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We consider the situation in which a colloidal particle modifies locally the solvent

leading to a spatially dependent viscosity. This situation is typical for colloidal particles in

crowded environment, for example DNA-grafted particles in a polymer solution, or a hot

particle which implies a temperature gradient to a viscous liquid. By means of suitable

approximations we calculate the dependence of the friction force on the profile of the

local viscosity. Our results show that in the case of axially symmetric viscosity profile the

friction force is sensitive to the anisotropy of the viscous profile whereas it is not sensitive

to for-ahead asymmetries. Our results are crucial for active microrheology measurements

where tracer particles are pulled through complex fluids.

Keywords: crowded environments, polymer solution, drag force, anisotropic viscosity, transport phenomena and

fluid mechanics, functionalized colloids

1. INTRODUCTION

Particles in the nanometer size range coated with polymers are of growing importance for rather
diverse applications [1]. In hybrid materials such as nanocomposites, the use of polymers grafted to
nanoparticles is widely exploit to suppress aggregation of particles and to enhance their dispersion
and mixing into solvent or matrix. The nanoparticles coated with DNA are used for building highly
sensitive probes or drug carriers in biological systems [2, 3] and to assemble crystals and other
structures of numerous morphologies [4].

In the absence of external driving, the transport of nanobjects in the fluid environment is
dominated by diffusion, a process due to randommolecular motion excited by thermal fluctuations
[5–7]. Diffusion of isolated spherical nanoparticle in the simple molecular liquids is well-described
by the Fick’s law, which says that the mean-square displacement changes linearly in time. The rate
of this change, the translational diffusion coefficient Dt , is related to the macroscopic viscosity
of the solvent ηm (as measured rheometer) via Stokes-Sutherland-Einstein (SSE) relation [6, 8];
Dt = kBT/ζm where ζm is the hydrodynamic drag coefficient given by the Stokes equation
ζm = 6πηmR. In this equation R is the hydrodynamic radius of diffusing particle, kB is the
Boltzmann constant and T is the temperature.

However, various experiments [9–20] and simulation studies [21–23] show that diffusion of
nano-sized particles in complex fluids is not accurately described by Fick’s law and that the SSE
relation is violated in certain regimes of parameters. For polymer solutions, these parameters
involve the size of the particle and the polymer length scales [24, 25]. For example, if the particle size
is comparable to or smaller than the characteristic length scale in a polymer solution, its diffusion
is significantly faster than the one predicted based on the macroscopic viscosity [13, 17, 18]. This is
because on such length scales the nanoparticle does not experience the homogeneous continuum
medium with high viscosity, rather, the individual polymer chains or blobs and their fluctuations
as well as entanglements influence its dynamics.
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Grafting nanoparticles with macromolecules, such as
polymers or DNA, complicates their interactions with the
complex medium and, therefore, stronger deviations from the
SSE relation are expected. These deviations can be tested in
rheological experiments [26] by measuring the drag force. The
experiments for a bare (non-grafted) colloid in DNA solutions
demonstrated that by using optical tweezers it is possible to move
a particle through a highly monodispersed polymer solution at a
given velocity as well as to measure the drag force on the colloid
with piconewton resolution at the same time [26].

Here we provide a theoretical prediction for a drag force based
on the assumption that interactions between grafted particle and
the complex medium result in an effective spatially dependent
viscosity. A similar idea was used by Tuinier et al. [27], Fan
et al. [28, 29], and Feng et al. [30] to calculate the hydrodynamic
resistance force for a bare spherical particle in a non-adsorbing
polymer solution, where polymer depletion results in a reduced
polymer concentration near the particle surface. Using the
concept of local viscosity [31], the polymer concentration profile
was related to the viscosity profile near a spherical particle.
Hydrodynamics was formulated by the modified Stokes equation
with non-uniform spherically symmetric viscosity, which was
solved by a regular perturbation approximation using the Green
function method.

In the present paper, we extend this analysis to account for
anisotropic viscosity profile around a spherical particle, which
may result from anisotropically grafted nanoparticles in a non-
adsorbing polymer solution (see Figure 1). Such anisotropically
grafted nanoparticles, e.g., DNA-grafted Janus particles can be
manufactured [33–35]. They provide a basic structural element
that can be used to produce useful nanoparticle clusters of
different topologies through DNA-based self-assembly [33–35].
The concept of anisotropic viscosity might also be applicable
for describing the transport of protein through the nuclear
pore complex, where the transporting protein encounters
heterogeneous polymer brush or gel like environment [36–38].

Because the concentration profile of free polymers in the
solution depends on the length of grafted macromolecules and
on the grafting density [32], an anisotropic grafting changes the
depletion zone around the particle, which leads to anisotropic
polymer concentration and thus to anisotropic effective viscosity.
We assume that the particle is dragged slow enough such that
the polymer solution can adiabatically follow the motion of the
colloid. This means that the advective transport rate must be
smaller than the diffusive transport rate of the polymers, which
can be expressed via the Peclét number Pe = lpu/Dp ≪ 1,
where lp is the characteristic length scale of the polymer, u
the characteristic velocity of the solvent u, and Dp diffusivity
of the polymers. Further, we assume that the characteristic
length scale of the variation of polymer concentration is bigger
than the length of an effective statistical chain element. This
assures a sufficiently large number of chain elements in small
volume element to apply the concept of local viscosity [31].
Solving the modified Stokes equations with a spatial-dependent
viscosity of a general form is not easy—even within a regular
perturbation approximation. However, for the axisymmetric
systems some simplifications occur. For axisymmetric Stokes

equations with constant viscosity, translational and rotational
motion are decoupled. For translational motion a scalar stream
function, which transforms vectorial equations to the scalar
ones is well-established. We demonstrate that these properties
also hold for the modified Stokes equations with axisymmetric
viscosity profile and provide a formalism to calculate the drag
force experienced by a translating particle.

Our paper is structured as follows. In section 2, we present
the extended Stokes equations with the spatially dependent
viscosity and introduce the perturbation calculation scheme.
In section 3 the drag force for the axisymmetric systems
is calculated and analyzed for various grafting geometries.
We conclude in section 5.

2. MODEL

2.1. Extended Stokes Equation
The Stokes equations are valid for small Reynolds numbers
Re = ρul/η ≪ 1, where ρ is the density of the fluid, u is the
characteristic velocity of the flow, and l is the characteristic length
scale of the particle. This assures that viscous forces dominate the
inertial forces. The stationary incompressible Stokes equations
with spatially dependent viscosity η(r) are given by

∇ · τ = 0 , ∇ · v = 0 , (1)

where τ = −p I + 2η(r)1 the stress tensor, p is a pressure
and 1 =

[

∇v + (∇v)T
]

/2 is the strain rate. The superscript
T denotes the transposed of a tensor, I is the identity matrix.
Expanding the divergence in the momentum equation one
obtains an additional term, which is proportional to the gradient
of the viscosity

0 = −∇p+ η(∇2v)+ (∇η) ·
[

∇v + (∇v)T
]

. (2)

We consider a quiescent, unbounded fluid which is dragged by a
particle with no-slip and vanishing far-field boundary conditions:

v = U + � × (rp − rc) , r ∈ 6p (3a)

v → 0 , p → 0 , |r| → ∞ . (3b)

where 6p is the particle surface and rp is a point on the particle
surface 6p. The particle is translating with velocity U and
rotating with angular velocity �, which requires a force F and a
torqueT acting on the particle. The angularmotion of the particle
is described in a coordinate system fixed to the particle at rc.

The drag force on the particle is determined by the force acting
on the particle surface 6p, which corresponds to the momentum
flux through the surface

F =

∫

6p

dS τ · n , (4)

where n is the surface normal vector. In the following all
quantities are represented in dimensionless units: v ∝ U, � ∝

U/a, τ ∝ η̄U/a and p ∝ η̄U/a, where a is the particle radius and
η̄ is the bulk viscosity. Accordingly, the drag force and viscosity
are also dimensionless.
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FIGURE 1 | Sketch of an anisotropic polymer concentration profile around a DNA-grafted colloid in a non-adsorbing polymer solution. The concentration profile of the

free polymers depends on the grafting density and length of the DNA strings [32]. The anisotropic concentration profile leads to a non-uniform viscosity variation. We

want to stress that the system is in equilibrium and there is no netforce.

2.2. Small Viscosity Variations
We consider an expansion of the system in small viscosity
perturbations of orderO(ǫ)

η = 1+ ǫη1 + ǫ
2η2 +O(ǫ3) (5a)

v = v0 + ǫv1 + ǫ
2v2 +O(ǫ3) (5b)

p = p0 + ǫp1 + ǫ
2p2 +O(ǫ3). (5c)

The fluid velocity at the surface of the particle is determined by
the leading order velocity field v0. Thus, the higher order fluid
velocity fields at the surface must vanish. The far-field condition
of the quiescent fluid requires that both the pressure and the
velocity fields have to vanish at infinity.

We expand the stationary Stokes equations in small viscosity
variations of order ǫ. The leading order systemO(ǫ0) is given by

−∇p0 + ∇
2v0 = 0 , 0 = ∇ · v0 (6a)

v0 = U + � × (rp − rc) , r ∈ 6p (6b)

v0, p0 → 0 , |r| → ∞ (6c)

and the first order systemO(ǫ1)

−∇p1 + ∇
2v1 = −η1∇

2v0 + ∇η1 ·
[

∇v0 + (∇v0)
T
]

(7a)

0 = ∇ · v1 (7b)

v1 = 0 , r ∈ 6p (7c)

v1, p1 → 0 , |r| → ∞ (7d)

The leading order solutions fulfill common Stokes equations with
constant viscosity.

3. AXISYMMETRIC SYSTEMS

Axisymmetric systems possess at least one axis of rotational
symmetry, which we choose to be parallel to ez . We use spherical
coordinates {r, θ ,φ} with the corresponding orthonormal basis
{r̂, eθ , eφ} and the origin located at the center of the particle.
Due to the rotational symmetry the system is independent of
the azimuthal angle φ. Thus, the viscosity η(r, θ) is a function of
radial distance r and the polar angle θ . Accordingly, the r̂- and
eθ -components of the extended Stokes equations Equation (1)
depend on the components vr and vθ of the fluid velocity, whereas

the eφ-component of Equation (1) depends only on vφ . The
velocity field of the fluid for translational motion of the particle
U ‖ ez is determined by {vr , vθ } and for rotational motion
� ‖ ez is determined by vφ . These properties are summarized
in Figure 2.

For axisymmetric Stokes equations translational and
rotational motion are decoupled. For translational motion a
scalar stream function formalism is well-established to simplify
the vectorial equation to a scalar one (see, e.g., Happel and
Brenner [39]). This formalism can be extended to a non-uniform
viscosity as long as it is axisymmetric (see Appendix A). In
the following we focus on translational motion of a particle in
an axisymmetric system which is characterized by the particle
velocity U .

3.1. Leading Order Solution
The leading order axisymmetric momentum equation [see (A5)
in the Appendix A] is the same as for the homogeneous system.
So the stream function (see Equation A1) for the leading order
system is [39]

ψ0(r, θ) =
1

4
r2 sin2 θ

[
(
1

r

)3

−
3

r

]

. (8)

The corresponding velocity field is given by

vr0 = cos θ

[

3

2r
−

1

2

(
1

r

)3
]

(9a)

vθ0 = − sin θ

[

3

4r
+

1

4

(
1

r

)3
]

. (9b)

As expected, the leading order decay of the velocity is∝ 1/r. The
pressure is determined by integration

∇p0 = ∇
2v0 , ⇒ p0(r, θ) =

3

2

cos θ

r2
.

3.2. First Order Solution
For the first order velocity field we use Equations (B3) (see
Appendix B), which correspond to the stream function ansatz
(B2). In order to determine the first order pressure contribution
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FIGURE 2 | Short summary of the decoupling of translational and rotational motion of the extended Stokes equations for an axisymmetric system. The velocity field of

the fluid for translational motion of the particle U ‖ ez is determined by {vr , vθ } and for rotational motion � ‖ ez is determined by vφ .

p1(r = 1, θ) at the particle surface, we exploit the eθ -component
of the stationary Stokes equation

∇ · τ |eθ = 0 ⇒
1

r

∂p

∂θ
= ∇ ·

(

η(r = 1, θ)[∇v + (∇v)T]
)

|eθ
.

(10)

Using the stream function relations for v0 (9) and v1 (B3) we
integrate over θ to obtain the pressure at the surface r = 1

p1(r = 1, θ) =
∑

n≥3

f (3)n (r = 1)

∫
In

sin θ
dθ −

1

2
f
(3)
2 (r = 1) cos θ

−
3

2

∫ (

η1(r = 1, θ)−
∂η1(r, θ)

∂r

)

r=1

sin θdθ + c(r) .

(11)

The integration constant c(r) does not contribute to the drag
force. Here, superscript (i) defines the ith derivative.

3.3. Drag Force
The drag force on the particle is calculated by integrating the
stress tensor over the particle surface (see Equation 4). First,
we derive an expression for the forces f s(r, θ) at the particle
surface r = 1

fs(r = 1, θ) = τ · r̂ = −p r̂ + 2 η(r = 1, θ)1 · r̂ (12)

(r̂ is a vector normal to the surface denoted in Equation 4 by
n). Up to the first order, the surface force can be expressed as
f s = f s0 + ǫf s1. Using solutions for zero and first order velocities
and pressures derived above, we find

fs |r̂ = f 0s |r̂ −ǫ
{

vanish under surface integration
︷ ︸︸ ︷

∑

n≥3

f (3)n (r = 1)

∫
In

sin θ
dθ +

1

2
f
(3)
2 (r = 1) cos θ

+
3

2

∫ (

η1(r = 1, θ)−
∂η1(r, θ)

∂r
|r=1

)

sin θdθ

}

(13a)

fs |eθ = f 0s |eθ +ǫ
{

vanish under surface integration
︷ ︸︸ ︷

∑

n≥3

f (2)n (r = 1)
In

sin θ

+
1

2
f
(2)
2 (r = 1) sin θ +

3

2
η1(r = 1, θ) sin θ

}

. (13b)

In the leading order, f s0 |r̂ = −3/2 cos θ and f 0s |eθ= 3/2 sin θ . It
turns out that the orthogonal component f s · r̂ of the surface force
is determined by the pressure whereas the tangential component
f s · eθ is determined by the shear force contribution.

The last step to calculate the drag force F is to integrate the
surface forces over the whole surface of the particle F =

∫

6p
dS f s.

Due to the symmetry of the system the drag force is aligned
parallel to the symmetry axis ez . The resolved part of the surface
force f s in ez direction is obtained by using ez = r̂ cos θ and
ez = −eθ sin θ . Performing partial integration and applying the
orthogonality of Gegenbauer functions (C2) as well as relation
(C3) (see Appendix C) the drag force can be expressed as

⇒ Fz =− 6π + ǫ2π
{ f

(3)
2 (r = 1)

3
(14a)

−
3

4

θ∫

0

(

η1(r = 1, θ)−
∂η1(r, θ)

∂r

∣
∣
∣
r=1

)

sin3 θdθ

(14b)

+ǫ2π
{

−
2f

(2)
2 (r = 1)

3
−

3

2

π∫

0

η1(r = 1, θ) sin3 θdθ
}

(14c)

The first line (14a) is the leading order drag force corresponding
to a sphere and a homogeneous viscosity. The negative sign shows
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that the force is opposite to the particle moving direction. It turns
out that in the leading order, the pressure contributes 1/3 and the
shear force 2/3 of the total drag force. The last two lines (14b)
and (14c), give the first order correction to the drag force. The
contribution of the first order pressure at the surface is shown in
line (14b) and the first order shear force contribution is shown in
line (14c). Equation (13) implies that only the secondGegenbauer
coefficient f2 is needed to calculate the first order drag force. A
general solution for f2 can be provided by the Green function of
the ODE (14) with n = 2, which has a form

(
∂4

∂r4
−

4

r2
∂2

∂r2
+

8

r3
∂

∂r
−

12

r4
+

4

r4

)

f2(r) = R2(r). (15)

For a sphere in an unbounded quiescent fluid with vanishing
velocity at the sphere surface, this Green function has been
calculated by Tuinier et al. [28]:

G1(r, r
′) =

(
−r′4

30r
+

r

6
r′2 +

1

12

(
r′

r
+

r

r′

)

−
r r′

4
−

1

20r r′

)

, 1 < r′ < r

G2(r, r
′) =

(
−r4

30r′
+

r′

6
r2 +

1

12

(
r

r′
+

r′

r

)

−
r′ r

4
−

1

20r′ r

)

, r < r′ <∞. (16)

The coefficient f2 is obtained via integration of the Green function
and the second Gegenbauer mode of the inhomogeneity R2(r)

f2(r) =

∫ r

1
G1(r, r

′)R2(r
′)dr′ +

∫ ∞

r
G2(r, r

′)R2(r
′)dr′. (17)

It satisfies the following boundary conditions: at the sphere

surface f2(r = 1) = 0, f
(1)
2 (r = 1) = 0, and in far-

field lim
r→∞

: f2(r)/r
2 = 0, f

(1)
2 (r)/r = 0. All integrands in (17)

are smooth functions, therefore, even if for a given r-dependence
of the viscosity an analytical solution does not exist, the integrals
can be easily calculated using the standard quadrature method.
For the first order drag force, also the derivatives f (2)(r = 1) and
f (3)(r = 1) at the surface of the sphere are needed. Considering
the Leibnitz rule and the continuity of the given Green function
up to the second derivative, the derivatives of f2 at the surface are

lim
r→1

f
(k)
2 (r) =

∫ ∞

1
G
(k)
2 (r = 1, r′)R2(r

′)dr′ (18)

G
(3)
2 (r = 1, r′) = −

1

2r′
−

r′

2
, G

(2)
2 (r = 1, r′) = −

1

2r′
+

r′

2

3.3.1. Multipol Representation

In order to proceed, we represent the first order viscosity
variation in Equation (5a) as a multipole expansion with r-
dependent coefficients

η1(r) =m(r)+ d(r) · r̂ + Q(r) :
3r̂r̂ − I

2
+ . . . . (19)

In the above, the symbol “:” denotes the double dot product. The
projections of the viscosity variation are: the monopole m(r) =
1
4π

∫

sin θdθdφ η1(r), the dipole d(r) = 3
4π

∫

sin θdθdφ r̂η1(r)

and the quadrupole Q(r) = 5
8π

∫

sin θdθdφ η1(r)(3r̂r̂ − I). The
quadrupole matrix Q is traceless and symmetric by definition.
It follows that the second Gegenbauer coefficient R2(r) of
the inhomogeneity h1(r, θ) in Equation (B4) depends on the
monopole and quadrupole contributions to the axisymmetric
viscosity but does not depend on the dipole contribution. Thus,
for the total drag force F one has

Fz = −6π

{

1+ ǫ

[
1

2
m(r = 1)−

1

6
m(1)(r = 1)

]

−
ǫ

6

[

Q33(r = 1)− Q
(1)
33 (r = 1)

]

+
ǫ

12

∫ ∞

1
dr′G (r′)

[

− r′
(

1+ 3r′2
)

m(1)(r′)+ r′2Q
(2)
33 (r

′)
]

+
ǫ

12

∫ ∞

1
dr′G (r′)

[

r′
(

1+ 3r′2
)

Q
(1)
33 (r

′)− r′2Q
(2)
33 (r

′)

−18Q33(r
′)+ 9r′(1− r′2)Q

(1)
33 (r

′)
]}

. (20)

In the above

G (r′) ≡

(
1

r′6
−

3

r′4

)

,

∫ ∞

1
dr′G (r′) = −

4

5
.

This result includes the solution of Tuinier et al. [28] for isotropic
viscosity variations η1(r).

4. ANALYSIS

We start the analysis of our result for the drag force with the
general case of viscosity variations that decay beyond a certain
length scale. The decay of viscosity variations is expected because
the overall polymer concentration profile approaches its bulk
value sufficiently far away from the grafted particle. Specifically,
we assume that each multipole mode n of η1 decays beyond the
(possibly different) length scale dn. Since merely the first three
multipoles are relevant, we have

m(r) = Z0(r; d0) ·m (21)

d(r) = Z1(r; d1) · d (22)

Q(r) = Z2(r; d2) · Q . (23)

In order to grasp the basics of the role of the viscosity profile
on the drag force on the colloid, we follow Tuinier and
Taniguchi [31] and consider the decay profile of the following
functional form:

Zn(r; dn) = 1− tanh2
(
r − 1

dn

)

, (24)

with the properties Zn(r = 1; dn) = 1, Z
(1)
n (r = 1; dn) = 0, and

lim
r→∞

Zn(r; dn) = 0. An example of the decay profile is shown in

Figure 3 for different values of d.
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FIGURE 3 | The decay profile Z(r;d) next to the particle surface r = 1 is

plotted for different d ∈ {0.1, 0.6, 1, 8, 20}. d < 1 corresponds to a fast decay

compared to the particle size and d > 1 corresponds to a slow decay.

The drag force can be represented in terms of an isotropic
viscosity contribution ǫmαi(d) and the anisotropic viscosity
contributions ǫQ33 αa(d) as follows:

Fz

−6π
= 1+ ǫ

[

mαi(d0)+ Q33 αa(d2)
]

(25)

with

αi(d) =
1

2
+

1

12

∫ ∞

1
dr′G (r′)

[

− r′
(

1+ 3r′2
)

Z
(1)
0 (r′, d) (26)

+ r′2Z
(2)
0 (r′, d)

]

αa(d) = −
1

6
+

1

12

∫ ∞

1
dr′G (r′)

[

r′
(

10− 6r′2
)

Z
(1)
2 (r′, d) (27)

− r′2Z
(1)
2 (r′, d)− 18Z2(r

′, d)
]

.

In Figure 4 we plot the forces αi and αa as function of the decay
length d ∈ [10−3, 103]. As expected, for variations very quickly
decaying with the distance from the sphere, i.e., for (d ≪ 1),
both functions vanish and the drag force is similar to a particle
in a homogeneous solution. Thus, in this limit the viscosity
variation is negligible. On the other hand, in the limit of very slow
decays (d≫ 1)

lim
d→∞

αi = 1 , lim
d→∞

αa =
7

25
(28)

the solution correspond to the case of viscosity variations that
depend only on the angle θ .

In between there is a transition region from short length scales
to long length scales. The isotropic viscosity variation is the
main contribution to the drag force. The contribution from the
anisotropic viscosity variation is weaker. At d ≈ 1 the anisotropic
contribution becomes negligibly small because αa shows a zero
crossing in that region. Thus, up to the first order the drag force is
independent of anisotropic viscosity variations that decay on the
length scale of the particle. In order to get a better understanding

FIGURE 4 | Dimensionless drag force due to a solely monopole contribution,

αi (see Equation 27), and solely due to quadrupole contribution, αa (see

Equation 29), as a function of the dimensionless decay length, d2.

of the zero crossing we look at the specific quadrupole like
viscosity variation Q = [(−1, 0, 0), (0,−1, 0), (0, 0, 2)]/2, which
is shown in Figure 5 for d2 ∈ {0.3, 7}. This specific viscosity
variation does not change the net viscosity. The viscosity in front
and at the back of the particle is increased whereas at the waist
it is decreased. The corresponding drag force is increased for
d2 > 1 and decreased for d2 < 1. In a more general context this
indicates that higher viscosity at the back and front of a particle
leads to larger drag force if the viscosity variation decays on a
longer length scale compared to the length scale of the particle
and to a weaker drag force if the variation decays on a shorter
length scale compared to the length scale of the particle.

4.1. Analysis of the Velocity Mode vd
Our formalism allows us to analyze how the velocity field adapts
to modulations in the local viscosity. In the following we focus
on the dependence of the local velocity field on the local viscosity
for anisotropic viscosity profiles (isotropic profiles have been
analyzed in Fan et al. [28]). In this case only the quadrupolar
component of the viscosity profile (with magnitude given by
Q33 = l2, where l2 is the coefficient of the projection of η1 on the
second Legendre mode1) affects the translational friction, thus
we study the velocity field variations which are related to those
viscosity variations and call them vd ∝ ǫl2.

In Figure 7 we show the velocity field variation vd (calculated
using Equation 16) for different decay length of the quadrupolar
contribution d2 ∈ {0.1, 1, 8, 20} (in units of ǫl2). For each
decay d2 two figures are shown. The semi-logarithmic plot gives
information about the long ranged velocity field vdz along the
lines θ = 0 and θ = π/2 whereas the vector-density-plot
indicates the absolute value of the velocity component |vd| and
the arrows give additional information about the direction of the
velocity variation. For comparison the leading order velocity field
is shown in Figure 6.

1A function f defined on the interval [−1, 1] can be represented in Legendre’s

polynomials f (x) =
∑

n≥0 lnPn(x). The coefficients ln are the projections onto the

corresponding Legendre’s mode 2n+1
2 〈f | Pn〉P = ln.
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FIGURE 5 | Axisymmetric, quadrupolar viscosity variation Q = [(−1, 0, 0), (0,−1, 0), (0, 0, 2)]/2 around a spherical particle with length scale decay (A) d2 = 0.3 and

(B) d2 = 7.

FIGURE 6 | Velocity profiles. The leading order velocity field is shown in two plots. The first one is a semi-logarithmic plot which gives information about the long

ranged velocity field v0 decay parallel to the symmetry axis. Therefore we calculated v0 along the lines θ = 0 and θ = π/2. The second one is a vector-density-plot

which indicates the absolute value of |v0| and the arrows give additional information about the direction of the velocity field. The particle is denoted by the white

sphere in the middle of the plot and it is moving to the right parallel to ez .

In the semi-logarithmic plot we see the algebraic decay of
the velocity field and at the surface r = 1 the dimensionless
velocity of the particle v ∝ 1. Thus, a positive sign in the semi-
logarithmic plot as well as arrows with positive z-component
corresponds to an increase of the velocity field. On the other
hand, a negative sign in the semi-logarithmic plot as well as
arrows with negative z-component corresponds to a decrease of
the velocity field. For short ranged viscosity variations d2 . 1 the
semi-logarithmic plot is negative as shown in the top right panel
of Figure 7. Thus, the velocity variation decreases the velocity
field. For viscosity variations of the particle length scale d2 ≈

1 (middle left panel of Figure 7) the semi-logarithmic plot is
mainly positive except close to the particle surface. Hence, the
velocity variation increases the velocity field. This property is
maintained in the far-field for long ranged viscosity variations.
Finally, in the bottom right panel of Figure 7 the vector-density-
plot shows two velocity regions which are separated by a
crossover area (blue area) with very small velocity variations. The
first region is close to the particle surface. Here the fluid velocity is
reduced compared to the homogeneous case. The second region

is outside the crossover area and increases the velocity field.

With increasing length scale of the viscosity variation d the layers
get stretched.

4.2. Janus and Quadrupole Particles
We consider a spherical particle that is anisotropically grafted
with polymer chains in a polymer suspension. The grafted
polymers induce an anisotropic depletion zone of suspended
polymers whose width is controlled by the mutual interaction
between the grafted and suspended polymers. In the following
we assume that the motion of the particle occurs on time scales
τparticle that are much larger than the relaxation time of the
polymers (τparticle ≫ τpolymer), i.e., the Peclét number Pe =

lpu/Dp ≪ 1.
Under these conditions the semi empirical Martin

Equation [40] can be used to relate the local polymer
concentration to a local viscosity:

ηp/ηs = 1+ [η]cbρ(r) e
kH [η]cbρ(r) . (29)

where ρ is the dimensionless, normalized total polymer (i.e.,
grafted plus suspended polymers) concentration profile, ηs is
the viscosity of the solvent, kH is the Huggins coefficient,
which is specific for a given polymer-solvent combination. The
intrinsic viscosity [η] is approximately the inverse of the polymer
overlap concentration 1/c∗

b
in the bulk, which corresponds to the

hydrodynamic volume of a polymer chain in solution per unit
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FIGURE 7 | Velocity profiles. The velocity field variation vd is shown for different decays of the viscosity variation d2 ∈ {0.1, 1, 8} top to bottom, respectively. Each

velocity field is shown in two plots. The first one is a semi-logarithmic plot which gives information about the long ranged velocity field vdz decay parallel to the

symmetry axis. Therefore we calculated vdz along the lines θ = 0 and θ = π/2. The second one is a vector-density-plot which indicates the absolute value of |vd | and

the arrows give additional information about the direction of the velocity variation. The particle is denoted by the white sphere in the middle of the plot and it is moving

to the right parallel to ez .

mass. We expand the Martin equation for small variations of
the polymer concentration profile cbρ(r), which is in the dilute
regime ǫ = cb[η]≪ 1

ηp/ηs = 1+ ǫρ(r)+ ǫ2kH ρ(r)
2 . (30)

We identify η1 = ρ.
Now, we discuss the following (physically realizable) grafting

geometries [33–35]:

• isotropic: bare particle – index ′i′;
• dipolar grafting: a Janus like particle – index ′j′;
• quadrupolar grafting two cases

– dominant length scale at back and front – index ′q′;
– dominant length scale at the waist – index ′q′2;

which are defined by the following concentration profiles

ρi = R(r, d) (31)

ρj =

(

R(r, d1)+ R(r, d)
)

2
+

(

R(r, d)− R(r, d1)
)

2
cos θ (32)

ρq =

(

R(r, d1)+ R(r, d)
)

2
+

R(r, d)− R(r, d1)

2
(3 cos2 θ − 1)/2

(33)

ρq2 =

(

R(r, d1)+ R(r, d)
)

2
+

R(r, d1)− R(r, d)

2
(3 cos2 θ − 1)/2 .

(34)

The lowest monopoles of the viscosity corresponding to these
concentration profiles are:

mi(r) = R(r, d) (35)
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mj,q(r) =

(

R(r, d1)+ R(r, d)
)

2
(36)

dj(r) =
R(r, d)− R(r, d1)

2
· d (37)

Qq(r) =
R(r, d)− R(r, d1)

2
· Q (38)

Qq2(r) =
R(r, d1)− R(r, d)

2
· Q . (39)

We assume that near a surface of the bare particle polymers
are depleted, which corresponds to the polymer concentration
profile [41]

R(r, d) = tanh2
(
r − 1

d

)

. (40)

The polymer concentration profile ρj next to a Janus like colloidal
particle is shown in Figure 8A. The polymer concentration
profile for the two cases ρq, ρq2 of quadrupolar grafting are shown
in Figures 8A,C.

We calculate the drag force for different length scales d ∈

[0.01, 50] of the depletion zone at the grafted sides and compare
it to the isotropic case. The length scale of the depletion zone
at one hemisphere of the dipolar grafted particle, the waist of
the quadrupolar back-front grafted particle ′q′ as well as the
back and front of the waist grafted particle (′q′2) are fixed at
d1 = 1 or at d1 = 0.01.

The results for the first order correction to the drag force
Fz,1 = (Fz − 1)/(−6π) (in units of ǫ) are shown in Figure 9

for two cases: (1) d1 = 1 and (2) d1 = 0.01. One can see
that for all cases Fz,1 is positive, i.e., the total drag force always
increase, and that the first order correction decays monotonically
upon increasing the decay length d. Because the dipolar part
of the axisymmetric viscosity variations does not contribute
to the first order correction to the drag force, for the Janus
like grafting Fz,1 is determined by the monopol part (36).
For the quadrupolar grafting both monopol and quadrupole
viscosity variations contribute to Fz,1. By the choice of the
polymer concentration profiles, at d1 = d the drag force Fz,1
for all cases of grafted particles equals the one for the bare
particle. If d1 < d, i.e., when the grafting induce a larger
depletion zone, the first order correction to the drag force is

smaller than that for a bare particle. If d1 or d are <1, Fz,1
is almost the same for all three cases of grafting. For d >

d1, the back-front grafting leads to a weaker Fz,1 than the
waist grafting.

5. CONCLUSIONS

We have characterized the friction force of colloidal particles
dragged across a fluid that show an inhomogeneous and
anisotropic viscosity profile. We have derived closed formulas
for both the drag force as well as for the velocity profile. In
order to rationalize our results we have expressed the local
viscosity profile in terms of its multipole expansion. As expected,
we found that the drag force is sensitive to the amplitude of
the monopole, i.e., the drag force increases upon increasing
the average viscosity. Interestingly, higher order multipoles
have quite different roles. In fact, our results show that the
drag force is insensitive to the amplitude of the dipole, i.e.,
for a fore-and-aft asymmetric particle pulling it back and
forwards leads to the same drag force. In contrast, the drag
force is sensitive to the amplitude of the quadrupole. In
particular, we found that a proper choice of the quadrupole
orientation (i.e., with higher viscosity on the waist and lower
on the axis of motion) with a long decay, d ≫ 1 leads to
a net reduction of the drag force. We emphasize that such a
reduction occurs with “fixed” average viscosity, i.e., at fixed
monopole contribution. Hence this is a genuine effect of the
anisotropic viscosity distribution and cannot be reduced to a
simple reduction of the average drag. Moreover, the sign of this
contribution can be switched by changing either the sign of the
quadrupole, i.e., moving the higher viscosity from the waist of
the particle to the axis of motion, or by reducing the decay
length, d≪ 1.

We have analyzed the cases of physically plausible grafting
shown in Figure 7 in more detail. Interestingly, we found
that the net drag force can be controlled by tuning the
relativemagnitude of themonopole and quadrupole contribution
to the density of the grafted polymers (see Figure 8). In
particular, our results show that for the Janus grafting the
anisotropic grafting can both reduce and enhance the drag
force as compared to the isotropic case. In contrast, for the

FIGURE 8 | Concentration profile ρ (see Equation 32) next to a dipolar grafted (Janus-like) colloidal particle (A), next to a quadrupolar back-front grafted colloidal

particle (B), and a quadrupolar waist grafted particle (C). The length scale of the depletion zone at one hemisphere of the dipolar grafted particle and at the waist

(back front) of the quadrupolar grafted particle is fixed at (d1 = 1) whereas at the other parts of the particle it is fixed at d = 10.
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FIGURE 9 | The first order correction to the drag force Fz,1 = (Fz − 1)/(−6π ) (see Equation 25) for three cases of the grafting geometry as defined by

Equations (32–34) compared to the case of isotropic (bare) particle Equation (31). Polymer concentration profiles corresponding to the drag force for the Janus and

back-front quadrupolar grafting in (A) are shown, respectively, in panels (A,B) in Figure 8.

case of back-front grafting the net effect of the anisotropic
contribution is to enhance the drag force as compared to the
isotropic case.

Concerning the velocity profile, we have shown that the
inhomogeneous and anisotropic viscosity profile induces quite
involved modulations in the velocity field. Interestingly, the
modulations of the velocity profile can oppose t the main
flow. Due to our perturbation approach, the magnitude of
these modulations are tiny. In this perspective, our results are
pinpointing the relevance of the modulations in the viscosity
that, possibly, may persist also for stronger variations of the
viscosity. We have truncated our expansion at first order since,
typically, this is also the leading order when the perturbation
parameter is small. Indeed this is the case for monopole and
quadrupole contributions to the density of grafted polymers.
Interestingly, dipole contributions to the density distribution, at
linear order, do not affect the effective friction. Therefore, for
the dipolar contribution a higher order expansion is required.
Since this quadratic contribution is relevant only when the
monopole and quadrupole are vanishing small, we have decided
to disregard this contribution in the present manuscript and
to focus on the leading contributions, namely monopole and
quadrupole. We plan to investigate higher order contribution
(and hence also dipole ones) in forthcoming works. Results of

Fan et al. [28] suggest that they may be relevant for variations at
short length scales.
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