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The purpose of this paper is three-fold. First, we present a discretization process to obtain

numerical solutions of a conformable fractional-order system with delays. Second, we

extend the classical Bertrand duopoly game with integer delays to that with fractional

delays. Third, we extend the game based on ordinary differential derivative to that based

on conformable fractional-order derivative. Finally, we analyze the local stability, Hopf

bifurcation, and chaos of the proposed game model.
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1. INTRODUCTION

Bifurcation and chaos [1] are frequent phenomena in various scientific fields including economics.
By analyzing bifurcation and chaos, we can reveal its evolutionary mechanism to control proposed
systems [2–4]. Delay is another common phenomenon which usually occurs in various economic
systems, such as the discrete duopoly game with integer delays [5–13], the monopoly with integer
delay and bounded rationality [14, 15], the continuous time Cournot duopoly with integer delays
[16, 17], the continuous Bertrand duopoly with integer delay [18, 19]. Naturally, we will consider
what the Bertrand duopoly game with fractional delays should be.

As a natural extension of a classical ordinary differential equation, the fractional derivative is a
derivative of arbitrary order, real or complex [20–28]. Similarly we also want to extend the integer
delay to arbitrary delay, integer or fractional, real or complex. Thus the continuous time Bertrand
duopoly game with fractional delay and conformable derivative would have stronger ability to
represent complex problems than the corresponding game with integer delay and derivative.In
other words, the fractional delay can also be conceived as a kind of conformable fractional delay.

Although researchers proposed various fractional operators, such as Riemann-Liouville, Caputo,
and Grunwald-Letnikov [29–33], widely used in many fields including economics, physics, and
engineering [34–38], these definitions of operators satisfy two characteristics: one is that they must
be non-integer in form, and the other is that they must be non-local in essence. But non-locality
is a double-edged sword. It has the advantage of long memory, but it also has the disadvantage of
not satisfying the classical differential operator, such as the chain rule. The conformable operator
is conceived as a natural extension of the classical differential operator [39–45], whose most
important properties hold, such as the chain rule [21, 22, 46]. Certainly, the conformable derivative
is only a kind of local definition of fractional derivative and is non-integer in form, but it has
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no non-locality. In fact, there are two opposing viewpoints
about the definitions of fractional derivatives: one is two above-
mentioned characteristics must hold simultaneously, but the
other is the first characteristic is the key of the fractional
derivative. The later opinion means that a derivative is fractional
derivative only if the first characteristic holds. We will support
the later opinion in this paper. The conformable operator has
recently occurred in many scientific fields [23–27, 40, 47–50].
In this paper, we will introduce the conformable fractional-
order derivative to the continuous time Bertrand duopoly game
with integer delays. Thus we can obtain a conformable Bertrand
duopoly game with fractional delay.

After we propose the continuous time Bertrand duopoly
game with fractional delay and conformable derivative, we need
suitable approaches to obtain its solutions. Though there are
several schemes to solve a conformable fractional-order system
without any delay [40, 41, 45, 50–72], they are not suitable for
conformable system with fractional delays. Mohammadnezhad
et al. [73] employed conformable Euler’s method to obtain
approximation solutions of conformable fractional differential
equations. Inspired by the discretization process for other
derivatives [74–78], we will present a simple discretization
process for a conformable system with fractional delays. Our
proposed method well coincides with the conformable Euler
method [73]. Using the proposed discretization scheme, we will
detect the stability, Hopf bifurcations, and chaotic attractors of
the continuous time Bertrand duopoly game with fractional delay
and conformable derivative.

The remainder of this paper is organized as follows. In section
2, we show preliminaries of conformable calculus and stability
conditions of a discrete system. In section 3, we propose a
discretization process for conformable systems with fractional
delays. In section 4, we present a continuous time Bertrand
duopoly game with fractional delays and conformable derivative.
In section 5, we analyze Nash equilibrium points, local stabilities,
and Hopf bifurcation in the game model. In section 6, we
employ 0-1 test algorithm to detect chaotic attractors. This paper
concludes with a summary in section 7.

2. PRELIMINARIES

Definition 1. (See [22])
For a function f : [t0,∞) → R, its left conformable fractional
derivative starting from t0 of order α ∈ (0, 1) is defined by

Tt0
α f (t) = lim

ε→0

f (t + ε(t − t0)1−α)− f (t)

ε
, (1)

in which the function f is called as α-differentiable.

Definition 2. (See [22])
For a function f :[t0,∞) → R, its left conformable fractional
integral starting from t0 of order α ∈ (0, 1) is defined by

It0α f (t) =

∫ t

t0

(s− t0)
α−1f (s)ds, (2)

where the integral is the usual Riemann improper integral.

Lemma 1. (See [22])
Suppose the derivative order α ∈ (0, 1) and the function f is α-
differentiable at a point t0 > 0, then the left conformable fractional
derivative satisfies:

Tt0
α f (t) = (t − t0)

1−α df (t)

dt
. (3)

Lemma 2. (Conformable fractional power series expansion) [22]
Given an infinitely α−differentiable function f : [0,∞) → R,
α ∈ (0, 1], f has the following conformable fractional power series
expansion at a neighborhood of a point t0:

f (t) =
∞
∑

n=0

(

T
t0
α f

)(n)
(t0)(t − t0)nα

αnn!
, t0 < t < t0 + R

1
α ,R > 0,

where
(

T
t0
α f

)(n)
(t0) denotes the application of the conformable

fractional derivative n times.

Consider the following discrete dynamical system:

X(i+ 1) = F(X(i)), i = 1, 2, · · · , n. (4)

where X = (x1, x2, · · · , xn), and F = (f1, f2, · · · , fn) is C2 fromR
n

to R
n. Let Xeq be a fixed point of system (4), and λ1, λ2, · · · , λn

be eigenvalues of Jacobian matrix J(Xeq) = ∂F
∂X

∣

∣

X=Xeq . Then we
can obtain the following characteristic polynomial of J(Xeq)

W(λ) = λn + w1λ
n−1 + w2λ

n−2 + · · · + wn−1λ+ wn, (5)

Lemma 3. (See [79]).
(i) If all the eigenvalues λi of J(Xeq) have |λi| < 1, then the periodic
orbitO+

F (X
eq) is attracting.

(ii) If one eigenvalue λi0 of J(Xeq) has |λi0| > 1, then the periodic
orbitO+

F (X
eq) is unstable.

(iii) If all the eigenvalues λi of J(Xeq) have |λi| > 1, then the
periodic orbitO+

F (X
eq) is repelling.

3. DISCRETIZATION PROCESS OF
CONFORMABLE FRACTIONAL SYSTEMS
WITH DELAYS

Theorem 1. (Conformable delay discretization by piecewise
constant approximation)

Consider the following conformable fractional-order delay
system

Tαx(t) = f (x(t−τ )), τ ≥ 0, 0 ≤ t ≤ T, x(0) = x0, (6)

we obtain the following discretization of Equation (6)

x(n+ 1) = x(n)+
hα

α
f

(

x

(

n−
τ

h

))

, (7)

where xn denotes xn(tn), h = T
N = tn+1 − tn, tn = nh, n =

0, 1, · · · ,N.
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Proof: By drawing on the discretization process proposed by
Raheem and Salman [74], El-Sayed et al. [75], El-Sayed et al.
[76], Agarwal et al. [77], and El-Sayed et al. [78], we discretize
the fractional-order delay Equation (6) with piecewise constant
approximation as follows

Tαx(t) = f

(

x

( [

t

h

]

h− τ

))

, τ ≥ 0, 0 ≤ t ≤ T, x(0) = x0,

(8)
By using Lemma 1, we rewrite Equation (8) as follows.

(t−nh)1−α
dx(t)

dt
= f (x(nh−τ )), τ ≥ 0, 0 ≤ t ≤ T, x(0) = x0,

which leads to

dx(t)

dt
= (t−nh)α−1f (x(nh−τ )), 0 ≤ t ≤ T, x(0) = x0, (9)

We apply the step method presented in Kartal and Gurcan [59],
El-Sayed et al. [76], and El-Sayed et al. [78] for discretizing
Equation (9) with piecewise constant approximation as follows

(i) Let n = 0, then t ∈ [0, h), we rewrite Equation (9) as follows

dx(t)

dt
= (t − 0)α−1f (x0(0− τ )), t ∈ [0, h), (10)

and the solution of Equation (10) is given by

x1(t) = x0 +

∫ t

0

(

(s− 0)α−1f (x0(0− τ ))
)

ds

= x0 + f (x0(0− τ ))

∫ t

0
sα−1ds

= x0 +
tα

α
f (x0(0− τ )).

(ii) Let n = 1, then t ∈ [h, 2h), we rewrite Equation (9) as follows

dx(t)

dt
= (t − h)α−1f (x1(h− τ )), t ∈ [h, 2h), (11)

and the solution of Equation (11) is given by

x2(t) = x1(h)+

∫ t

h

(

(s− h)α−1f (x1(h− τ ))
)

ds

= x1(h)+ f (x1(h− τ ))

∫ t

h
(s− h)α−1ds

= x1(h)+
(t − h)α

α
f (x1(h− τ )).

(iii) By repeating the above process, we obtain the following
solution of Equation (9)

xn+1(t) = xn(nh)+
(t − nh)α

α
f (xn(nh−τ )), t ∈ [nh, (n+1)h).

Let t → (n+ 1)h, we deduce the the following discretization

xn+1((n+1)h) = xn(nh)+
hα

α
f (xn(nh−τ )), t ∈ [nh, (n+1)h),

that is

xn+1 = xn +
hα

α
f

(

xn −
τ

h

)

.

It is proved.

Remark 1. The presented conformable discretization process is
well line with the conformable Euler’s method proposed by
Mohammadnezhad et al. [73].

Theorem 2. The conformable delay discretization process in
Theorem 1 is convergent.

Proof: According to Lemma 2 and the conformable Euler’s
method [73], we obtain the following conformable fractional
power series expansion:

x(tn+1) = x(tn)+
hα

α
f

(

x

(

tn−
τ

h

))

+
h2α

2α2
T2αx

(

tn−
τ

h
+ θnh

)

(12)
where 0 < θn < 1 and T2αx(t) ∈ C0[0,T].

So the conformable delay discretization process is convergent
when step size h is small enough.

4. MODELING

4.1. A Continuous Time Bertrand Duopoly
Game With Fractional Delays and
Conformable Derivative
Assume that each firm decides on a different product pricing
strategy in a duopoly market, in which pi(t) indicates the i-th
firm’s price during time period t ∈ Z+, qi(t) represents the i-th
firm’s supply during time period t ∈ Z+, and qi and pi satisfies
the common linear inverse demand function as follows.

pi(t) = ai − qi(t)− bqj(t), i, j = 1, 2, i 6= j, (13)

where ai and b are positive constants. ai denotes the i-th firm’s
constant reservation price in the product market. b denotes
supply margin effects on its price from itself and its rival. Suppose
i-th firm’s marginal costs is equal to ci, which is also a positive
constant, as follows

Ci(t) = ciqi(t), i = 1, 2, (14)

Then the i-th firm’s profit is

5i(pi(t), pj(t)) = p(t)qi(t)− Ci(t), i, j = 1, 2, i 6= j. (15)

Thus we can obtain the i−th firm’s marginal profit with respect
to pi as follows

∂5i(pi(t), pj(t))

∂pi(t)
= ai − ci − 2pi(t)− bpj(t), i, j = 1, 2, i 6= j.

(16)
As we know, the higher a firm’s marginal profit is, the greater
its price adjustment range is. In other words, the a firm’s price

Frontiers in Physics | www.frontiersin.org 3 June 2019 | Volume 7 | Article 84

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Xin et al. Discretizing Conformable Fractional Delay Games

growth rate ṗ
p is proportional to its marginal profit ∂5

∂p . We get

the gradient adjustment process of price as follows

ṗi(t) = vipi(t)(ai − ci − 2pi(t)− bpj(t)), i, j = 1, 2, i 6= j,
(17)

where vi > 0 represents the i−th firm’s price adjustment speed.
Inspired by Matsumoto et al. [15] who regarded the marginal

profit as a delayed value, we rewrite Equation (17) with delay τ
as follows

ṗi(t) = vipi(t − τ )(ai − ci − 2pi(t − τ )− bpj(t − τ )), τ ≥ 0,

i, j = 1, 2, i 6= j. (18)

We can regard the conformable fractional-order derivative as a
natural extension of the integer order form. Thus, we introduce
the conformable derivative to Equation (18) and obtain the
following Bertrand duopoly game with αi-order conformable
derivative and fractional delay:

Tαpi(t) = vipi(t − τ )(di − 2pi(t − τ )− bpj(t − τ )),

i, j = 1, 2, i 6= j, (19)

where α ∈ (0, 1], di = ai − ci, τ ≥ 0 denotes a fractional delay.

Remark 2. When α = 1, Equation (19) degenerates to
Equation (18).

Remark 3. When α = 1 and τ = 0, Equation (19) degenerates to
Equation (17).

4.2. Discretization Process
According to Theorem 1, we employ piecewise constant
approximation to discretize the game model (18) as follows



















p1(n+ 1) = p1(n)+
hα

α

(

v1p1

(

n−
τ

h

)(

a1 − c1 − 2p1

(

n−
τ

h

)

− bp2

(

n−
τ

h

)))

,

p2(n+ 1) = p2(n)+
hα

α

(

v2p2

(

n−
τ

h

)(

a2 − c2 − 2p2

(

n−
τ

h

)

− bp1

(

n−
τ

h

)))

.

(20)

Remark 4. If τ = mh, and m is integer, then we rewrite the game
model (20) as follows















p1(n+ 1) = p1(n)+
hα

α
(v1p1(n−m)(a1 − c1 − 2p1(n−m)− bp2(n−m))),

p2(n+ 1) = p2(n)+
hα

α
(v2p2(n−m)(a2 − c2 − 2p2(n−m)− bp1(n−m))).

(21)

In the following, we only study the case m = 1. Then we rewrite
the game model (21) as follows



































p1(n+ 1) = p1(n)+
hα

α
(v1p3(n)(d1 − 2p3(n)− bp4(n))),

p2(n+ 1) = p2(n)+
hα

α
(v2p4(n)(d2 − 2p4(n)− bp3(n))),

p3(n+ 1) = p1(n),

p4(n+ 1) = p2(n).
(22)

5. LOCAL STABILITY, HOPF BIFURCATION,
AND CHAOS

5.1. Local Stability
Fixed points of system (22) satisfy



































p1 = p1 +
hα

α
(v1p3(d1 − 2p3 − bp4)),

p2 = p2 +
hα

α
(v2p4(d2 − 2p4 − bp3)),

p3 = p1,

p4 = p2.

(23)

By algebraic computation, we obtain the following fixed points:

E1 = (0, 0, 0, 0), E2 =
(

0, d22 , 0,
d2
2

)

, E3 =
(

d1
2 , 0,

d1
2 , 0

)

, and

E4 = (pe1, pe2, pe1, pe2), where pe1 = 2d1+bd2
4−b2

, pe2 = 2d2+bd1
4−b2

.
There are some economic information as follows:

(i) At the first fixed point E1, no firm can gain anything by
production if its opponent stops production.

(ii) At the second fixed point E2, stoping production is the best

strategy for firm 1 if q∗2 = d2
2 is the output strategy of firm 2, and

vice versa.
(iii) At the third fixed point E3, stoping production is the best

strategy for firm 2 if firm 1 adopts its output strategy q∗1 = d1
2 ,

and vice versa.
(iv) At the fourth fixed point E4, firm 1 cannot obtain extra

benefit from deviating unilaterally from its equilibrium output
strategy q∗1 = pe1 if firm 2 adopts its equilibrium output strategy
q∗2 = pe2, and vice versa.

Points E1, E2, and E3 are all bounded equilibria [80]. Thus, we
only study the stability of non-bounded equilibrium point E4.

We obtain the following Jacobian matrix of system (23)
evaluated at the fourth fixed point E4:

J(E4) =











1 0 2hαv1(2d1−bd2)
α(b2−4)

bhαv1(2d1−bd2)
α(b2−4)

0 1 bhαv2(2d2−bd1)
α(b2−4)

2hαv2(2d2−bd1)
α(b2−4)

1 0 0 0
0 1 0 0











. (24)

The characteristic equation of Jacobian matrix (24) is

W(λ) = λn + w1λ
n−1 + w2λ

n−2 + · · · + wn−1λ+ wn (25)

where














































w1 = −2,

w2 =
((2d1v2 + 2d2v1)b− 4d1v1 − 4d2v2)hα + αb2 − 4α

αb2 − 4α
,

w3 =
2hα(2d1v1 + 2d2v2 − bd1v2 − bd2v1)

α(b2 − 4)
,

w4 =
h2αv1v2(2d2 − bd1)(bd2 − 2d1)

α2(b2 − 4)
.

According to Jury stability criterion, we directly obtain the
following proposition for system (22).
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FIGURE 1 | Evolution of p1 with α = 0.2.

FIGURE 2 | Phase portrait in (p1,p2,p4)-plane with α = 0.2.

Proposition 1. The fixed point E4 is locally asymptotically stable
if the following stability constraints holds simultaneously: W(1) >
0, W(−1) > 0, |w4| < 1, |w3 − w1w4| < 1−w2

4,
∣

∣k1
∣

∣ < k2, where























W(1) = 1+ w1 + w2 + w3 + w4,

W(−1) = 1− w1 + w2 − w3 + w4,

k1 = w2 − w2w4 − w2w
2
4 + w2w

3
4 − w1w3 + w2

1w4 + w2
3w4 − w1w3w

2
4,

k2 = 1− 2w2
4 + w4

4 − w2
3 + 2w1w3w4 − w2

1w
2
4

Set h = 0.01, d1 = 8, d2 = 6, b = 0.01, v1 = 0.05,
v2 = 0.01, α = 0.2. We can obtain E1 = (0, 0, 0, 0), E2 =

(0, 3, 0, 3), E3 = (4, 0, 4, 0), and E4 = (3.99, 2.98, 3.99, 2.98).
Obviously, Proposition 1 holds, i.e., system (22) is stable, as
shown in Figures 1, 2. As time goes on with α = 0.2, Figure 1
demonstrates outputs of firm 1 trend to an invariant value, and
Figure 2 demonstrates system (22) convergences to a fixed point.
Figures 1, 2 mutually validate the existence of fixed points E4 in
system (22).

FIGURE 3 | Evolution of p1 with α = 0.176.

5.2. Hopf Bifurcation
According to the explicit criterion of Hopf bifurcation [81], we
directly obtain the following theorem:

Theorem 3. In system (22), a Hopf bifurcation occurs at α = α∗

if the following conditions (H1)-(H3) hold:
(H1) Eigenvalue assignment △−

3 (α
∗) = 0, W(1) > 0,

W(−1) > 0, △+
3 (α

∗) > 0, △±
1 (α

∗) > 0,

(H2)Transversality condition
d△−

3 (α
∗)

dα
6= 0,

(H3) Nonresonance condition cos(2π/m) 6= ψ or resonance
condition cos(2π/m) = ψ , where m = 3, 4, 5, · · · and ψ =

1− 0.5W(1)
△−
1 (α

∗)

△+
2 (α

∗)
.

where

△±
3 (α

∗) =

∣

∣

∣

∣

∣

∣





1 w1 w2

0 1 w1

0 0 1



 ±





w2 w3 w4

w3 w4 0
w4 0 0





∣

∣

∣

∣

∣

∣

,

△±
2 (α

∗) =

∣

∣

∣

∣

(

1 w1

0 1

)

±

(

w2 w3

w3 w4

)∣

∣

∣

∣

,△±
1 (α

∗) = |1± w4| .

If h = 0.01, d1 = 8, d2 = 6, b = 0.01, v1 = 0.05, v2 = 0.01,
a Hopf bifurcation will occur at α∗ = 0.1767. When we adopt
a small perturbation 1α = 0.0007, a sufficiently small positive
real number, i.e. α = α∗ + 1α = 0.176, system (22) has a
stable closed invariant curve around the fixed point E4, as shown
in Figures 3, 4. As time goes on with α = 0.1767, Figure 3
demonstrates outputs of firm 1 trend to periodic fluctuation, and
Figure 4 demonstrates system (22) convergences to an invariant
closed curve. Figures 3, 4mutually validate the existence of Hopf
bifurcation in system (22).

6. 0-1 TEST FOR CHAOS

When h = 0.01, d1 = 8, d2 = 6, b = 0.01, v1 = 0.05, v2 = 0.01,
α = 0.2, system (22) is chaotic, as shown in Figures 5, 6. Figure 5
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FIGURE 4 | Phase portrait in (p1,p2,p4)-plane with α = 0.176.

FIGURE 5 | Evolution of p1 with α = 0.137.

FIGURE 6 | Phase portrait in (p1,p2,p4)-plane with α = 0.137.

shows that the time series of p1 irregularly evolutes with time.
Figure 6 shows that a chaotic attractor exists in system (22).

FIGURE 7 | Phase portrait in (µ, ν)-plane with α = 0.137.

Following the 0-1 test algorithm [82–89], we sample 10,000
data points from p1(n) and set a random number c ∈

(

π
5 ,

4π
5

)

satisfies
(

µ(n), ν(n)
)

, as follows

µ(n) =
n

∑

k=1

p1(k)cos(kc), ν(n) =
n

∑

k=1

p1(k)sin(kc). (26)

We obtain the 0-1 test value K for chaos as follows:

K = median

[

cov(ξ ,1)
√

cov(ξ , ξ ) cov(1,1)

]

(27)

where ξ =
(

1, 2, 3, . . . , round(N/10)
)

, 1 =
(

Dc(1),Dc(2), . . . ,Dc

(

round(N/10)
))

, the covariance is defined
with vectors ξ ,1 of lengthm by

cov(ξ ,1) =
1

m

m
∑

k=1

[

ξ (k)−
1

m

m
∑

k=1

ξ (k)

] [

1(k)−
1

m

m
∑

k=1

1(k)

]

,

and

Dc(n) = lim
N→∞

1

N

N
∑

k=1

[

(

µc(k+ n)− µc(k)
)2

+
(

νc(k+ n)− νc(k)
)2

]

−
1− cos nc

1− cos c

[

lim
N→∞

1

N

N
∑

k=1

p1(k)

]2

For system (22) with α = 0.137, we obtain K = 0.9977 and
plot a phase portrait in (µ, ν)-plane whose trajectories in the
(µ, ν)−plane are Brownian-like, which indicate it is chaotic, as
shown Figure 7.

As time goes on with α = 0.137, Figure 5 demonstrates
outputs of firm 1 trend to irregular vibration, and
Figure 6 demonstrates system (22) has chaotic attractors
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in (p1, p2, p4)-plane, and Figure 7 demonstrates the motion
trajectories of system (22) are Brownian-like in (µ, ν)-plane.
Figures 5–7 mutually validate the existence of chaos in
system (22).

7. CONCLUSION

Introducing conformable derivative to a classical continuous
Bertrand duopoly game with integer delays, we present a
generalized game model with delays, named a continuous
time Bertrand duopoly game with fractional delay and
conformable derivative. We design a discretization
process for conformable systems with fractional delays.
Utilizing the proposed discretization process, we obtain a
simplified model and get its solutions. At last, we examine
the local stability, Hopf bifurcation, and chaos of the
game model.

There are some future research directions that deserve
our attention. We can apply the modeling approach and
discretization process to other scientific researches, such as
conformable partial differential equations with delays [90–94],
conformable differential games with delays [95]. In addition,we
can also develop other discretization methods for conformable
system with specific characteristics, such as stochastic, fuzzy,
pulse factors.
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