gaussian PDFs.
In this case, the long-time diffusivity DL has exactly the same
expression in Equation 37. As a special case, for α in between 2
and 3, the divergence of [τ 3]T gives the nonvanishing correction
term c21t3−α (see Equation 36); however, this term is sublinear
and negligible compared to the Fickian term 1t at large times.

3. NUMERICAL RESULTS

In this section, we perform the Langevin dynamics simulation
of Equation 1 and elucidate the transport dynamics with
the theoretical expectations presented in the previous section.
In our simulation study, we consider the three distinct f (t)
governed by P(τ ) of a poissonian, gaussian, and of a power-law,
respectively. The specific functional form of these PDFs used in
our study is presented in Table 1, with information about their
autocorrelation properties. Figure 2 shows sample time series
of f (t) generated in our simulation where the noise amplitude
was chosen from a uniform P(f ) in the interval [−f0, f0] for
all simulations, otherwise specified. Further information on the
simulation procedure is provided in the Appendices A2, A3.

3.1. Dynamics of v2(t)
In Figure 3 we plot the relaxation of 〈v2(t)〉ξ ,fi ,τi (black) from
105 sample trajectories of the Langevin equation 1 for the
three distinct f (t) (see the Caption for further information).
Here, in simulation, the full ensemble-averaged v2, 〈v2(t)〉ξ ,fi,τi ,
is evaluated via the average over the thermal noise as well
as the amplitude and duration time of f (t).The data is
compared with the theoretical curve (red) of 〈v2(t)〉ξ ,fi ,τi , which
is computationally obtained from Equation (17) with the average
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FIGURE 2 | Time trace of the telegraphic noise f (t) generated in simulation.

From Top to Bottom the sample noise was generated from the duration time

PDFs: poissonian P(τ ) ∝ e−τ/τc , gaussian P(τ ) ∝ e−(τ−τc )
2/2σ2

τ , and

power-lawed P(τ ) ∝ τ−(1+α). The parameters we used are τc = 5, στ = 0.5,

α = 1.2, and the unit time step 0.01, which gives the theoretical values for

[τ ]T→∞(≡
∫ T→∞
0 dττP(τ )) = 5 (poissonian, gaussian) and 6 (power-law). The

noise strength fi was chosen from a uniform distribution in the interval of

[−0.5, 0.5].

over {τi}. The stationary value of 〈v2(t → ∞)〉ξ ,fi ,τi is
approximately given by Equation 18 (blue). For all cases, the data
are excellently explained by our analytical counterparts.

3.2. MSD
In Figure 4 we plot the full ensemble-averaged MSDs over
random realizations of the noise strength {fi} as well as the
duration time {τi} for the three cases of f . At the underdamped
timescale, as predicted in Equation 25, the MSDs have the
ballistic scaling with the same amplitude for all cases.We confirm

that this amplitude corresponds to 〈v2〉ξ ,fi given by the formula
(Equation 18), cyan line. For comparison, in this plot, the
ordinary Langevin dynamics at f = 0 is added (dashed). It is seen
that the particle under f of the poissonian and gaussian PDFs
has the Fickian dynamics at large times (after the momentum
relaxation). This is explained by Equation 18. Compared to the
ordinary Langevin particle at f = 0 the long-time diffusivity
is increased to DL (Equation 18). Under the f (t) of a power-
law, the particle is shown to eventually attain a sub-ballistic
superdiffusion of the anomaly exponent 3 − α in the range of
α in (1, 2). This is expected in our analysis (Equation 39) for the
overdamped dynamics of the particle.

Additionally, we simulate the overdamped Langevin equation
27 and obtain, in Figure 5, the fully averaged MSDs for the three
cases of f . In the plot, the gray dots show sample time-averaged
MSDs from individual trajectories and their average curve over
106 ensemble is depicted with solid red line. This MSD is
overlaid with our theoretical expression (Equation 35) explaining
the full-time (overdamped) dynamics with information of P(τ ).
It confirms that our analytic theory correctly explains the
overdamped dynamics in the full range of time. Here, the

FIGURE 3 | Relaxation dynamics of 〈v2 (t)〉ξ ,fi ,τi . From Top to Bottom they are

the cases with f (t) of a poissonian, gaussian, and a power-law P(τ ),

respectively. The simulation data (black) were obtained by solving the Langevin

Equation 1 with timestep δt = 0.01, v0 = 0, and the total observation window

T = 2000. Two theoretical lines are compared to the data: 〈v2 (t)〉ξ ,fi ,τi (red)
obtained from Equation 17 with the additional numerical average over {τi} and
the stationary value (blue) Equation 18. In the simulation, we used the

parameters: m = β = γ = 1, τc = 10 and στ = 1 for the poissonian and

gaussian PDFs, and α = 1.2 (producing [τ ]T = 5.7) for the power-law PDF. For

all cases, P (f ) is a uniform distribution in [−
√
3,

√
3]. The units in our Langevin

simulation of Equation 1 are: [x] = 1/
√

βσ , [t] =
√

m/(βσ ).

FIGURE 4 | Time-averaged MSDs. The three solid curves correspond to the

case of P(τ ), respectively, the poissonian (black), gaussian (red), and the

power-law (blue). For reference, the underdamped Brownian particle with

f (t) = 0 is plotted together (dashed). Additionally, the theoretical expectation

(thick cyan) of 〈v2〉1t2, Equation 18, is overlaid with the simulation data. The

simulations were carried out based on the equation of motion 1 with v0 = 0,

timestep δt = 0.01, and with 105 random realizations of f (t). The same

parameter values used in Figure 3. The basic units are: [x] = 1/
√

βσ ,

[t] =
√

m/(βσ ).

MSD initially grows as 2D1t (plotted as cyan). Then the MSD
has a cross-over at 1t ∼ [τ ]T and beyond it reaches the
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FIGURE 5 | Time-averaged MSDs for the overdamped Langevin dynamics

from Equation 27. From Top to Bottom the cases for the poissonian, gaussian,

and the power-law PDFs of P(τ ), respectively. Gray dots show the

time-averaged MSD curves from single trajectories generated from simulation

and the solid (red) line represents their average over 106 realizations. Blue lines

are the theoretical curves of Equation 35. The Langevin simulation was carried

out with timestep δt = 0.01, D = 1, and T = 105. For the f (t) the same PDFs

of P (f ) and P(τ ) informed in Figures 3, 4 were used. The units in our

overdamped Langevin simulation (Equation 27) are: [x] = D/
√

σ̃ , [t] = D/σ̃ .

large-time limit. For the poissonian and gaussian PDFs the
large-time motion is Fickian with the increased diffusivity DL.
Consistently with Figure 4, for the overdamped Langevin model
of Equation (27) a superdiffusion of 1t3−α is observed for the
power-law PDF.

3.3. Displacement PDFs and Gaussianity
In Figure 6 (Bottom) we present the displacement PDFs, p(x, t),
for the active dynamics shown in our overdamped Langevin
model Equation 27. The PDFs are obtained for the three distinct
P(τ )s and for three MSD regimes (Left: short-time, Middle:
cross-over, Right: long-time). Top panel in Figure 6 shows the
evolution of the non-gaussian parameter E[x4(t)]/(3E[x2(t)]2)
(where E[xm(t)] ≡

∫

dxxmp(x, t)) [1], which is zero for a gaussian
process. Comparing with the MSD in Figure 5, we see that the
displacement PDF has the unique feature in each regime: Namely,
when the particle dynamics is Fickian with D, the displacement
PDF is gaussian. Entering the cross-over regime, the MSD has
a transient superdiffusion where the p(x, t) most deviates from
the gaussianity. In the long-time regime, interestingly, the p(x, t)
recovers the gaussian property for the poissonian and gaussian
P(τ )s which exhibits the Fickian dynamics with DL, although
the particle is constantly under a nonequilibrium state due to
f (t). For the power-law P(τ ) (α = 1.2), leading to the long-
time superdiffusion inMSD, the displacement is severely deviated
from gaussianity because of the violation of the central limit
theorem (CLT). Note that our power-law P(τ ), different from
the former two PDFs, is a heavy-tailed PDF having the diverging

FIGURE 6 | Gaussianity test (Top) and the corresponding displacement PDFs

p(x, t) (Bottom) for the overdamped Langevin motion of Equation (27). In the

panels, each line represents, respectively, the result for the poissonian (red),

gaussian (black), and the power-law (green) PDF of P(τ ). Parameters in P(τ )

were used as in the previous simulation for MSDs. The displacement PDFs

were obtained from 108 simulation runs with T = 104, δt = 0.001, and

D = σ̃ = 1. The basic units are: [x] = D/
√

σ̃ , [t] = D/σ̃ .

second moment
∫

dττ 2P(τ ) = ∞. Thus, the variance of typical

displacement due to f (t) over one event, λ̃(t, t + τ ) = f
γ
τ ,

diverges (see Equation 29) and breaks down the CLT. We learn
from this result that the P(τ ) not only determines the long-time
dynamics but also affects the gaussianity.

We investigate the effect of P(f ) on the gaussianity. For this
purpose, we simulate the cases where P(f )s are two-stated and
gaussian under the three P(τ )s considered. Figure 7 presents the
evolution of the non-gaussian parameter for the corresponding
Langevin dynamics. From Top to Bottom, the panels show the
results for the poissonian, gaussian, and the power-law P(τ ),
respectively. In each panel, the three curves indicate those
from a uniform (red), a two-state (green), and a gaussian
(black) P(f ). The figure shows two interesting observations. The
Langevin dynamics (Equation 27) is always gaussian for all times,
irrespective of P(τ ), if P(f ) is gaussian; otherwise, it exhibits
qualitatively the same feature shown in Figure 6, where the long-
time motion eventually attains gaussianity for the poissonian and
gaussian P(τ ) while it is non-gaussian for the heavy-tailed P(τ ).
Previously, similar studies on the gaussianity for the processes
described by a generalized Langevin equation were reported in
Oliveira et al. [29] and Lapas et al. [36].

4. DISCUSSION AND CONCLUSIONS

In this work, we investigated the dynamics of a Brownian particle
in the presence of a telegraphic random force f (t), which acts
as a nonequilibrium noise from the environment and mimics
the active force experienced in an active bath. We presented an
analytic method to solve the Langevin equation 1 for a given
telegraphic time series of f (t) and theoretically studied the active
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dynamics of the particle in terms of the velocity autocorrelation,
heat rate, and theMSD. Analytic expressions of these observables
were derived within a proper approximation for three distinct
types of f (t) having a poissonian, gaussian, and a power-law PDFs
of the noise duration time P(τ ). To complement this analytic
study, we simulated the corresponding Langevin active systems
and computationally investigated the same physical observables
that fully averaged over the noise amplitude and duration time. It
was validated that the numerically observed dynamic behaviors
are quantitatively well explained by the analytic results.

It turns out that in the presence of the telegraphic f (t) the heat
rate is nonzero for all times, which implies the imbalance between
thermal fluctuation and dissipation due to the f (t). The effect
of the active noise is present not only in the FDT violation but
also in the long-time apparent diffusivity DL. It was shown that
DL > D(= β−1/γ ) (see Equation 37) where the differenceDL−D
is proportional to the strength of f (t) as shown in 〈Q̇〉, as long as
the variance of duration time is finite: If this diverges,DL diverges
as well and the transport becomes anomalous (superdiffusive).

4.1. Active Particle Under Confinement
We emphasize that our current model essentially describes the
transport dynamics of an active particle under confinement.
Consider the overdamped Langevin dynamics of a particle under
a confining harmonic potential in the presence of the active
telegraphic force f (t). The equation of motion reads

γ ẋ = −κx+ ξ (t)+ f (t) , (40)

where κ is the stiffness constant of the harmonic potential such
as the optical trap. By replacing v → x, γ → κ/γ , σ → σ/γ 2,
and β → κβ , our original Langevin equation 1 is mapped

FIGURE 7 | The effect of P (f ) on the gaussianity of the overdamped Langevin

dynamics Equation (27). Three models of P (f ) are the uniform distribution

P (f ) = 1/(2
√
3) in [−

√
3,

√
3] (red), the gaussian P (f ) = exp(−f2/2)/

√
2π

(black), and the two-state P (f ) = 1
2 δ(f + 1)+ 1

2 δ(f − 1) (green). From Top to

Bottom, the panels show the non-gaussian parameters for the three models

under the P(τ ): poissonian (Top), gaussian (Middle), and the power-law

(Bottom). The simulation parameters are same as in Figure 6.

to Equation 40. Therefore, by analogy, all the analytic results
presented in our work can be applied to this problem. For
instance, the autocorrelation of x(t) can be directly read off from
Equations 14 and 19. It is inferred that the MSD grows linearly as

〈1x2〉 ∼ 1t at the beginning, approaching to

〈1x2〉 ≈ 2(βκ)−1 + 2
σ

κ2

(

1−
1− e−κ[τ ]T/γ

κ[τ ]T/γ

)

(41)

as 1t → ∞.

4.2. The Run-and-Tumble Dynamics
The locomotion dynamics of bacterial micro-swimmers has
been investigated with great interest in the viewpoint of a
self-propelled particle [2, 19, 33, 37–40]. Our Langevin model
and the presented study of the model provide an insight
into the so-called run-and-tumble dynamics of bacteria. In
our model, the run and tumble states can be represented by
a telegraphic noise f (t) having the zero state of fi = 0.
The simplest case is the three-state model allowing only the
discrete amplitudes fi = −f0, 0, +f0. A continuous model
expanding the three-state model can be P(f ) = qδ(f ) +
(1 − q)Pr(f ) with a ratio q (0 < q < 1). Pr(f ) is a
normalized bimodal PDF for the run states. With a proper
P(f ) and P(τ ), the experimentally observed run-and-tumble
dynamics can be quantitatively explained. Typically, the run-and-
tumble dynamics is modeled with a time-independent constant
transition rate between the two phases [41, 42]. In our model,
this is the case governed by the poissonian P(τ ). It is inferred
from our study that this type of run-and-tumble dynamics
eventually reaches the Fickian regime, as consistent with previous
experimental and theoretical studies [42–44]. We also anticipate
that even if the transition rate is weakly time-dependent (i.e., the
gaussian P(τ ) in our model) the long-time Fickian dynamics is
still present. Namely, for any P(τ ) having a well-defined cutoff
timescale, the Fickian dynamics is universal. Another interesting
feature is that before this Fickian nonequilibrium state is reached
a superdiffusive dynamics can be transiently observed, as seen

FIGURE 8 | MSD (Left) and p(x, t) (Right) of the overdamped Langevin model

Equation 27 for the two-state model of fi (= ±1). The p(x, t) are plotted at t =

8,000 (black), 9,000 (red), and 10,000 (green). For the duration time, the

power-law PDF with α = 1.2 was used. The simulation details were same as in

Figure 5. The data were obtained from 105 simulation runs. The basic units

are: [x] = D/
√

σ̃ , [t] = D/σ̃ .
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in Figure 5. For the power-law PDFs of the run and tumble
times, their long-time dynamics may vary from the ballistic over
a sub-ballistic superdiffusion to the Fickian depending on the
power-law exponent α. A superdiffusive dynamics of swarming

B. subtilis, 〈1x2〉 ∼ 1t1.6, reported in [45] may be an example of
this type.

4.3. Connection to Lévy Walks
As commented above and also seen in Equation 39, our Langevin
model with a power-law P(τ ) are intimately related to the
Lévy walk model. Especially, if the active force only has two
states (fi = −f0, +f0), our overdamped Langevin model
Equation 27 describes a Lévy walk in the presence of thermal
noise. Conceptually, this model can be understood as a noisy
continuous-time random walks introduced in Song et al. [4]
and Jeon et al. [46]. The thermal effect yields the linear growth
of MSD (∼ 1t) at the beginning, otherwise absent, before the
ballistic regime appears in the intermediate regime. At large
times the thermal noise will be ignored and the well-known
Lévy walk dynamics emerge. In Figure 8, we simulate this noisy
Lévy walk process in our overdamped Langevin model with the
power-law P(τ ) of α = 1.2. The simulation procedure is the
same as that of our overdamped model with the power-law P(τ )
(in Figures 5, 6) but the continuous amplitude PDF is replaced
to P(f ) = 1

2δ(f + f0) + 1
2δ(f − f0). Further information on

the simulation is provided in the Appendix and the Caption in
Figure 8. The simulated Langevin process is consistent with a
sub-ballistic Lévy walk with the sojourn time power-law PDF of
1 < α < 2 [9]. The MSD at large times grows as ∼ 1t3−α

expected in the sub-ballistic Lévy walk [9, 45, 47]. The p(x, t)s
exhibit the sharp peaks at the end of the distribution, which
originates from the ballistic front of a Lévy walk representing
the cases that the first active noise remains survived until the
measurement time t [9]. A small difference is the spread of the
ballistic front shown in p(x, t) (Figure 8, Right). This broadening
is the outcome of thermal noise. The survival probability of the
ballistic front 9s(t) =

∫∞
t P(τ )dτ decays as a power-law of t−α .

The average survival time of the first active noise
∫

dtt9s(t) is
finite for all α>1. Thus, the peaks eventually decay out with time,
as seen in Figure 8 (Right), and the p(x, t) becomes a unimodal

distribution. It is worths comparing our noisy Lévy walk with
the two-state transition model introduced by Malakar et al. [33].
The latter model can be understood as a variant of our noisy
Lévy walk where the power-law P(τ ) is replaced to the poissonian
PDF. In this case, as shown in section 2.3, the long-time diffusion
dynamics becomes Fickian with an apparent diffusivity 37 after
the cross-over superdiffusive regime. The p(x, t) of this model can
have the sharp peaks (the ballistic front) at the tails in the cross-
over regime if the thermal noise is sufficiently weak. The multi-
modal distribution eventually returns to a gaussian distribution
in the long-time Fickian regime [33]. This is in agreement with
the gaussianity behavior of our corresponding model shown in
Figure 7 [the two-state P(f ) & poissonian P(τ )].

Finally, we note in passing that for the power-law PDFs our
active process will suffer the aging dynamics. This aging effect
will be investigated in depth as further work.
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