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Normal or Brownian diffusion is historically identified by the linear growth in time of

the variance and by a Gaussian shape of the displacement distribution. Processes

departing from the at least one of the above conditions defines anomalous diffusion,

thus a nonlinear growth in time of the variance and/or a non-Gaussian displacement

distribution. Motivated by the idea that anomalous diffusion emerges from standard

diffusion when it occurs in a complex medium, we discuss a number of anomalous

diffusion models for strongly heterogeneous systems. These models are based on

Gaussian processes and characterized by a population of scales, population that takes

into account the medium heterogeneity. In particular, we discuss diffusion processes

whose probability density function solves space- and time-fractional diffusion equations

through a proper population of time-scales or a proper population of length-scales. The

considered modeling approaches are: the continuous time random walk, the generalized

gray Brownian motion, and the time-subordinated process. The results show that the

same fractional diffusion follows from different populations when different Gaussian

processes are considered. The different populations have the common feature of a large

spreading in the scale values, related to power-law decay in the distribution of population

itself. This suggests the key role of medium properties, embodied in the population

of scales, in the determination of the proper stochastic process underlying the given

heterogeneous medium.

Keywords: anomalous diffusion, fractional diffusion, complex medium, Gaussian process, heterogeneity,

continuous time random walk, generalized gray Brownian motion, time-subordinated process

1. INTRODUCTION

Normal diffusion has been widely investigated by means of different modeling approaches, such as:
conservation of mass, constitutive laws, random walks based on central limit theorem (CLT),

stochastic models, i.e., Wiener process, Langevin equation, Fokker–Planck equation, and other
Markovian Master equations [1–3]. The adjective normal highlights that a Gaussian-based process
is considered.

However, many natural phenomena show a diffusive behavior that cannot be modeled by
classical methods based on the CLT or linear and/or local constitutive laws. This is a ubiquitous
observation in life sciences, soft condensed matter, geophysics and ecology, among others. These
phenomena are generally labeled with the term anomalous diffusion in order to distinguish
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them from normal diffusion. In this last case, when assumptions
of the CLT are satisfied, i.e., independence of random variables
and finiteness of variances, the mean square displacement (MSD)
of diffusing particles increases linearly in time. Conversely,
departures from the CLT determine the emergence of anomalous
diffusion. There are numerous experimental measurements in
which theMSD scales with a non-linear power-law in time. These
processes are successfully modeled through Fractional Calculus
(see, e.g., [4–6]), so that the corresponding processes are referred
to as Fractional Diffusion [7–16].

Anomalous diffusion is ubiquitously observed in many
complex systems, ranging from turbulence [17, 18], plasma
physics [19, 20] to soft matter, e.g., the cell cytoplasm, membrane,
and nucleus [21–30] and neuro-physiological systems [31, 32]. In
particular, the analysis of highly accurate data of single particle
tracking (SPT), which are nowadays available thanks to the great
instrumental advancement in fluorescence-based microscopy
[33], has allowed to reveal the clear emergence of anomalous
diffusion in many biological systems [27, 34–37].

As a consequence, the debate on the understanding of
the most suitable microscopic model explaining the observed
statistical features of SPT has taken momentum in the scientific
community. The emergence of long-range correlations and
anomalous diffusion asks for stochastic models departing from
the classical Brownian motion based on the Gaussian-Wiener
process and the standard random walk [1, 3]. At first, the
main debate has been focused on whether the best stochastic
approach should be one based on time-continuous trajectories,
i.e., fractional Brownian motion (FBM), or to discontinuous
trajectories characterized by jump events, i.e., continuous time
random walk (CTRW) (see, e.g., [38] for a short discussion).
However, both stochastic models, FBM and CTRW, do not
describe the observed features of the SPT data. As a consequence,
this implies that the above two minimal models (FBM and
CTRW) do not take into account some microscopic dynamics
affecting the particle motion and determining the emergence
of long-range correlations, anomalous diffusion, non-Gaussian
power-law distributions, ergodicity breaking, and aging [38].

For this reason, the scientific community is now focusing on
the role of the system’s heterogeneity, which was at first neglected
in the above mentioned modeling approaches. Superstatistics
[39–43] is probably the first model where heterogeneity is
taken into account through a time modulation of a fast
relaxing variable by a slow, adiabatic, variable. Many authors
follow the main idea of superstatistics, developing stochastic
models that try to go beyond superstatistics itself. This is
obtained by developing an explicit stochastic dynamics for the
adiabatic modulating variables characterizing the superstatistical
models [44, 45]. Along this line, an interesting approach is the
recently proposed diffusing diffusivity model (DDM) [46–50].
Approaches similar to superstatistics have also been proposed to
model the inter-event times in point processes [51–54], which
describe the intermittent events at the basis of event-driven
diffusion processes, e.g., CTRWs where the inter-event time
distribution is modulated by an external perturbation [41, 54, 55].

Other authors follow a somewhat different approach based on
random-scaled Gaussian processes (RSGPs) [38, 56–59], which

are physically based on a recently proposed model where inter-
particle heterogeneity is explicity described through a population
of scales characterizing the dynamical parameters of particle
diffusive motion. This modeling approach has been denoted
as heterogeneous ensemble of Brownian particles (HEBP) and
has been developed on the basis of a Langevin model [57–
59]. The HEBP model is then based on the Gaussian-Wiener
process and, thus, on trajectories that are strongly continuous
in the stochastic sense [60], while anomalous diffusion emerge
as a consequence of heterogeneity. Fractional diffusion can be
also interpreted as a consequence of complex heterogeneity in
the underlying medium, where a classical diffusion takes place
for the single particle. According to this approach, fractional
diffusion emerges from the population of scales characterizing
the medium. Interestingly, for a given stationary Gaussian
process, the displacement distribution is uniquely related to the
distribution of scales in the considered population. Thus, the
observed diffusion properties can be used to guess the properties
of the underlying diffusing medium.

All the above mentioned stochastic models where fractional
diffusion follows from medium heterogeneity are essentially
based on processes with continuous trajectories. Conversely,
sudden transition events play a crucial role in the diffusing
dynamics in many complex systems. Further, the role of
microscopic models with smooth trajectories (Gaussian-based
processes) and of event-based models with discontinuous
trajectories in biological diffusion is not yet clear.

For this reason, we here propose, discuss, and review different
models based on different Gaussian processes, whose parameters
are characterized by a population of time or length scales. These
models include stochastic processes with both time-continuous
single particle trajectories and discontinuous trajectories with
crucial jump events. We show that proper choices of the
populations lead to space- or time-fractional diffusion. In this
paper we propose and discuss a further development of the
Master thesis by FDT [61].

The paper is organized as follows. In section 6 we propose
and discuss two different Markovian CTRWs with population of
time or length scales. In sections 3 and 4 we discuss RSGPs and
subordination processes, respectively. Finally, in section 5 we give
a brief discussion and draw some conclusions.

2. CONTINUOUS TIME RANDOM WALK
(CTRW)

2.1. The Approach of Continuous Time
Random Walk to Study Diffusion Processes
2.1.1. Basic Formulation of the CTRW
For the purposes of the present paper we briefly report some
fundamentals on the CTRW. It is well-known that the CTRW is a
successful approach to study diffusion processes. It considers the
trajectories of discrete particles within a discrete space, according
to the original formulation [7, 62, 63], or within a continuous
underlying space, according to more recent studies [64, 65].

The trajectory of each particle is considered to be governed by
the joint probability density function (PDF) ϕ(δr, δt) of making
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a jump of length δr in the time interval δt. If the particle is
located in r′ at time t′ and the position r is the particle position
after a inter-event time (IET) δt, then: r = r′ + δr, and t =

t′ + δt. The times t and t′ are occurrence times of crucial jump
events. In the basic theory of CTRW, these events are mutually
independent and, thus, the IETs are statistically independent
random variables whose features are described in the framework
of renewal theory [51–54]. The marginal jump PDF λ(δr) and the
marginal waiting-time PDF ψ(τ ) are, respectively

λ(δr) =

∫ ∞

0
ϕ(δr, τ ) dτ , ψ(τ ) =

∑

δr

ϕ(δr, τ ) . (1)

The integral

∫ τ

0
ψ(ξ ) dξ is the probability that at least one step

is made (0, τ ) [64, 66]. Therefore, the probability that a given
waiting time between two consecutive jumps is greater or equal
to τ is:

9(τ ) = 1−

∫ τ

0
ψ(ξ ) dξ =

∫ ∞

τ

ψ(ξ ) dξ , (2)

and upon differentiation: [64, 66]

d9

dτ
=

d

dτ

(
1−

∫ τ

0
ψ(ξ ) dξ

)
= −ψ(τ ) . (3)

Following Klafter et al. [62], the PDF η(r, t) for a particle to
arriving in r in the time interval from t to t + δt is

η(r, t) =
∑

r′

∫ t

0
η(r′, t′)ϕ(r − r′, t − t′) dt′ + δ(t)δ(r) , (4)

where the initial condition is stated at t = 0 in r = 0. Hence, the
PDF for a particle to be in r at time t is [62, 63]

p(r, t) =

∫ t

0
η(r, t − t′)9(t′) dt′ =

∫ t

0
η(r, ζ )9(t − ζ ) dζ . (5)

Finally, by using (4), the PDF p(r, t) is given by the following
integral equation [62]

p(r; t) = δ(r)9(t)+
∑

r′

∫ t

0

∫ τ

0
η(r′, τ − t′)ϕ(r − r′, t − τ )9(t′) dt′dτ

= δ(r)9(t)+
∑

r′

∫ t

0
p(r′, τ )ϕ(r − r′, t − τ ) dτ . (6)

2.1.2. The Uncoupled Case and the Memory Effects
The simplest case of the CTRW modeling is the uncoupled case,
i.e., the case when the jumps and the waiting times are statistically
independent and it holds ϕ(δr, τ ) = λ(δr)ψ(τ ). In this case
Equation (6) can be re-arranged as [7]

p(r, t) = δ(r)9(t)+

∫ t

0
ψ(t − τ )

∑

r′

λ(r − r′)p(r′, τ ) dτ . (7)

For our purposes we rewrite Equation (7) in the Fourier–
Laplace domain. The standard Laplace and Fourier transforms
for sufficiently well-behaved functions are, respectively

g̃(s) =

∫ ∞

0
e−stg(t) dt , f̂ (k) =

∑

r

ei k·rf (r) . (8)

Then the Laplace transform of formula (6) is

p̃(r, s) =
1− ψ̃(s)

s
+ ψ̃(s)

∑

r′

λ(r − r′)p̃(r′, s) . (9)

Now, after Fourier transform, we have that the Fourier–Laplace
transform of the solution of (6) is

̂̃p(k, s) = 1− ψ̃(s)

s
+ ψ̃(s)̂λ(k)̂̃p(k, s) , (10)

and then, after re-arrangement, the above equation becomes

̂̃p(k, s) = 1− ψ̃(s)

s [1− λ̂(k)ψ̃(s)]
. (11)

According to Mainardi et al. [64], formula (11) can be written in
the alternative form

8̃(s)
[
ŝ̃p(k, s)− 1

]
=

[̂
λ(k)− 1

]̂̃p(k, s) , (12)

where

8̃(s) =
1− ψ̃(s)

s ψ̃(s)
=
9̃(s)

ψ̃(s)
=

9̃(s)

1− s 9̃(s)
. (13)

After Fourier–Laplace anti-transforming, relation (12) gives

∫ t

0
8(t − τ )

∂p

∂τ
dτ = −p(r, t)+

∑

r′

λ(r − r′)p(r′, t) , (14)

where it is evident the memory effect due to the auxiliary
function8(τ ).

2.1.3. The Markovian CTRW Model
A Markovian model is obtained from (14) when 8(τ ) = δ(τ ).
This implies that 8̃(s) = 1 and, from the second equality in (13),
it holds 9̃(s) = ψ̃(s) and 9(τ ) = ψ(τ ). The functions 9(τ ) and
ψ(τ ) are related by (3), then a CTRWmodel is Markovian if

9(τ ) = e−τ , (15)

and the resulting Markovian master equation is

∂p

∂t
= −p(r, t)+

∑

r′

λ(r − r′)p(r′, t) , p(r, 0) = δ(r) . (16)

On the contrary, when 9(τ ) is not an exponential function the
resulting CTRWmodel is non-Markovian.
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2.2. Markovian CTRW Model With a
Population of Time-Scales
Let the functions λn(δr) and ψn(τ ) be the n-fold convolutions of
the jump and of the waiting-time PDFs, respectively. The most
general solution of (6) can be written as [63, 65]

p(r, t) =

∞∑

n=0

P(n, t)λn(r) , (17)

where P(n, t) is the probability of n jumps occurring up to time t:

P(n, t) =

∫ t

0
ψn(t − τ )9(τ ) dτ . (18)

In particular, since 9(τ ) is, by definition, the probability that the
particle remains fixed (0, τ ), then it holds ψ0(τ ) = δ(τ ) and [63]

P(0, t) =

∫ t

0
δ(τ )9(τ ) dτ = 9(t) . (19)

Let us consider a heterogeneous condition. Hence, for any
Markovian trajectory, the waiting-time τ is scaled by a proper
timescale T. This timescale is taken to be a random variable
following a proper distribution. In particular, the survival
probability9(τ ) for each single Markovian trajectory is:

9M(τ/T) = e−τ/T , (20)

where the index M has been added to remark that it is the
survival probability corresponding to the Markovian case. In
this case the random walk goes on according to the standard
iteration procedure with the same meaning for the symbols, but
the random waiting time τ is driven by the rescaled PDF ψ(τ ).
The characteristic function of the particle PDF turns out to be

p̂(k, t/T0) =

∫ ∞

0
p̂M(k, t/T)f (T/T0, t) dT/T0 , (21)

where pM(r, t) refers to the Markovian PDF, and f (T/T0, t)/T0

is the distribution of the random timescale T such that∫ ∞

0
f (T/T0, t) dT/T0 = 1 and T0 is the effective observed

timescale. The single timescale case is recovered when
f (T/T0, t)/T0 = δ(T − T0).

Hence, by Fourier inversion and by using formula (17) for the
Markovian PDF pM(r, t), it follows

p(r, t/T0) =

∞∑

n=0

[∫ ∞

0
PM(n, t/T0)f (T/T0, t) dT/T0

]
λn(r) .

(22)
To conclude, the combination of (17) and (22) gives

P(n, t/T0) =

∫ ∞

0
PM(n, t/T)f (T/T0, t) dT/T0 , (23)

and setting n = 0 it holds the following

P(0, t/T0) =

∫ ∞

0
PM(0, t/T)f (T/T0, t) dT/T0

=

∫ ∞

0

∫ t

0
ψ0(t − τ )9M(t/T)dτ f (T/T0, t) dT/T0

=

∫ ∞

0

∫ t

0
δ0(t − τ )9M(t/T)dτ f (T/T0, t) dT/T0

=

∫ ∞

0
9M(t/T)f (T/T0, t) dT/T0 = 9(t/T0) . (24)

Let hereinafter be T0 = 1 for simplicity. In their pioneering work
[7], derived the following fundamental result:
if the survival probability9(τ ) is a function of the Mittag–Leffler
type, i.e.

9(τ ) = Eβ (−τ
β ) =

∞∑

n=0

(−1)nτβn

Ŵ(βn+ 1)
, 0 < β < 1 , (25)

the particle PDF p(r; t) solves the time-fractional diffusion
equation, i.e., equation (A.1) with α = 2. Therefore, from (24)
and (25) it follows that, for any T-distribution f (T, t) such that
the following integral holds

∫ ∞

0
e−t/T f (T, t) dT = Eβ (−tβ ) , 0 < β < 1 , (26)

the resulting process is a time-fractional diffusion process.
In particular, in the stationary case there is a unique the time-

scale distribution, i.e., f (T, t) = fS(T). In fact, it is well-known
that it holds [6]

∫ ∞

0
e−ty Kβ (y) dy = Eβ (−tβ ) , 0 < β < 1 , (27)

where

Kβ (y) =
1

π

yβ−1 sin(βπ)

1+ 2yβ cos(βπ)+ y2β
, (28)

and, by comparing of (26) and (27), the stationary timescale
distribution fS(T) turns out to be [67]

fS(T) =
1

T2
Kβ

(
1

T

)
. (29)

It is worth noting that the Kβ , defined in (28), is the fundamental
solution of the space-time fractional diffusion equation (A.1)
when space and time fractional orders of derivation are equal
each other and equal to β and when the asymmetry parameter
assumes the extremal value, in which case the distribution has
support solely on the positive real axis [11]. This case is also
known as neutral diffusion [68, 69]. In the Markovian limit, i.e.,
β = 1, it holds Kβ (y) = sinπ/[π (y − 1)2] → δ(y − 1) and a
single timescale follows.
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Concerning the waiting time PDF ψ(t), we observe that, from
formula (24) for the survival probability 9(t) and from (3),
we have

ψ(t) = −
d9(t)

dt
= −

d

dt

( ∫ ∞

0
9M(t/T)fs(T)dT

)
. (30)

By the fact that the involved functions are the exponential
function9M and the normalized distribution fS(T), the following
equality holds

d

dt

( ∫ ∞

0
9M(t/T)fS(T) dT

)
=

∫ ∞

0

d

dt
9M(t/T)fS(T) dT . (31)

Finally, we can write the rescaled PDF ψ(t) as.

ψ(t) = −
d9(t)

dt
= −

d

dt

( ∫ ∞

0
9M(t/T)fS(T) dT

)

= −

∫ ∞

0

d

dt
9M(t/T)fS(T) dT = −

∫ ∞

0

d

dt
e−t/T fS(T) dT

=

∫ ∞

0

1

T
e−t/T fS(T) dT

=

∫ ∞

0
9M(t/T)fS(T)

dT

T
. (32)

2.3. Markovian CTRW Model With a
Population of Length-Scales
In this section we consider the case of a Markovian CTRWmodel
with a population of length-scales. Hence, the space variable r is
scaled by a proper distributed length-scale ℓ and the ratio r/ℓ
is a distributed variable because ℓ is a distributed variable. The
characteristic function of the particle PDF turns out to be

p̂(k/ℓ0, t) =

∫ ∞

0
p̂G(kℓ, t)q(ℓ/ℓ0) dℓ/ℓ0 , (33)

where pG(r, t) is the PDF of the Gaussian CTRW model and
q(ℓ/ℓ0)/ℓ0 is the distribution of the length-scale ℓ such that

∫ ∞

0
q(ℓ/ℓ0) dℓ/ℓ0 = 1 , (34)

and ℓ0 is the effective observed length-scale. The case with a
single length-scale is recovered when q(ℓ/ℓ0)/ℓ0 = δ(ℓ − ℓ0).
Hereinafter we consider ℓ0 = 1.

Let the jump PDF be

λ(r − r′) =
∂

∂r
3(r − r′) , (35)

where3(r− r′) is the cumulative distribution function of jumps,
then we have

3(r − r′) =

∫ ∞

0
3G

(
r − r′

ℓ

)
q(ℓ) dℓ , (36)

where q(ℓ) is the distribution of the length-scale and 3G(r −
r′) is the cumulative distribution function of Gaussian jumps.

Assuming q(ℓ) such that 3G((r − r′)/ℓ)q(ℓ) is integrable and

differentiable and it holds

∣∣∣∣
∂

∂r
3G((r − r′)/ℓ)q(ℓ)/ℓ

∣∣∣∣ ≤ g(ℓ), with

g(ℓ) integrable, then we have

λ(r − r′) =
∂

∂r
3(r − r′) =

∫ ∞

0

∂

∂r
3G

(
r − r′

ℓ

)
q(ℓ) dℓ

=

∫ ∞

0
λG

(
r − r′

ℓ

)
q(ℓ)

dℓ

ℓ
. (37)

The PDF p(r; t) of the process under consideration results to be

p(r; t) = δ(r)9(t)+
∑

r′

∫ t

0
p(r′, τ )λ(r − r′)ψM(t − τ ) dτ

= δ(r)9(t)+
∑

r′

∫ t

0
p(r′, τ )

[∫ ∞

0
λG

(
r − r′

ℓ

)
q(ℓ)

ℓ
dℓ

]
ψM(t − τ ) dτ .

(38)

Now, we want to find an explicit formula for q(ℓ) and we proceed
considering the Fourier transform of the above equation, i.e.,

p̂(k, t) = 9M(t)+

∫ t

0
p̂(k, τ )̂λ(k)ψM(t − τ ) dτ , (39)

or analogously

p̂(k, t) = 9(t)+

∫ t

0
p̂(k, τ )

[ ∫ ∞

0
λ̂G(kℓ) q(ℓ) dℓ

]
ψM(t − τ ) dτ .

(40)
Reminding that in the Markovian case the survival probability
is 9M(t) = e−t and the waiting time PDF ψ(t) = e−t , Equation
(40) becomes

p̂(k, t) = e−t + λ̂(k)e−t

∫ t

0
eτ p̂(k, τ ) dτ , (41)

and the following relation holds

λ̂(k) =
p̂(k, t)− e−t

e−t

∫ t

0
eτ p̂(k, τ ) dτ

. (42)

Considering Equation (11) in the Markovian case (that is β = 1),
we have

̂̃p(k, s) = 1

1+ s− λ̂(k)
, (43)

and after Laplace anti-transforming we obtain

p̂(k, t) = e−(1−̂λ(k))t , (44)

that is the general expression for p̂(k, t). Since |λ̂G(k)| ≤ 1 from
the proprieties of characteristic functions, then also |̂λ(k)| ≤

1, i.e.,

|̂λ(k)| ≤

∫ ∞

0
|̂λG(k)|q(ℓ) dℓ ≤

∫ ∞

0
q(ℓ) dℓ = 1 . (45)
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Hence, the above general representation of p̂(k, t) shows that
p̂(k, t) is a characteristic function for all t ∈ R

+ and k ∈ R

because it holds

e−(1−̂λ(k))t ≤ 1 . (46)

The explicit expression of λ̂(k) can also be obtained. We know
that the Gaussian density for jumps λG comes from an unbiased
random walk in one-dimension. In this random walk, a particle
starts from the origin and, at each time step 1t, makes a jump
±1x to the left or the right with equal probability. We call Ph,n
the probability that the particle will be in point x = h σG at the
time t = n1t. In this simple case we have

Ph,n =
1

2
Ph−1,n−1 +

1

2
Ph+1,n−1 , (47)

assuming P0,0 = 1. The characteristic function for this binomial
formulation is

λ̂G(k) =

n∑

h=−n

P(X = σG h) eikσGh , (48)

that n even becomes

λ̂G(k) =

n/2∑

h=− n
2

P(X = σG 2h)eikσG2h

=

n/2∑

h=− n
2

n!
(
n+2h
2

)
!
(
n−2h
2

)
!

(
1

2

) n+2h
2

(
1

2

) n−2h
2

eikσG2h

=
1

2n

n/2∑

h=− n
2

(
n

n+2h
2

)
eikσG2h =

1

2n

n∑

k=0

(
n

k

)
eikσG(2k−n)

=
1

2n

n∑

k=0

(
n

k

)
eikσGke−ikσG(n−k) =

(
eikσG + e−ikσG

2

)n

= cos(σGk)
n . (49)

Finally, the characteristic function λ̂(k) turns out to be.

λ̂(k) =

∫ ∞

0
cos(σGkℓ)q(ℓ) dℓ =

∫ ∞

0
cos(kℓ)

1

σG
q

(
ℓ

σG

)
dℓ .

(50)

2.3.1. Comparison With the Green Function of the

Space-Fractional Diffusion Equation
We recall that the Fourier transform of the Lévy stable density
L0α(x; t) that solves the space-fractional diffusion equation, i.e.,
Equation (A.1) with β = 1, is

L̂0α(kt
1/α) =

∫ ∞

−∞

eikt
1/αζL0α(ζ ) dζ

= 2

∫ ∞

0
cos(kt1/αζ )L0α(ζ ) dζ = e−|k|α t . (51)

If we compare the above relation with Equation (50), we obtain
also the following consistent pair λ̂(k) and q(ℓ):

λ̂(k) = L̂0α(k) ,
1

σG
q

(
ℓ

σG

)
= 2L0α(ℓ) . (52)

Moreover, this choice is consistent also with the proprieties
of unitary initial value for the characteristic function and of
normalization for the PDF, i.e.,

λ̂(k)

∣∣∣∣
k=0

= e−|k|α
∣∣∣∣
k=0

= 1 , (53)

and

λ̂(k)

∣∣∣∣
k=0

=

∫ ∞

0
cos(σGkℓ)q(ℓ)dℓ

∣∣∣∣
k=0

=

∫ ∞

0
q(ℓ)dℓ

=

∫ ∞

0
cos(kℓ)

1

σG
q

(
ℓ

σG

)
dℓ

∣∣∣∣
k=0

=

∫ ∞

0

1

σG
q

(
ℓ

σG

)
dℓ

= 2

∫ ∞

0
L0α(x) =

∫ ∞

−∞

L0α(x) = 1 . (54)

In general for k ∈ R it holds

p̂(k, t) = e−(1−̂λ(k))t = e−(1−e−|k|α )t

= exp

{
t

∞∑

n=1

(−1)n

n!
|k|αn

}
=

∞∏

n=1

e
(−1)n

n! |k|αnt . (55)

In the limit |k|≪ 1 the characteristic function p̂(k, t) results to be

p̂(k, t) = e−(1−̂λ(k))t

= e−(|k|α− |k|2α

2 +
|k|3α

6 +...)t ≃ e−|k|α t(1+ O(t|k|2α)).(56)

Then, for |k| ≪ 1, it holds

p̂(k; t) ≃ L̂0α(kt
1/α). (57)

Hence the characteristic function of the considered process is a
Lévy stable density, that is the fundamental solution of the space-
fractional diffusion equation. To conclude, since a characteristic
function corresponds to a unique distribution and vice versa,
in the considered limit (k ≪ 1) the PDF p(r − r′; t) is a Lévy
stable density.

3. RANDOMLY-SCALED GAUSSIAN
PROCESSES

Let us denote a randomly-scaled Gaussian process (RSGP) as a
stochastic process defined by the product of a Gaussian process
times a non-negative random variable. In general, the one-
point one-time PDF is not sufficient to characterize a stochastic
process. There are infinitelymany stochastic processes that follow
the same one-dimensional distribution and, thus, solve the same
Cauchy problem for the associated diffusion/master equation
describing the time evolution of the PDF. However, in RSGPs,
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this indeterminacy is solved by the choice of the Gaussian process
that is fully characterized for given first and second moments.

In this paper we consider a special class of RSGPs called
generalized gray Brownian motion (ggBm), that is defined by
using the fractional Brownian motion as Gaussian process [70–
75]. For other form of randomly-scaled Gaussian process we
refer the reader to Sliusarenko et al. [59]. Hence, we consider the
following class of processes:

Xα,β (t) = ℓBH(t) , 0 < β ≤ 1 , 0 < α ≤ 2 , (58)

where BH(t) is the fBm process with Hurst exponent 0 < H < 1,
and then with power law variance t2H .

The application of this approach to fractional diffusion is
based on the correspondence of the PDFs resulting from the
product of two independent random variables with the PDFs
resulting from the integral representation formula (A.10).

Let define Z1 and Z2 as two real independent random
variables: z1 ∈ R and z2 ∈ R

+. The associated PDFs are p1(z1)
and p2(z2), respectively. Let Z be the random variable obtained
by the product of Z1 and Z

γ
2 , i.e., Z = Z1Z

γ
2 . Denoting with p(z)

the PDF of Z, it results:

p(z) =

∫ ∞

0
p1

(
z

λγ

)
p2(λ)

dλ

λγ
. (59)

Comparing the above formula with the integral representation
formula (A.10), and applying the change of variables z = xt−γω

and λ = τ t−ω, the integral representation (71) is recovered from
(59) by setting:

1

tγω
p

(
x

tγω

)
≡ p(x; t) ,

1

τ γ
p1

(
x

τ γ

)
≡ ψ(x; τ )

1

tω
p2

(
τ

tω

)
≡ ϕ(τ ; t) . (60)

Then, by identifying functions and parameters as

p(z) ≡ K0
α,β (z) , p1(z1) ≡ G(z1) , p2(z2) ≡ K

−α/2
α/2,β (z2) ,

(61)

γ =
1

2
, ω =

2β

α
, γω =

β

α
, (62)

formula (59) reduces to the integral formula (A.10) for the
symmetric space-time fractional diffusion equation. In terms of
random variables it follows that [56]

Z = Xt−β/α and Z = Z1Z
1/2
2 , (63)

hence it holds

X = Ztβ/α = Z1t
β/αZ

1/2
2 . (64)

Since p1(z1) ≡ G(z1), Z1 is a Gaussian random variable.
Consequently, the variable Z1t

β/α is Gaussian with variance
proportional to t2β/α . Hence, we chose the fBm with 0 < H =

β/α < 1 as a Gaussian process with consistent power law
variance. Furthermore, the random variable Z2 = 3α/2,β is

distributed according to p2(z2) ≡ K
−α/2
α/2,β (z2). Finally, we have

the process

Xα,β (t) =
√
3α/2,β B

H(t) , 0 < β < 1 , 0 < α < 2 ,

0 < H = β/α < 1 . (65)

where ℓ =
√
3α/2,β is an independent constant non-negative

random variable distributed according to the PDF K
−α/2
α/2,β (λ), λ ≥

0, that is a special case of (A.7). The process defined above is the
solution of the space-time fractional diffusion Equation (A.1) in
the symmetric case. This means that the one-time one-point PDF
of Xα,β (t) is the fundamental solution of Equation (A.1) in the
symmetric case, namely the PDF K0

α,β (x; t) defined in (A.10).
The space-fractional diffusion is recovered when β = 1, in fact

by using formula (A.7) with t = 1, we have

K
−α/2
α/2,1 (λ) =

∫ ∞

0
M1(τ )L

−α/2
α/2 (λ; τ ) dτ

=

∫ ∞

0
δ(1− τ )L

−α/2
α/2 (λ; τ ) dτ = L

−α/2
α/2 (λ) . (66)

Here we are interested in the distribution of ℓ =
√
3α/2,1 then,

by normalization condition, the PDF of ℓ results to be

q(ℓ) = 2ℓL
−α/2
α/2 (ℓ2) . (67)

Analogously, the time-fractional diffusion is recovered when α =

2, in fact by using formula (A.7) with t = 1, we have

K−1
1,β (λ) =

∫ ∞

0
Mβ (τ )L

−1
1 (λ; τ ) dτ

=

∫ ∞

0
Mβ (τ )δ(λ− τ ) dτ = Mβ (λ) , (68)

and the corresponding PDF of ℓ is

q(ℓ) = 2ℓMβ (ℓ
2) . (69)

4. TIME-SUBORDINATION FOR GAUSSIAN
PROCESSES

Another approach proposed tomodel the emergence of fractional
and, more in general, anomalous diffusion in complex media
is the time-subordination of a otherwise standard diffusion
process (see, e.g., [15, 76, 77]). Even when the time-subordination
procedure is applied to a Gaussian process, the PDF of the
resulting process is no longer Gaussian, and the particle MSD
has a non-linear time dependence. Let Y(τ ), τ > 0, be
a stochastic process. Time-subordination is defined by the
following expression:

X(t) = Y(Q(t)) . (70)

Thus, time-subordination follows from the randomization of
the time clock in a stochastic process Y(τ ), i.e., by using a
new clock τ = Q(t), being Q(t) a random process with non-
negative increments. The resulting process Y(Q(t)) is said to be
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subordinated to Y(τ ). This is called the parent process, while Q(t)
is called the directing process, so that it is said that Y(τ ) it is
directed by Q(t) [78].

In diffusion processes, the parameter τ is named operational
time. The process t = t(τ ), which is the inverse of τ = Q(t),
is called the leading process [15, 79]. It is worth noting that, in
general, X(t) is non-Markovian, even when the parent process
Y(τ ) is Markovian. At the macroscopic level, i.e., in terms of the
particle PDF, the subordination process X(t) is described by the
following expression:

p(x; t) =

∫ ∞

0
ψ(x; τ )ϕ(τ ; t) dτ , (71)

where p(x; t) is the PDF of X(t), ψ(x; τ ) the PDF of Y(τ ) and
ϕ(τ ; t) the PDF of Q(t). In the following, the PDFs are self-
similar, i.e., have a scaling property. Similarly to the approaches
previously described, we introduce a population of time-scales
T with distribution function f (T) for the subordinated process
Y(τ ). Then parameter τ is now determined by the process
Q(t/T).

By comparing (71) and (A.10) we have

p(x; t) ≡ K0
α,β (x; t) , ψ(x; τ ) ≡ G(x; τ ) =

1

τ 1/2
G

( x

τ 1/2

)
,

ϕ(τ ; t) ≡ K
−α/2
α/2,β (τ ; t) . (72)

Hence, the integral representation (71) turns out to be

K0
2,β (x; t) =

∫ ∞

0

1

Q(t/T)1/2
G

(
x

Q(t/T)1/2

)

K
−α/2
α/2,β (Q(t/τ ); t)

dQ

dT
dT . (73)

In the case of space-fractional diffusion, from formula (A.11) we
observe that the scaling property gives Q(t/T) = (t/T)1/α , and
f (T) results to be

f (T) = L
−α/2
α/2

(
1

T1/α

)
1

αT1/α+1
. (74)

Analogously, in the case of time-fractional diffusion,
from formula (A.12) we observe that the scaling

FIGURE 1 | Schematic picture of the three stochastic processes in heterogenous media leading to the same space-fractional diffusion equation for the 1-point

1-time PDF.

FIGURE 2 | Schematic picture of the three stochastic processes in heterogenous media leading to the same time-fractional diffusion equation for the 1-point

1-time PDF.

Frontiers in Physics | www.frontiersin.org 8 September 2019 | Volume 7 | Article 123

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Di Tullio et al. New Vistas on Anomalous Diffusion

property gives Q(t/T) = (t/T)β , and f (T) results
to be

f (T) = Mβ

(
1

Tβ

)
β

Tβ+1
. (75)

5. CONCLUSIONS

In this paper we studied a framework for explaining the
emergence of anomalous diffusion in media characterized by
random structures. In particular, we considered three different
modeling approaches based on Gaussian processes but displaying
a population of scales. The main idea is that the deviation
from Gaussianity is indeed an indirect estimation of the
population of the scales that characterize the medium where
the diffusion takes place. We discussed the cases of space- and
time-fractional diffusion through the CTRW, the ggBm and
time-subordinated process.

The introduction of a population of scales significantly
affects the particle PDF. The same fractional diffusion
follows from different populations of scales when different
Gaussian processes are considered. This suggests that the same
macroscopic fractional process can be experimentally observed
in different systems displaying different populations of scales
and, consequently, driven by different underlying mesoscopic
Gaussian processes. In Figures 1, 2 we give a synthetic picture of
the three processes here described, all leading to the macroscopic
space- or time-fractional diffusion equations.

When a macroscopic fractional process is experimentally
observed, the simultaneous measurement of the population of
scales embodies a selection criterion for the corresponding
mesoscopic (and maybe not experimentally detectable)
underlying Gaussian process. The same holds in the other way
round, when a macroscopic fractional process is experimentally
observed in place of a specific Gaussian process theoretically
and/or experimentally expected, and then the deviation from
Gaussianity embodies an indirect measurement of the population
of the scales.

In general, this framework can be adopted for studying the
presence and the characterization of impurities, as well as of
obstacles, in a given complex medium. These results highlight
the key role of the properties of the medium, embodied by the
population of the scales, in the determination of the proper

stochastic process for a given medium. The present research and
our final claim aim to analyze and provide an explanation to the
role and the effects of the system’s configuration (environment

plus particles) on the emergence of deviations from Gaussianity.
In this respect, the present results add a contribution to similar
existing literature concerning, for example, the dependence
on system’s configuration of the emergence of nonextensive
statistical mechanics in confined granular media [80], or the
emergence of processes modeled by fractional linear diffusion or
by integer non-linear diffusion accordingly to different settings of
CTRW simulations [81].
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