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In this work, we extend a mathematical model, which has been proposed for susceptible

and infected compartments together with pathogen population, by including recovered

subgroup. It is known that environmental pollution, such as contaminated drinking water

and lack of an ordinary toilet, affects individuals and such negative impacts can be

defined as “stressors.” In order to include the influence of such stressors, susceptible

subpopulation has been divided into two groups as the one affected by stress or not.

Thus, spread of the disease is expressed in terms of a five-dimensional system.Moreover,

we extend this model with the use of a time fractional derivative due to non-local effects of

water pollution and we prove that the solution is non-negative and bounded from above.

Then, we perform stability analysis for the disease-free equilibrium point. Afterward, the

next step is to apply optimal control theory to optimize the decay rate of pathogens and

the stress related parameters so that the number of infected individuals and the pathogen

population can be minimized. Finally, we present some numerical results to find out the

most appropriate control policy and the effect of the fractional order.

Keywords: optimal control, waterborne pathogen model, stability, stress, time fractional derivative
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1. INTRODUCTION

Water is one of the most required natural resources for life and it is not only vital for drinking but
also needed for other daily uses. Every individual deserves safe water; but, unfortunately it has been
estimated that at least 2 billion people have to use contaminated drinking water [1]. According to
“Water for health: taking charge” report ofWHO, about 3.4million people died due to water related
illnesses [2]. Specifically, almost 6,000 children die every day due to lack of clean water and hygienic
conditions [3]. On the other hand, 35% of health care facilities in low and middle-income countries
do not have water and soap, and half of the world’s population is predicted to live in water-stressed
zones by 2025 [3].

Mathematical models offer new ways to investigate the population dynamics in case of pollution
related diseases. With the use of such models, strategic decisions can be tested beforehand, and
we can reduce cost and save time. For example, in 2003, influence of stress to spread of infectious
diseases is investigated [4]. In 2010, a SIR model is extended by including the pathogen population
and, person–person and person–water–person interactions are modeled. On the other hand, spread
of cholera due to unclean water is discussed for a delayed differential equation (DE) together with
stability analysis [5]. The effect of heterogeneity by neglecting person-to-person transmission is
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studied [6]. On the other hand, the spread of virus/worm in
computer networks have been modeled with DEs and optimal
attack strategies have been decided [7] and the result can be useful
to set network security protocols up. Another model including
the influence of socioeconomic classes is constructed for multi
patches [8]. As a different way to model waterborne diseases,
networks are incorporated to express both indirect environment-
to-human and direct human-to-human transmission routes [9].
As a two-dimensional model, we can mention the study on a
system of reaction-diffusion equations published in 2018 [10].

Fractional differentiation and integration operators can be
defined as the generalizations of their integer counterparts,
where we use the fractional order to replace with the integer
order [11–13]. A review including a systematic classification
and applications can be found in the studies [14, 15].
Indeed, the integer-order model is a special case of the
generalized fractional order model where the solution of
the fractional order model must converge to the solution
of the integer order model as the order approaches one. On
the other hand, fractional DEs are suitable to express the
real world phenomena which are influenced by hereditary
and memory properties that cannot be expressed with integer
order models [16]. Some application areas can be noted as
physics [17], viscoelasticity [18], control systems [19], economics
[20], finance [21], biology [22, 23], and bioengineering [24].
Specifically, anomalous dispersion is modeled with Riemann–
Liouville derivative in space [25]. A pn semiconductor diode
is described under sinusoidal operational conditions with the
use of fractional calculus and some experimental results are
compared with the model [26]. Viscoelastic materials are
modeled with a variable order DE [27] and Caputo-Fabrizio
derivative [28]. Three different fractional operators are used
to investigate the properties of blood ethanol concentration
[29]. Coexistence of tuberculosis and diabetes mellitus has
been examined [30], while a honeybee population growth
model is presented [31]. On the other hand, the construction
of diffusion equation is obtained with the Atangana–Baleanu
fractional integral [32]. Existence and uniqueness of Caputo time
fractional Navier-Stokes equation is proven [33], whereas flow
characteristics of gas and oil are discussed for a heterogeneous
media [34].

For some real world phenomena, data is available and it is
quite straightforward to test contribution of fractional derivative.
For example, Diethelm has compared the numerical solution of
the integer order and fractional order models with the data and
he has revealed that the fractional order model fits the data better
[35]. Then, this study has been extended with the use of other
fractional derivatives [36]. As another epidemic disease, namely
Ebola, has been modeled with a Caputo fractional derivative and
the numerical results agree well with the data [37]. On the other
hand, economic growth of the Group of Seven (G7) in 1973–
2016 period has been modeled with fractional order derivative
and it has been underlined by comparison with the data that
the fractional model gives better results than the integer order
model due tomemory effect [38]. In addition, the data of varicella
disease outbreak in Shenzhen city of China in 2015 has been
used to compare the numerical solution of the fractional order

model and success of the fractional derivatives in modeling such
epidemiological phenomena has been exemplified [29].

The topic of fractional optimal control problems (FOCPs) has
started to gain interest. The number of studies on FOCPs is quite
less when compared to the studies on the fractional DEs; but,
it has been an emerging research field for a while. For example,
we suggest the studies on optimization of biological reactive
systems [39, 40], where construction of a model and derivation
of its numerical solution have been discussed. Furthermore, we
can mention some studies on tumor dynamics [41], trajectory
tracking [42], fractional–order slidingmode controller [43], virus
infection [44], an HIV/AIDS epidemic model [45], dynamics of
Human African trypanosomiasis [46], the light tracking systems
[47], and human respiratory syncytial virus infection [44].

In 2019, transmission of waterborne diseases is expressed for
susceptible compartment, susceptible stressed compartment and
infected compartment with the inclusion of pathogen population
and stress related negative effects [48]. Motivated by this recent
work, a new non-integer order model is constructed with the
addition of recovered subgroup in this current study. For the new
model, we prove that the solution is non-negative and bounded
from above. Then, local stability of the disease free equilibrium
point has been analyzed with the use of the reproduction number.
On account of unfortunate facts reported by WHO [1, 3], it
is inevitable to figure some strategies out to stop any harm of
water pollution. Thus, we apply optimal control theory to decide
the optimal intervention strategies to minimize the number of
infected individuals and to reduce the pathogen population. We
believe that this study can be a nice start to optimize stress related
models to found healthier generations of all creatures. The rest of
this study is organized as follows: In section 2, we construct a
non-integer order model with constant controls. Then, we prove
that the solution is bounded and we present stability analysis
for the disease free equilibrium point. In section 3, we construct
an OCP and we derive the optimality conditions. Section 4 is
devoted to some illustrative examples for testing purposes. Then,
we conclude the study.

2. MODEL FORMULATION

In this section, we derive a non-integer order waterborne
pathogen model which is an extended version of the one in
the study [48] with the inclusion of recovered compartment.
Environmental pollution is created in several years due to
accumulated causes. Here, we use time fractional derivative
to express temporal change both in the host and pathogen
population.

We define the (left) generalized derivative with Caputo
fractional derivative for t > a as Podlubny [12]

aD
q
t g(t) =

{
1

Ŵ(1−q)

∫ t
a

g′(s)
(t−s)q ds, 0 < q < 1,

g′(t), q = 1,
(2.1)

where the Gamma function Ŵ :(0,∞) → R is defined as Ŵ(t) =
∫ ∞

0 e−uut−1 du. The corresponding right differentiation operator
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is defined as

tD
q

b
g(t) =

{

− 1
Ŵ(1−q)

∫ b
t

g′(s)
(s−t)q ds, 0 < q < 1,

−g′(t), q = 1.
(2.2)

We mention the generalized right Riemann-Liouville (RL)
derivative as

R
t D

q
tf
g(t) =

{

− 1
Ŵ(1−q)

d
dt

∫ b
t

g(s)
(s−t)q ds, 0 < q < 1,

−g′(t), q = 1.
(2.3)

Before presenting the model, we note a relation between the
generalized Caputo and RL derivatives as

R
t D

q
tf
g(t) = tD

q
tf
g(t)+

g(tf )

Ŵ(1− q)
(tf − t)−q. (2.4)

The model is constructed by dividing the total population N(t)
into four compartments, namely, susceptible population S1(t),
susceptible population influenced by environmental stressors
S2(t), infected population I(t), and recovered population R(t).
To discuss the contribution of pollution to infection, pathogen
pollution (Cells/liter) is included and it is denoted by P(t). The
birth rate of susceptible individuals is fixed as 3. A proportion
(1− p) of newborns joins S1 class, whereas the rest contributes to
S2 class. Due to stressors, susceptible individuals enter stressors
group at a rate of θ . The natural mortality rate and disease
induced death rate are given by µ and α, respectively. Infectious
individuals join recovered subgroup at a rate of φ. People are
recovered at a rate of γ and a proportion r of them enters into
susceptible class, while the rest joins stressors compartment. On
the other hand, the disease is transmitted at a rate of β and
transmission is affected due to stress related parameters, namely
level of pollution affecting transmission ω and effect of pollution
ρ. Moreover, the pathogen population grows at a rate of ξ and it
decays at a rate of η. In Table 1, we present the description, units
and values of the parameters.

TABLE 1 | Parameter values.

Parameter Description Units Value

3 Recruitment rate Person day−1 50 (Assumed)

p Proportion entering the stress class None 0.4 [48]

θ Progression rate from X1 class to X2
class

day−1 0.04 [48]

β Disease transmission rate cells−1day−1 0.0002 [48]

γ Recovery rate day−1 0.04 [48]

φ Treatment rate day−1 0.0793 [6]

α Disease induced mortality day−1 0.03 [48]

µ Natural mortality rate day−1 0.02 [48]

r Proportion of recovered individuals None 0.6 [48]

ρ Effect of pollution on β None 0.1 [48]

ω Level of pollution affecting β None 0.3 [48]

ξ Growth rate of pathogens cells L-per day 0.8 [48]

η Decay rate of pathogens day−1 1.5 (Assumed)

Then, we reach the following model:

0D
q
t S1(t) = (1− p)3q − θqS1(t)− βqS1(t)P(t)

− µqS1(t)+ rγ qR(t), (2.5a)

0D
q
t S2(t) = p3q + θqS1(t)− βq(1+ ωρ(1− u1))S2(t)P(t)

− µqS2(t)+ (1− r)γ qR(t), (2.5b)

0D
q
t I(t) = βqS1(t)P(t)+ βq(1+ ωρ(1− u1))S2(t)P(t)

− (φq + αq + µq)I(t), (2.5c)

0D
α
t R(t) = φqI(t)− (γ q + µq)R(t), (2.5d)

0D
α
t P(t) = ξqI(t)− ηq(1+ u2)P(t), (2.5e)

S1(0) = S1,0, S2(0) = S2,0, I(0) = I0, R(0) = R0, P(0) = P0,

where u1 and u2 stand for the fixed control terms. We note that
the model is expressed for a generalized derivative. Indeed, it is
possible to investigate the model for both classical and fractional
order derivative. The reason of using fractional derivative is
its success in a good fit to available data as discussed in
the literature.

Remark 2.1. We note that it is possible to obtain analytical
solution of some epidemiological model (such as SIS
models) via a Lie algebra methodology. Due to lack of
symmetry in more complicated models, this method is not
widely used in biological or social systems. For the readers
interested in this technique, we can suggest some studies as
Shang [49, 50].

2.1. Basic Properties
To prove the non-negative solution of the model, we need the
generalized mean value theorem and the corollary.

Lemma 2.2. Odibat and Shawagfeh [51] Let g(x) ∈ C[a, b] and
C
aD

q
t g(t) ∈ C(a, b] for 0 < q ≤ 1. Then, for a ≤ s ≤ b and

∀x ∈ (a, b], the following estimate holds:

g(x) = g(a)+
1

Ŵ(q)
(CaD

q
t g)(s)(x− a)q. (2.6)

Corollary 2.3. Let g(x) ∈ C[a, b] and C
aD

q
t g(t) ∈ C(a, b] for

0 < q ≤ 1. If C
aD

q
t g(t) is non-negative ∀x ∈ (a, b), then g(x)

is non-decreasing for each x ∈ [a, b]. If C
aD

q
t g(t) is non-positive

∀x ∈ (a, b), then g(x) is non-increasing for each x ∈ [a, b].

To show that the solution is bounded from above, we use the
Laplace transform. The Laplace transform of the (left) Caputo
derivative is obtained as

L{CaD
q
t g(t)} = sqG(s)− g(0)sq−1. (2.7)

Moreover, the Laplace transform of the Mittag-Leffler function is
given by

L{tp−1Eq,p(−atq)} =
sq−p

sq + a
, (2.8)

where Eq,p(z) =
∑∞

i=0
zi

Ŵ(qi+p) and Eq,p(z) = zEq,q+p(z)+
1

Ŵ(p) .
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Theorem 2.4. Let X (t) = (S1(t), S2(t), I(t),R(t), P(t)) be the
unique solution of the model (2.5) for t ≥ 0. Then, the solution
X (t) remains in R

5
+.

Proof: By the study [52, Thm. 3.1, Remark 3.2], the solution to
the model (2.5) is unique for t > 0. On the other hand, we
observe that

0D
q
t S1|S1=0 = (1− p)3q + rγ qR(t) ≥ 0 (2.9a)

0D
q
t S2|S2=0 = p3q + θqS1(t)+ (1− r)γ qR(t) ≥ 0, (2.9b)

0D
q
t I|I=0 = βqS1(t)P(t)+ βq(1+ ωρ(1− u1))S2(t)P(t) ≥ 0,

(2.9c)

0D
q
t R|R=0 = φqI(t) ≥ 0, (2.9d)

0D
q
t P|P=0 = ξqI(t) ≥ 0. (2.9e)

It means that the vector field points to R
5
+ and the solution lies in

R
5
+ for a non-negative initial condition [51].

Theorem 2.5. Let X (t) = (S1(t), S2(t), I(t),R(t), P(t)) be the
solution of the model (2.5) for t > 0. Then, the solution X (t) is
bounded from above.

Proof: We add the Equations (2.5a)-(2.5d) to reach

0D
q
t N(t) = 3q − µqN(t)− αqI(t) ≤ 3q − µqN(t). (2.10)

Using the Laplace transform (2.7), we obtain

sqL(N(t))− sq−1N(0) ≤
3q

s
− µq

L(N(t)). (2.11)

Arranging, we get

L(N(t)) ≤ 3q s−1

sq + µq
+ N(0)

sq−1

sq + µq
= 3q s

q−(1+q)

sq + µq

+ N(0)
sq−1

sq + µq
. (2.12)

Applying inverse Laplace transform to (2.12), we obtain

N(t) ≤ L
−1

{

3q s
q−(1+q)

sq + µq

}

+ L
−1

{

N(0)
sq−1

sq + µq

}

≤
︸︷︷︸

(2.8)

3qtqEq,q+1(−µtq)+ N(0)Eq,1(−µtq)

≤
3q

µq
µqtqEq,q+1(−µtq)+ N(0)Eq,1(−µtq)

≤ max

{
3q

µq
,N(0)

}

(µqtqEq,q+1(−µtq)+ Eq,1(−µtq))

=
C

Ŵ(1)
= C, (2.13)

where C = max{3q

µq ,N(0)}. Thus, N(t) is bounded from above
which means that the solutions S1(t), S2(t), I(t) and R(t) are
bounded from above.

We proceed with the equation for pathogen population (2.5e),
which is written as

0D
q
t P(t) = ξqI(t)− ηq(1+ u2)P(t) ≤

︸︷︷︸

(2.13)

ξqC − ηqP(t). (2.14)

Then, the similar technique is applied to show that the pathogen
pollution P(t) is bounded from above.

2.2. Stability Analysis of the Disease Free
Equilibrium Point
The disease free equilibrium (DFE) point E0 = (S01, S

0
2, 0, 0, 0) is

obtained by equating the right-hand side of the Equations (2.5a)–
(2.5b) to zero. Then, we obtain

S01 =
(1− p)3

θ + µ
, S02 =

3(pµ + θ)

µ(θ + µ)
. (2.15)

To discuss the local stability of the DFE point E
0, we need

to obtain the basic reproduction number, namely a parameter
measuring the contribution of a single infection to secondary
infections [53]. We define the matrices for the new infections and
the other terms for the Equations (2.5c)–(2.5e) as

F =

(

βS1P + βq(1+ ωρ(1− u1))S2P
0

)

,

V =

(

(γ q + αq + µq)I
−ξqI + ηq(1+ u2)P

)

. (2.16)

We note that the contribution of the recovered compartment
does not appear here, since recovered individuals do not directly
join the infected subgroup. Then, partial derivatives of these
matrices with respect to I and P are obtained and then they are
evaluated at the DFE point to obtain

F =

(

0 βS01 + βq(1+ ωρ)S02
0 0

)

,

V =

(

(γ q + αq + µq) 0
−ξq ηq

)

. (2.17)

We reach the next generation matrix FV−1 and its spectral radius
is given by Sharma and Kumari [48]

R0 =
ξqβq3q(µq + θq(1+ ωρ(1− u1)))+ (1− u1)ωρpµq

(1+ u2)ηqµq(θq + µq)(γ q + αq + µq)
.

(2.18)

We mention a result to derive stability analysis [54].

Lemma 2.6. The DFE point E0 is locally asymptotically stable if all
eigenvalues λi of the linearization matrix of the model (2.5) satisfy
| arg(λi)| > qπ

2 .

Now, we prove the following result for the DFE point.

Theorem 2.7. The DFE point E
0 of the model (2.5) is locally

asymptotically stable ifR0 < 1 and unstable ifR0 > 1.
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Proof: The Jacobian matrix associated with the model (2.5) is
obtained as

J(E0) =









−(θq + µq) 0 0 rγ q −βS01
θq −µq 0 (1− r)γ q −βq(1+ ωρ(1− u1))S02
0 0 −(φq + αq + µq) 0 βq(1+ ωρ(1− u1))S02
0 0 φq −(γ q + µq) 0
0 0 ξq 0 −ηq(1+ u2)









. (2.19)

The characteristic equation of this matrix is given by p(λ) =

(λ + µq)(λ + θq + µq)(λ + γ q + dq)f (λ) and three eigenvalues
are found as −µq, −(θq + µq) and −(γ q + µq), which satisfy
Lemma 2.6. Moreover, the quadratic part is written as f (λ) =

λ2 + c1λ + c0, where c1 = ηq(1 + u2) + φq + αq + µq,
c0 = ηq(1 + u2)(φq + αq + µq) (1−R0). By Routh-Hurwitz
criterion, we check that c1 > 0 and c0 > 0 with R0 < 1, which
shows that the roots of f (λ) are negative. Then, we prove the
desired result.

3. OPTIMAL CONTROL PROBLEM

We investigate some suitable policies to reduce the reproduction
number associated with the model. Specifically, we optimize the
decay rate of pathogens and the stress related parameters with
the aim of minimizing the number of infected individuals and
reducing the pathogen population in size with the use of non-
constant controls u1(t) and u2(t), respectively. Therefore, we
determine their optimal values with the following cost functional:

min
(u1 ,u2)∈Uad

J(u1, u2) = I(tf )+ P(tf )

+

∫ tf

0

(

ω1I(t)+ ω2P(t)+
ω3

2
u21(t)+

ω4

2
u22(t)

)

dt, (3.1)

subject to the system

0D
q
t S1(t) = (1− p)3q − θqS1(t)− βqS1(t)P(t)− µqS1(t)

+ rγ qR(t), (3.2a)

0D
q
t S2(t) = p3q + θqS1(t)− βq(1+ ωρ(1− u1(t)))S2(t)P(t)

− µqS2(t)+ (1− r)γ qR(t), (3.2b)

0D
q
t I(t) = βqS1(t)P(t)+ βq(1+ ωρ(1− u1(t)))S2(t)P(t)

− (φq + αq + µq)I(t), (3.2c)

0D
α
t R(t) = φqI(t)− (γ q + µq)R(t), (3.2d)

0D
α
t P(t) = ξqI(t)− ηq(1+ u2(t))P(t), (3.2e)

S1(0) = S1,0, S2(0) = S2,0, I(0) = I0, R(0) = R0, P(0) = P0,

where the admissible space of controls is given by

Uad = {(u1(t), u2(t)) | (u1(t), u2(t)) is measurable with

0.05 ≤ u1(t) ≤ 0.95, 0 ≤ u2(t) ≤ 1 for all t ∈ [0, tf ]}.

Thus, the optimal control u∗(t) = (u∗1(t), u
∗
2(t)) ∈ Uad is required

so that J(u∗) = min(u1(t),u2(t))∈Uad
J(u1(t), u2(t)) is reached. We

observe that ∂R0
∂u1

< 0 and ∂R0
∂u2

< 0. Then, we can determine the
optimal values of u1 and u2 to makeR0 < 1.

3.1. Optimality System
We use Pontryagin’s maximum principle [55–57] to obtain
the necessary optimality conditions where the adjoint (costate)

functions attach the state equation to the cost functional
J. Indeed, this technique allows us to express the control
in terms of the state and the adjoint functions. Moreover,
Pontryagin’s maximum principle interprets the constraint
minimization problem (3.1)-(3.2) as another minimization
problem (Hamiltonian) with respect to the controls. Therefore,
we construct the Hamiltonian as

H(X ,U ,P) =
(

ω1I(t)+ ω2P(t)+
ω3

2
u21(t)+

ω4

2
u22(t)

)

+ λT1 ((1− p)3q − θqS1(t)− βqS1(t)P(t)

− µqS1(t)+ rγ qR(t))

+ λT2 (p3
q + θqS1(t)− βq(1+ ωρ(1− u1))S2(t)P(t)

− µqS2(t)+ (1− r)γ qR(t))

+ λT3 (β
qS1(t)P(t)+ βq(1+ ωρ(1− u1))S2(t)P(t)

− (φq + αq + µq)I(t))

+ λT4 (φ
qI(t)− (γ q + µq)R(t))

+ λT5 (ξ
qI(t)− ηq(1+ u2)P(t)), (3.3)

where λi(t)′s denote the adjoint variables associated with
their corresponding states. The first part of the Hamiltonian
H is related to the integrand in (3.1) and its second part
is constructed by multiplying each adjoint function λi(t)′s
with the corresponding right-hand side of the model (3.2).
Then, Pontryagin’s maximum principle leads to the following
optimality system.

Theorem 3.1. Given an optimal control u∗(t) = (u∗1(t), u
∗
2(t)) ∈

Uad and the state solutionX
∗(t) = (S∗1(t), S

∗
1(t), I

∗(t),R∗(t), P∗(t))
corresponding to (3.2) that minimize J(u1, u2) in (3.1), there exists
adjoint variable P(t) = (λ1(t), λ2(t), λ3(t), λ4(t), λ5(t)) satisfying

R
t D

q
tf
λ1(t) = −(θq + βqP(t)+ µq)λ1(t)+ rγ qλ4(t)− βqX1λ5(t),

(3.4a)
R
t D

α
tf
λ2(t) = θqλ1(t)− (βq(1+ ωρ(1− u1(t))P(t)+ µq)λ2(t)

+ (1− r)γ qλ4(t)− βq(1+ ωρ(1− u1(t)))X2(t)λ5(t),
(3.4b)

R
t D

α
tf
λ3(t) = βqP(t)λ1(t)+ βq(1+ ωρ(1− u1(t)))P(t)λ2(t)

− (φq + αq + µq)λ3(t),

+ (βqX1(t)+ βq(1+ ωρ(1− u1(t))X2(t))λ5(t)+ ω1,
(3.4c)

R
t D

α
tf
λ4(t) = φqλ3(t)− (γ q + µq)λ4, (3.4d)
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R
t D

α
tf
λ5(t) = ξqλ3(t)− ηq(1+ u2(t))λ5 + ω2, (3.4e)

with the transversality conditions

λ1(tf ) = λ2(tf ) = λ4(tf ) = 0, λ3(tf ) = λ5(tf ) = 1. (3.5)

Furthermore, the pair of optimal controls is given by

u∗1 = min

(

max

(

(λ3 − λ2)
βq(1+ ωρ)X2(t)P(t)

ω3
, 0.05

)

, 0.95

)

,

(3.6a)

u∗2 = min

(

max

(

λ5
ηP(t)

ω4
, 0

)

, 1

)

. (3.6b)

Proof: The existence of an optimal control u∗(t) =

(u∗1(t), u
∗
2(t)) and the associated state solution X

∗(t) =

(S∗1(t), S
∗
1(t), I

∗(t),R∗(t), P∗(t)) comes from the convexity of
J(u1, u2) with respect to ui’s and the Lipschitz continuous
constraint [58], Theorem 5. 1. On the other hand, differentiation
of Hamiltonian H with respect to the state variable gives the
adjoint system (3.4) as

R
t D

q
tf
λ1(t) =

∂H

∂S1
, R

t D
q
tf
λ2(t) =

∂H

∂S2
, R

t D
q
tf
λ3(t) =

∂H

∂I
,

R
t D

q
tf
λ4(t) =

∂H

∂R
, R

t D
q
tf
λ5(t) =

∂H

∂P
,

with λ1(tf ) = λ2(tf ) = λ4(tf ) = 0, λ3(tf ) = λ5(tf ) = 1 due
to the definition of the cost functional. The optimality conditions
is obtained by differentiating Hamiltonian H with respect to the
control variables u1 and u2 and then we project the resulting
equations onto Uad to reach (3.6).

4. NUMERICAL RESULTS

In this section, we present some numerical results to test the
contribution of optimal control theory. As the optimization
algorithm, forward-backward sweep method is applied [59],
Chap. 5 [60] and the OCP is discretized with L1-method with
1t = 0.02, which is a variant of implicit Euler method [61]. We
solve the OCP for 100 days and we choose ω1 = 100 and ω2 =

1000, since it is more important to reduce the pathogen pollution,
which is themain source of infection, than the number of infected
individuals. Moreover, we balance the weight constants ω3 and
ω4 according to the cost of the corresponding strategy. Here, we
assume that the cost of controlling the decay rate of pathogens
is higher than the cost of reducing the stress related parameters,
since stress acts on a smaller population than pollution (including
children). Thus, we fix ω3 < ω4. To guarantee the reduction in
I(t) and P(t) at the final time, we add the term I(tf ) + P(tf ) to
the cost functional. On the other hand, to optimize the values
of the stress related parameters, we set the bounds for u1(t) as
[0.5, 0.95], since neither it is possible to eliminate stress totally
nor it is a force acting fully all the time. We set the bounds for
u2(t) as [0, 1] to be more strict. We fix the initial subpopulations
as S1,0 = 100, S2,0 = 250, I0 = 50, R0 = 5, and P0 = 90,
which are taken close to the equilibrium components in (Sec.10,

[48]), section 10, except for R0. Here, we set up a scenario
where the number of susceptible stressed individuals is greater
than the susceptible compartment and the number of recovered
individuals is quite small, since our goal is to test the strength
of optimal control theory. We discuss two different control
strategies and both of them have different costs and contribution.
In addition to applying them simultaneously, single control will
be tested, too.

With the parameters in Table 1, the reproduction number is
calculated as

R0 = {1.5867, 1.9709, 2.4463, 3.0341},

for q ∈ {0.7, 0.8, 0.9, 1}, respectively. As q increases, the disease
becomes more endemic. Our goal is to find optimal values of the
controls so thatR0 < 1 can be reached.

Before discussing the optimal control strategy, we present
the numerical solutions of I(t) and P(t) with u1 = u2 = 0
in Figure 1, which can be called the uncontrolled problem. We
observe that I(t) and P(t) increase for q = {0.9, 1}, while they
decrease for q = {0.7, 0.8} as time passes. It is quite vital to apply
optimal control for q = {0.9, 1} to eliminate the spread of the
disease. Here, the order qmay represent the severity of pollution.
As q increases, the pollution becomesmore dominant and it leads
to a rapid increase in the number of infected people.

We start with the single control u1(t) and present the results
in Figure 2. We immediately observe that there is not an obvious
difference between the results associated with the uncontrolled
problem and the current case. Therefore, trying to decrease the
stress related parameters is not a successful action to reduce the
number of infected individuals and pathogen population in size,
although we apply the full control for almost 100 days.

We proceed with the control u2(t) and the corresponding
figures are depicted in Figure 3. The single control u2(t) is more
powerful than the control u1(t) due to rapid decrease in both I(t)
and P(t). Here, we can catch the impact of the fractional order to
the choice of the control strategies. As we increase q, control must
acts less. The decay rate of pathogen must be controlled strictly
almost until the 60th day for q = 1. Then, as we decrease the
order q, the control must be applied more strictly. Thus, q can be
associated with awareness or reception toward some policies to
eliminate pollution.

Now, we proceed with the last case, namely the combination
of controls u1(t) and u2(t). From the Figure 4, we observe success
of the optimal control. The contribution of u1(t) is almost the
same when we compare the numerical solutions in Figures 3, 4.
Controlling the stress related parameters has a positive effect on
the control of decay rate of pathogen. Due to this contribution,
u2(t) acts fully not until the 60th day. Indeed, it starts to decrease
earlier with the impact of the control u1(t). Moreover, for the
model with a lower order of differentiation, u1(t) and u2(t) must
act more strictly.

We revealed the success of the OCP in the figures above. Now,
we examine the results in detail and show some values of the
FOCP with respect to the order of differentiation in Table 2. We
firstly observe that the reduction in the cost functional is the
smallest one for u1(t). For the control u2(t) and the combined
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FIGURE 1 | (A,B) I(t) and P(t) with u1(t) = u2(t) = 0.

FIGURE 2 | (A,B) I(t) and P(t) with single optimal control u1(t) (C).

FIGURE 3 | (A,B) I(t) and P(t) with single optimal control u2(t) (C).

control, the reduction is almost the same; but, the combined
control improves the result a little bit more. For the control
u2(t) and the pair of controls, as we increase the order, the
value of the cost functional decreases and the reduction increases.
We remember that the number of infected individuals and the
pathogen population decrease in size for q ∈ {0.7, 0.8} as t
approaches 100 days in case of no controls (see Figure 2). Despite
of this decrease, the optimal control theory is more powerful for
higher values of the fractional order.

5. SUMMARY AND CONCLUSION

We extend a non-integer order model for waterborne diseases
motivated by the recent work [48]. The solution is proven to be
bounded. On the other hand, we find the reproduction number
R0 and we show that the DFE point is locally asymptotically

stable if R0 < 1. Then, we construct an OCP to minimize the
number of infected individuals and the pathogen pollution where
the controls are used to optimize the stress related parameters
and the decay rate of pathogen. We observe that optimizing only
stress related parameters is not a successful strategy. Indeed, the
value of the decay rate of pathogen is more critical to achieve
the goal of this study. For the combined control, the best results
are achieved; but, it is not more different than the ones obtained
with the control u2(t). Therefore, we deduce that more attention
must be paid to control the decay rate of pathogen within a
polluted habitat and optimizing the values of the stress related
parameters can be a supportive strategy. In addition, we note that
as the order q is increased, the disease becomes more endemic.
Here, the order q may represent the severity of pollution. As q
increases, the pollution affects the population worse and it leads
to a rapid increase in the number of infected people. On the other
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FIGURE 4 | (A,B) I(t) and P(t) with optimal controls u1(t), u2(t) (C,D).

TABLE 2 | Values of the cost functional J and reduction in J.

Strategy: Without control u1 u2 u1,u2

J J Reduction (%) J Reduction (%) J Reduction (%)

q = 0.7 4.5704e+06 4.4900e+06 1.76 1.2357e+06 72.96 1.2086e+06 73.56

q = 0.8 4.0816e+06 3.9442e+06 3.37 7.4080e+05 81.85 7.2543e+05 82.23

q = 0.9 4.7184e+06 4.4308e+06 6.10 4.6467e+05 90.15 4.5654e+05 90.32

q = 1 8.4056e+06 7.6395e+06 9.11 2.7979e+05 96.67 2.7685e+05 96.71

hand, control acts fully for shorter time as we increase q. Thus,
q can be associated with awareness or reception toward some
policies to eliminate pollution. As a future work, comparison
of our numerical results with the field data (if available) can
be mentioned. Moreover, the use of other types of fractional
derivatives can be investigated for a better data fit and for more
accurate control policies.
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