
ORIGINAL RESEARCH
published: 19 March 2019

doi: 10.3389/fphy.2019.00029

Frontiers in Physics | www.frontiersin.org 1 March 2019 | Volume 7 | Article 29

Edited by:

Sabin Stoica,

Horia Hulubei National Institute for

R&D in Physics and Nuclear

Engineering (IFIN-HH), Romania

Reviewed by:

Chandan Hati,

UMR6533 Laboratoire de Physique de

Clermont (LPC), France

Jameel-Un Nabi,

Ghulam Ishaq Khan Institute of

Engineering Sciences and Technology,

Pakistan

*Correspondence:

Jouni Suhonen

jouni.suhonen@phys.jyu.fi

Specialty section:

This article was submitted to

High-Energy and Astroparticle

Physics,

a section of the journal

Frontiers in Physics

Received: 20 November 2018

Accepted: 18 February 2019

Published: 19 March 2019

Citation:

Suhonen J and Kostensalo J (2019)

Double β Decay and the Axial

Strength. Front. Phys. 7:29.

doi: 10.3389/fphy.2019.00029
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Jouni Suhonen* and Joel Kostensalo

Department of Physics, University of Jyvaskyla, Jyväskylä, Finland

Quenching of the weak axial strength gA is discussed and relations of this quenching

to the nuclear matrix elements of double beta decays are highlighted. An analysis of

Gamow-Teller transitions in the mass range A = 62−142 is presented and its results are

compared with those of many previous works. The enhancement of the axial charge is

discussed for first-forbidden pseudoscalar β transitions. Higher-forbidden β transitions

are introduced and their role in determining the effective value of gA is examined, in

particular from the point of view of the β-decay half-lives and the shapes of electron

spectra of forbidden non-unique β transitions.

Keywords: double beta decay, Gamow-Teller beta decay, quenching of weak axial coupling, forbidden beta decay,

enhancement of weak axial charge, electron spectral shapes

1. INTRODUCTION

Double β decay (ββ decay) has been under intensive discussion for the last decades from the
point of view of both nuclear theory and ββ-decay experiments. The interesting decay mode is
the neutrinoless ββ (0νββ) decay which is mediated, e.g., by a massive Majorana neutrino, which
is exchanged between the two decaying nucleons. Thus the 0νββ decay implies also the breaking of
lepton-number conservation. The high stakes involved in the detection of 0νββ decay have made
the associated theoretical and experimental aspects highly important, in particular the calculation
of the involved nuclear matrix elements (NMEs). The NMEs of 0νββ decays have been computed
for decades using a number of different nuclear-structure approaches (for older calculations see
the review [1] and for the more recent ones see [2, 3]). Most of these calculations have been done
by using the framework of the QRPA (quasiparticle random-phase approximation [4]). Also many
calculations have been performed using the interacting shell model (ISM, see e.g., [5–7]) and the
microscopic interacting boson model (IBM-2, see e.g., [8]).

Besides the problems with the calculations of the NMEs of 0νββ decay there is an other severe
problem, namely the one related to the value of the weak axial coupling gA. For low-energy
processes, like the β decay or the two-neutrino ββ (2νββ) decay [1], the nucleonic charged weak
current is simply

j
µ
N = N̄f (x)

(

gVγ
µ − gAγ

µγ 5)Ni(x) , (1)

where Ni (Nf ) is the initial-state (final-state) nucleon spinor and γ s are the usual Dirac matrices.
Here gV = 1.0 is the weak vector coupling and its value is protected by the CVC (Conserved
Vector Current) hypothesis [9]. The value gA = 1.27 of the weak axial coupling has been obtained
from the decay of free neutron [10], Ni = n in (1), into free proton, Nf = p in (1). For the 0νββ
decay the values of these weak couplings are altered by the high energy scale (q ∼ 100MeV) of the
exchanged momentum q between the decaying nucleons and the Majorana neutrino. In addition,
induced currents become involved in the decay (see e.g., [11]). The evolution of the value of gA with
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the magnitude of the exchangedmomentum q has been discussed
in Menéndez et al. [12] and an extensive discussion of the
effective value of gA has been carried out in the review [13].

For the two-neutrino ββ decay from the initial 0+ state (0+i )
to the final 0+ state (0+

f
) the decay rate is directly proportional to

the fourth power of gA as given by

2νββ − rate(0+i → 0+
f
) ∝

∣

∣

∣
M

(2ν)
GT

∣

∣

∣

2

=
∣

∣

∣

∣

∣

∑

n

gAML(1+n )× gAMR(1+n )

( 12 [1+ E(1+n )]−Mi)/me + 1

∣

∣

∣

∣

∣

2

, (2)

where 1 is the nuclear mass difference between the initial and
final 0+ ground states, Mi is the mass of the initial nucleus, me

the electron rest mass and E(1+n ) is the absolute energy of the
nth 1+ state. Furthermore, gAML(1+n ) is the left-branch NME and
gAMR(1+n ) the right-branch NME for the nth 1+ state, as shown
schematically in Figure 1. The NMEs ML(1+n ) and MR(1+n ) are
the usual Gamow-Teller NMEs. In this case the low-momentum
form (1) of the nucleon current is applicable and the quenching
of gA can be studied through allowed Gamow-Teller β decays of
low-energy nuclear states, as described in section 3 of this article.

For the 0νββ decay from the initial 0+ state (0+i ) to the final
0+ state (0+

f
) the decay rate is given by

0νββ − rate(0+i → 0+
f
) ∝

∣

∣

∣
M

(0ν)
GT −M

(0ν)
F +M

(0ν)
T

∣

∣

∣

2
, (3)

FIGURE 1 | Schematic representation of the β and 2νββ transitions in the mass A = 116 triplet. Shown are the 0+ ground state of the initial nucleus 116Cd, the 0+

ground state of the final nucleus 116Sn and the 1+ states of the intermediate nucleus 116 In of the 2νββ decay. Also the left-branch and right-branch NMEs for both

decay modes are presented.

where the Fermi NME M
(0ν)
F is proportional to g2V and

the Gamow-Teller and tensor NMEs, M
(0ν)
GT and M

(0ν)
T , are

proportional to g2A. The Gamow-Teller NME is the leading one
and has the constitution

M
(0ν)
GT =

∑

Jπ

(

gA,0ν(J
π )

)2
(0+

f
||O(0ν)

GT (Jπ )||0+i ) , (4)

where the sum is over all multipole states Jπ in the intermediate
nucleus and the effective axial couplings for 0νββ decay,
gA,0ν(Jπ ), are, in principle, multipole dependent. All the details
of the 0νββ-decay transitions are included in the operator

O
(0ν)
GT (Jπ ). The low-q limit of these couplings is

gA,0ν(J
π )

q→0
−→ gA(J

π ) , (5)

where q is the exchanged momentum. For the Jπ = 1+ multipole
this low-q limit is the “usual” axial coupling

gA ≡ gA(1
+) , (6)

relevant for the Gamow-Teller and 2νββ decays. For the sake
of simplicity, the notation gA will be used also for the other
multipoles gA(Jπ ). The gA for higher multipoles can be studied
through half-lives and electron spectral shapes of forbidden β
decays, as discussed in section 4 of this article.
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2. NUCLEAR MODELS

In this section we briefly describe the many-body aspects of
the nuclear models which are mentioned later in this article.
These models have been used to study the β-decay and ββ-decay
NMEs and the associated effective values of the axial coupling.
It should be noted here that these are not the only models that
can (potentially) describe these features. These other nuclear
models can be based on modern energy-density functionals or
thermofield-dynamics formalism, as also on Monte-Carlo shell
model, etc. A comprehensive list of these nuclear models and the
associated references are given in section 5.4. of the very recent
review article [14].

• ISM: The ISM (interacting shell model) is a many-body
framework that uses a limited single-particle valence space,
typically one harmonic-oscillator major shell or one nuclear
major shell. In the ISM one forms all the possible many-
nucleon configurations in a given single-particle valence space,
each configuration described by one Slater determinant, and
diagonalizes the nuclear (residual) Hamiltonian in the basis
formed by these Slater determinants. In this way the many-
body features are taken into account exactly but only in a
restricted valence space, typically leaving out one or two spin-
orbit-partner orbitals from the model space.
• Spherical pnQRPA: The proton-neutron version of the QRPA

(pnQRPA) uses two-quasiparticle excitations that are built
from a proton and a neutron quasiparticle. Here only the
spherical pnQRPA, based on a spherical nuclear mean field, is
described. The pnQRPAmodel framework enables description
of odd-odd nuclei starting from an even-even reference
nucleus where the quasiparticles are created, e.g., through
the BCS (Bardeen-Cooper-Schrieffer) procedure [15]. The
advantage of the pnQRPA theory is that it can include
large single-particle valence spaces in the calculations and
there arise no problems associated with spin-orbit-partner
orbitals since they can easily be accommodated in the
valence space. On the other hand, the pnQRPA has a limited
configuration space. Schematic or G-matrix-based boson-
exchange Hamiltonians have widely been used in the pnQRPA
calculations. A frequently used extension of the pnQRPA
framework is the renormalized QRPA (RQRPA) [16, 17].
One particular problem with the pnQRPA calculations is the
determination of the value of the particle-particle interaction
parameter gpp, used to scale the particle-particle part of the
proton-neutron two-body interaction matrix elements [18,
19]. Usually the value of this parameter has been determined
by using β-decay or 2νββ-decay data. The particle-hole
parameter, gph, of the proton-neutron two-body interaction
is usually determined by adjusting the parameter such that
the phenomenological or experimental energy of the Gamow-
Teller giant resonance is reproduced [20, 21]. The spherical
pnQRPA has been applied to the description of ββ decays (see
e.g., [22–25]) and it has also been used in β-decay studies (see
e.g., [26–28]).
• MQPM: The microscopic quasiparticle-phonon model

(MQPM) describes states of odd-A nuclei starting from the

adjacent even-even reference nuclei. The MQPM states are
generated by combining proton or neutron one-quasiparticle
excitations of the reference nucleus with three-quasiparticle
excitations built by coupling a proton or neutron quasiparticle
to a QRPA phonon. A QRPA phonon is a proton-proton-
plus-neutron-neutron excitation of an even-even reference
nucleus. The MQPM creation operator creates a state |kjm〉 in
an odd-A nucleus by the action

|kjm〉 = Ŵ†
k
(jm)|QRPA〉 , (7)

with the excitation operator given by

Ŵ
†
k
(jm) =

∑

n

Xk
na

†
njm +

∑

aω

Xk
aω[a

†
aQ

†
ω]jm, (8)

whereQ†
ω is a QRPA phonon creation operator [15] and the a†

operators create BCS quasiparticles. Since the MQPM states
(8) contain the three-quasiparticle components special care
should be taken when solving the MQPM equations of motion
for the amplitudes Xk

n and Xk
aω in order to handle the over-

completeness and non-orthogonality of the quasiparticle-
phonon basis. For details see Toivanen and Suhonen [29, 30].
• IBM-2: The interacting boson model (IBM) is a theory

framework based on s and d bosons which have as their
microscopic paradigms the 0+ and 2+ angular-momentum-
coupled collective fermion pairs present in nuclei. An
extension of the IBM is the microscopic IBM (IBM-2) where
the proton and neutron degrees of freedom are explicit. The
IBM-2 is a sort of phenomenological version of the ISM,
containing the seniority aspect and the restriction to one
magic shell in terms of the single-particle valence space. The
Hamiltonian and the transition operators are constructed from
the s and d bosons as lowest-order boson expansions with
coupling coefficients to be determined by fits to experimental
data on low-lying energy levels and E2 γ transitions. However,
the fitting does not use the spin or isovector data available from
β decays. The extension to the microscopic interacting boson-
fermionmodel (IBFM-2) [31] enables the description of odd-A
nuclei. Here problems arise from the interactions between the
bosons and the extra fermion in theHamiltonian, and from the
transition operators containing a host of phenomenological
parameters to be determined in some meaningful way.

3. QUENCHING OF GA IN GAMOW-TELLER
β DECAYS

The half-life of allowed Gamow-Teller β decays can be written as

t1/2 =
κ

C̃
, (9)

where C̃ is the integrated shape function and the constant κ has
the value [32]

κ =
2π3h̄7ln 2

m5
ec

4(GF cos θC)2
= 6147 s , (10)
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θC being the Cabibbo angle. In order to simplify the formalism
it is usual to introduce unitless kinematic quantities we =
We/mec

2, w0 = W0/mec
2, and p = pec/(mec

2) =
√

w2
e − 1,

where We is the total energy of the emitted charged lepton
(electron or positron), pe is the electron/positron momentum
and W0 is the end-point energy, i.e., the total energy of the
emitted leptons, and hence the maximum energy of the emitted
electron/positron. With the unitless quantities the integrated
shape function can be expressed as

C̃ =
∫ w0

1
C(we)pwe(w0 − we)

2F0(Zf ,we)dwe , (11)

where F0(Zf ,we) is the Fermi function taking into account the
interaction of the final-state charged lepton with the positive
charge of the final nucleus (with charge number Zf ). The
integration is performed over the total scaled energy of the
emitted electron/positron.

The shape factor C(we) of Equation (11) can be expressed for
the pure1 Gamow-Teller Ji → Jf = Ji ± 1 transitions as

C(we) =
1

2Ji + 1

(

gAMGT
)2

, (12)

where MGT is the Gamow-Teller NME (assumed to be real, as
usual) and Ji (Jf ) the angular momentum of the initial (final)
state. Here the axial coupling gA is the low-q limit (6). Since the
shape factor (12) does not depend on the lepton variables it can
be taken out of the shape function (11) and the rest constitutes
the universal phase-space factor

f0 =
∫ w0

1
pwe(w0 − we)

2F0(Zf ,we)dwe , (13)

usually quoted for the allowed (Fermi and Gamow-Teller) β
decays. At this point it should be noted that a new method of
calculation of these phase-space factors was introduced in Stoica
et al. [33]. These phase-space results contribute to calculations of
β-decay rates for nuclei far away from the stability line. Using the
phase-space factor f0, the half-life (9) can be expressed in a more
familiar form using the reduced transition probability BGT:

t1/2f0 =
κ

BGT
; BGT =

1

2Ji + 1

(

gAMGT
)2

. (14)

What is usually quoted in literature are the log ft values

log ft = log10(f0t1/2) , (15)

which are 10-base logarithms of the product of the half-life and
the universal phase-space factor.

By using Equations (14) and (15) one can extract from the
experimental log ft value the magnitude of the experimental
Gamow-Teller NME in the form |gAMGT|. Here one has to note
that only the product of the NME and the weak axial coupling
gA can be extracted. These products can be extracted from both

1Without the allowed Fermi Ji → Jf = Ji transitions.

the left-branch, |gAMGT(left)|, and right-branch, |gAMGT(right)|,
β decays as shown schematically in Figure 1. These extracted
products are shown in Tables 1, 2 for the left (third column)
and right (fifth column) transitions from/to the central nucleus
of the triplet of nuclei of column two. A sample of these
triplets are shown in Figure 2. There four mass triplets A =
110, 116, 128, 136 are displayed with a central nucleus feeding the
lateral ones, thus constituting the left-branch and right-branch of
β transitions. These triplets host also double beta decays, with
β−β− decays for the masses A = 110, 116, 128 and double
electron-capture (EC) decay for A = 136. For the double EC
decay the log ft of the right-branch decay is not known and thus
this triplet is omitted from the subsequent decay analysis whereas
all the other triplets are included. In the figure it is also shown
that there is no available data on the decays of the low-lying 2−

states in these triplets. These decays are relevant for the first-
forbidden unique β transitions of section 4.2, mediated by a
rank-2 tensor. They are also quite important for the neutrinoless
ββ-decay NMEs.

As can be seen in Tables 1, 2, the extracted experimental left-
branch and right-branch NMEs differ sometimes considerably
from each other and these differences are rather erratic. In order
to stabilize this behavior onemay use the geometricmean gmAMm

GT
of the left and right NMEs:

gmAMm
GT =

√

|gAMGT(left)| × |gAMGT(right)| , (16)

where the geometric mean of both the left-branch and right-
branch NMEs and axial couplings has been computed. The
corresponding experimental NMEs are shown in column seven
in Tables 1, 2. These NMEs do not behave quite as wildly as the
individual left-branch and right-branch NMEs.

The experimental left-branch, right-branch and mean NMEs
can be compared with the corresponding computed NMEs listed
in columns four, six and eight in Tables 1, 2. The computed
NMEs are obtained by using the pnQRPA (see section 2) in the
following single-particle model spaces:

0d − 1s− 0f − 1p− 0g9/2 for A = 62− 68 ,

0f − 1p− 0g − 2s− 1d − 0h11/2 for A = 70− 84 ,

0f − 1p− 0g − 2s− 1d − 0h for A = 90− 108 ,

0f − 1p− 0g − 2s− 1d − 0h− 1f − 2p for A = 110− 144.

(17)

These single-particle valence spaces have been chosen such that
they are expected to capture the relevant features of the low-lying
states in the triplets of nuclei, such that the involved left-branch
and right-branch β transitions are described as well as possible
within the framework of the pnQRPA model. In the course of
the calculations the pairing parameters were fitted to reproduce
the experimental pairing gaps extracted from the available data
[34] on nucleon separation energies. The particle-hole parameter
gph was fitted to reproduce the empirical location of the giant
Gamow-Teller resonance (see [35] for fitting also to more general
spin-multipole resonances).

The particle-particle parameter gpp and the strength of the
axial coupling were left as free parameters in the calculations.
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TABLE 1 | Experimental and computed geometric means of the NMEs for A = 62− 110.

|gAMGT(left)| |gAMGT(right)| gm
A
Mm

GT

A Process exp. th. exp. th. exp. th.

62 Ni← Cu← Zn 0.358 0.203− 0.259 0.251 0.107− 0.178 0.300 0.148− 0.215

64 Ni← Cu→ Zn 0.444 0.276− 0.325 0.304 0.122− 0.193 0.367 0.183− 0.250

66 Ni→ Cu→ Zn 0.555 0.278− 0.367 0.294 0.159− 0.185 0.404 0.201− 0.261

68 Cu→ Zn← Ga 0.179 0.121− 0.139 0.343 0.368− 0.448 0.248 0.226− 0.233

68 Zn← Ga← Ge 0.343 0.368− 0.448 0.246 0.187− 0.282 0.291 0.262− 0.356

70 Cu→ Zn← Ga 0.242 0.020− 0.038 0.429 0.412− 0.548 0.322 0.105− 0.137

70 Zn← Ga→ Ge 0.429 0.412− 0.548 0.385 0.214− 0.238 0.405 0.301− 0.347

78 Se← Br→ Kr 0.573 0.435− 0.680 0.241 0.115− 0.142 0.372 0.234− 0.290

80 Ge→ As→ Se 0.441 0.416− 0.612 0.192 0.065− 0.107 0.291 0.164− 0.256

80 As→ Se← Br 0.192 0.065− 0.107 0.628 0.436− 0.655 0.347 0.206− 0.226

80 Se← Br→ Kr 0.628 0.436− 0.655 0.246 0.107− 0.130 0.393 0.221− 0.265

80 Br→ Kr← Rb 0.246 0.107− 0.130 0.465 0.339− 0.648 0.338 0.195− 0.268

80 Kr← Rb← Sr 0.465 0.339− 0.648 0.316 0.138− 0.164 0.383 0.216− 0.309

82 Kr← Rb← Sr 0.696 0.412− 0.652 0.342 0.104− 0.132 0.488 0.207− 0.293

98 Y→ Zr→ Nb 0.341 0.105− 0.423 0.652 0.666− 0.777 0.472 0.286− 0.531

98 Zr→ Nb→ Mo 0.652 0.666− 0.777 0.593 0.588− 0.836 0.622 0.676− 0.746

100 Zr→ Nb→ Mo 0.371 0.898− 1.063 0.383 0.397− 0.665 0.377 0.597− 0.841

100 Nb→ Mo← Tc 0.383 0.397− 0.665 0.973 0.639− 0.810 0.610 0.576− 0.652

100 Mo← Tc→ Ru 0.973 0.639− 0.810 0.688 0.850− 1.067 0.818 0.826− 0.841

102 Mo→ Tc→ Ru 0.616 0.803− 1.004 0.554 0.626− 0.887 0.584 0.793− 0.844

104 Ru← Rh→ Pd 0.857 0.676− 0.875 0.764 0.822− 1.071 0.809 0.848− 0.866

106 Ru→ Rh→ Pd 0.549 0.802− 1.013 0.354 0.537− 0.833 0.441 0.656− 0.919

106 Rh→ Pd← Ag 0.354 0.537− 0.833 0.471 0.528− 0.690 0.408 0.609− 0.666

106 Pd← Ag→ Cd 0.471 0.528− 0.690 0.857 1.084− 1.297 0.643 0.827− 0.865

108 Ru→ Rh→ Pd 0.623 0.892− 1.088 0.241 0.335− 0.634 0.388 0.604− 0.752

108 Rh→ Pd← Ag 0.241 0.335− 0.634 0.607 0.639− 0.830 0.383 0.527− 0.637

108 Pd← Ag→ Cd 0.607 0.639− 0.830 0.833 0.827− 1.078 0.711 0.829− 0.846

110 Pd← Ag→ Cd 1.224 0.705− 0.915 0.635 0.515− 0.806 0.882 0.686− 0.754

The computations have been done with gmA = 0.6 and gpp = 0.50− 0.85.

According to the Gamow-Teller β-decay study [36], performed
for a number of nuclei in the mass range A = 100 − 136, a
good overall value for the particle-particle parameter is gpp ≈ 0.7.
In the present study we vary the values of this parameter in
the range gpp = 0.50 − 0.85 to have a feeling of the effects of
the variation of gpp on the values of the computed NMEs. This
variation is shown in Tables 1, 2, in columns four and six for
the left-branch and right-branch NMEs, and in the last column
for the mean NMEs (16). The variations in the values of the
individual NMEs are usually (much) larger than in the values of
the mean NMEs, thus justifying the use of the geometric mean of
the left-branch and right-branch NMEs, instead of the individual
NMEs. For the mean strength of the axial coupling we have taken
the constant overall value gmA = 0.6 which was found to be a
good average value in the study [36] for the A = 100− 136 mass
range. Our adopted values of gpp = 0.67 (plus the variation in
gpp described above) and gA = 0.6 are also in good agreement
with the average values of these parameters deduced from the
extensive analyses of the Gamow-Teller β decays conducted in
the study [37].

A further comparison of the calculated and experimental
Gamow-Teller NMEs has been conducted in Figures 3–6. In
these figures the computed values of the mean NMEs (16)
are presented for gpp = 0.67 (solid line with open circles)
and the hatched area represents the variations in these values
induced by the adopted range gpp = 0.50 − 0.85 of variations
in the value of the particle-particle interaction parameter. The
extracted experimental NMEs are represented by a dashed line
with filled circles.

From Figures 3–6 one notices that in the mass range A =
62 − 82 (Figure 3) the magnitude of the computed mean NME
is almost everywhere slightly below that of the experimental
one whereas in the mass region A = 98 − 110 (Figure 4) the
magnitude of the computed mean NME is above that of the
experimental mean NME. In both mass regions the staggering
of the computed and experimental mean NMEs is similar. In the
mass range A = 112 − 124 (Figure 5) the experimental mean
NME is mostly larger than the computed one but the staggering
of both are quite similar. For the heaviest triplets, A = 126− 142
(Figure 6), the values of the experimental mean NMEs are larger
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TABLE 2 | Experimental and computed geometric means of the NMEs for A = 112− 142.

|gAMGT(left)| |gAMGT(right)| gm
A
Mm

GT

A Process exp. th. exp. th. exp. th.

112 Cd← In→ Sn 0.607 0.500− 0.670 1.183 0.827− 1.000 0.847 0.707− 0.744

114 Pd→ Ag→ Cd 0.623 0.708− 0.874 0.383 0.210− 0.441 0.488 0.429− 0.558

114 Ag→ Cd← In 0.383 0.210− 0.441 0.487 0.518− 0.684 0.432 0.379− 0.478

114 Cd← In→ Sn 0.487 0.518− 0.684 0.790 0.541− 0.739 0.621 0.609− 0.627

116 Cd← In→ Sn 0.809 0.503− 0.659 0.634 0.315− 0.494 0.716 0.456− 0.499

118 Cd→ In→ Sn 0.870 0.481− 0.624 0.547 0.299− 0.469 0.690 0.432− 0.475

118 Sn← Sb← Te 0.742 0.522− 0.671 0.248 0.117− 0.219 0.429 0.280− 0.338

118 In→ Sn← Sb 0.547 0.299− 0.469 0.742 0.522− 0.671 0.637 0.448− 0.495

120 Cd→ In→ Sn 0.699 0.449− 0.589 0.418 0.273− 0.434 0.541 0.401− 0.441

120 In→ Sn← Sb 0.418 0.273− 0.434 0.742 0.540− 0.669 0.557 0.427− 0.484

122 Cd→ In→ Sn 0.830 0.459− 0.581 0.378 0.265− 0.415 0.561 0.393− 0.437

122 Te← I← Xe 0.455 0.508− 0.713 0.199 0.119− 0.259 0.301 0.291− 0.363

122 I← Xe← Cs 0.199 0.119− 0.259 0.274 0.447− 0.762 0.234 0.301− 0.353

124 Xe← Cs← Ba 0.383 0.462− 0.722 0.197 0.184− 0.347 0.275 0.364− 0.415

126 Xe← Cs← Ba 0.398 0.463− 0.680 0.164 0.115− 0.264 0.255 0.279− 0.350

128 Te← I→ Xe 0.406 0.493− 0.593 0.127 0.034− 0.101 0.227 0.142− 0.223

128 I→ Xe← Cs 0.127 0.034− 0.101 0.512 0.471− 0.652 0.254 0.149− 0.218

128 Xe← Cs← Ba 0.512 0.471− 0.652 0.180 0.080− 0.189 0.303 0.229− 0.298

130 Xe← Cs→ Ba 0.395 0.469− 0.613 0.284 0.060− 0.147 0.335 0.192− 0.262

134 Ba← La← Ce 0.491 0.445− 0.518 0.190 0.059− 0.147 0.306 0.187− 0.254

138 Ce← Pr← Nd 0.677 0.422− 0.579 0.218 0.045− 0.132 0.384 0.161− 0.236

140 Ce← Pr← Nd 0.838 0.496− 0.630 0.146 0.026− 0.083 0.350 0.129− 0.203

140 Pr← Nd← Pm 0.146 0.026− 0.083 0.924 0.319− 0.608 0.367 0.127− 0.173

140 Nd← Pm← Sm 0.924 0.319− 0.608 0.278 0.079− 0.164 0.507 0.219− 0.255

140 Pm← Sm← Eu 0.278 0.079− 0.164 0.828 0.319− 0.608 0.480 0.219− 0.244

140 Sm← Eu← Gd 0.828 0.319− 0.608 0.411 0.176− 0.270 0.584 0.293− 0.333

142 Nd← Pm← Sm 0.764 0.458− 0.627 0.197 0.050− 0.113 0.388 0.177− 0.227

142 Pm← Sm← Eu 0.197 0.050− 0.113 0.961 0.348− 0.584 0.435 0.171− 0.202

The computations have been done with gmA = 0.6 and gpp = 0.50− 0.85.

than those of the computed ones, the difference increasing with
increasing mass. Still, in the staggering similarities between the
two NMEs are to be seen.

In Figures 3–6 also the magnitudes of the proton-neutron
two-quasiparticle NMEs are presented (solid line with open
squares) for comparison. The corresponding spin-orbit-partner
configurations give the strongest contributions to the mean
NMEs and these configurations are

0f5/2 − 0f7/2 for A = 62− 70 ,

0g7/2 − 0g9/2 for A = 78− 128 ,

0h9/2 − 0h11/2 for A = 130− 142 . (18)

Here it should be noted that these configurations are not the
same as the leading contributions quoted in the study [38]
since there the two-quasiparticle configurations closest to the
respective Fermi surfaces were taken. The magnitudes of the two-
quasiparticle mean NMEs are far too large implying a strong
quenching of the mean NME when going from the simple two-
quasiparticle approximation to the more sophisticated pnQRPA

model. This large reduction can be associated with spin-isospin
correlations missing in the two-quasiparticle approximation but
taken into account in the pnQRPA framework, as discussed
extensively in Ejiri and Suhonen [38]. In the two-quasiparticle
NMEs there are also some staggering in the magnitude, but
usually (much) less than in the pnQRPA and experimental NMEs.
Sometimes this staggering is out of phase with the pnQRPA
staggering (and the experimental one) indicating that the spin-
isospin correlations are crucial in order to reproduce the trends
of the experimental mean NMEs.

The error bars of the magnitudes of the computed NMEs,
caused by the variation gpp = 0.50 − 0.85, are shown as hatched
areas in Figures 3–6. In general, the relative variation is rather
modest, in particular in the mass rangeA = 112−124 (Figure 5).
The largest absolute variations are seen around the masses A =
100, A = 106 and A = 108. Generally, the upper limit of the
hatched area is close to the best NME value (solid line with open
circles) since this maximumNME is obtained for the lowest value
gpp = 0.50 and for this value of gpp the NME is already saturated
close to its maximum value at gpp = 0.0.

Frontiers in Physics | www.frontiersin.org 6 March 2019 | Volume 7 | Article 29

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Suhonen and Kostensalo Double β Decay and the Axial Strength

FIGURE 2 | Experimental log ft values of the left-branch and right-branch β transitions in four triplets of nuclei. It is also shown that no data on the decays of the 2−

states are available in these triplets.

FIGURE 3 | Mean experimental and theoretical NMEs gmAM
m
GT

(Table 1, last

two columns) for the mass range A = 62− 82. The hatched area describes

the uncertainty of the calculations (the range gpp = 0.50− 0.85 in Table 1).

Also the NMEs in the two-quasiparticle approximation have been plotted for

comparison (note the scaling of these NMEs by a factor one-half in order to

save vertical space in the figure).

To give yet an other view to the comparison of the
experimental and computed NMEs, one can calculate the mean
value and the RMS (Root-Mean-Square) deviation of the NMEs
in the four mass ranges of Figures 3–6. The result is

gmAMm
GT(exp) = 0.35± 0.06 gmAMm

GT(th) = 0.24± 0.06 for A = 62− 82 ,

gmAMm
GT(exp) = 0.58± 0.18 gmAMm

GT(th) = 0.72± 0.14 for A = 98− 110 ,

gmAMm
GT(exp) = 0.52± 0.18 gmAMm

GT(th) = 0.45± 0.12 for A = 112− 124 ,

gmAMm
GT(exp) = 0.37± 0.10 gmAMm

GT(th) = 0.22± 0.06 for A = 126− 142. (19)

FIGURE 4 | The same as in Figure 3 for the mass range A = 98− 110.

These ranges have been shown in Figure 7 for easy comparison.
The figure shows clearly that the computed mean NMEs are
smaller than the experimental ones for small (A = 62 − 82)
and large (A = 126 − 142) mass numbers, whereas for the
intermediate masses (A = 98 − 124) they largely overlap
with the experimental ones. This means that with an overall
constant gmA one cannot reproduce the values of the experimental
mean NMEs.

Frontiers in Physics | www.frontiersin.org 7 March 2019 | Volume 7 | Article 29

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Suhonen and Kostensalo Double β Decay and the Axial Strength

FIGURE 5 | The same as in Figure 3 for the mass range A = 112− 124, with

the mean NMEs corresponding to Table 2.

FIGURE 6 | The same as in Figure 5 for the mass range A = 126− 142.

If one would like to match the experimental and computed
average gmAMm

GT in the different mass ranges one would need a
different effective value of the weak axial coupling in each of
them. Matching the computed NMEs with the data leads to the
following effective gmA values

gmA = 0.90 (A = 62− 82) ; gmA = 0.49 (A = 98− 110) ;
gmA = 0.70 (A = 112− 124) ; gmA = 1.01 (A = 126− 142) .

(20)

One can compare these values of effective gA (geffA in Figure 8)
with other recent calculations in different theory frameworks.
This has been done in Figure 8. In the figure the present pnQRPA
results are displayed by blue horizontal solid lines. These are
contrasted against the ISM-computed (for the ISM, see section 2)
results of Martínez-Pinedo et al. (ISM calculations of rates of
β decays [42], gray rectangle marked M-P1996 in the figure),
Siiskonen et al. (ISM calculations of muon-capture transitions of
different exchanged momenta with effective transition operators

FIGURE 7 | Ranges of the experimental and theoretical mean NMEs for

different mass ranges as deduced from (19).

[44], circles with cross inside in the figure), Caurier et al. (based
mainly on analyses of 2νββ decays [5], solid red horizontal lines),
Horoi et al. (based mainly on analyses of 2νββ decays in the A =
124−136 region [6], horizontal dashed line in the figure), Kumar
et al. (systematic examination of β decays with the ISM [43], dark
rectangles in the A = 52 − 80 regions in the figure), Iwata et al.
(ISM analysis of the ββ decays of 48Ca [7], cross at A = 48 in
the figure). The studies of Faessler et al. [40] and Suhonen and
Civitarese [41], marked by vertical black and green line segments,
respectively, are pnQRPA studies of nuclei (100Mo, 116Cd, and
128Te) with available data on the rates of both β and 2νββ decays
The analyses were performed in the aim of constraining the
values of both gA and gpp simultaneously. The solid line with the
zig-zag behavior is the result of the pnQRPA analysis of Suhonen
[39] in the aim to constrain the possible values of gA and 0νββ
NMEs in order to have a feeling of their effects on the sensitivity
of the present and future 0νββ experiments.

The red (ββ ISM) and blue (ββ IBM-2) dotted lines show the
results of the 2νββ analyses of Barea et al. [8] yielding the fits

geffA (IBM-2) = 1.269A−0.18 ; geffA (ISM) = 1.269A−0.12 , (21)

where A is the mass number and IBM-2 stands for the
microscopic interacting boson model (see section 2). The IBM-
2 results have been obtained by using the closure approximation
for the analyzed 2νββ transitions since there are no spin-isospin
degrees of freedom in IBM-2 and thus the intermediate nuclei of
2νββ decays cannot be reached.

Interesting conclusions can be drawn from the calculations
shown in Figure 8. For the mass range A = 41 − 82 the present
result for the effective value of gA is in striking agreement with
the many shell-model calculations in the region, consistently
producing the value geffA ≈ 0.9. The same can be said about the
mass regions A = 112 − 124 and A = 126 − 142 where the
ISM results of Barea et al. [8] and Horoi and Neacsu [6] are quite
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FIGURE 8 | Effective values of gA in different theoretical β and 2νββ analyses

for the nuclear mass range A = 41− 142. The quoted references of 2νββ

studies are Suhonen2017 [39], Caurier2012 [5], Faessler2007 [40], Suhonen2014

[41] and Horoi2016 [6]. These studies are contrasted with the ISM β-decay

studies of M-P1996 [42], Iwata2016 [7], Kumar2016 [43] and Siiskonen2001 [44].

The red and blue dotted lines show the results of the analysis in Barea et al. [8]

and quoted in Equation (21).

close to the present effective values geffA ≈ 0.7 and geffA ≈ 1.0.
In the A = 126 − 142 region the ISM analyses of Caurier et al.
[5] and the IBM-2 analyses of Barea et al. [8] produce smaller
values of geffA ≈ 0.6 − 0.7 and there is a strong tension between
the different ISM analyses. The present results are in line with
the pnQRPA results of Suhonen and Civitarese [41] and Faessler
et al. [40] for 116Cd but far off from the results of these studies
for 128Te. It seems that the fit to the average value of the mean
experimental β-decay NMEs brings the results of the pnQRPA
analysis closer to those of the ISM, in particular for the heavy end
of the presently discussed nuclei. The mass range A = 98−110 is
themost interesting: Here a very small value geffA ≈ 0.5 is required
both by the present study and the ISM study of Siiskonen et al.
[44]. Also the IBM-2 result of Barea et al. [8] is consistent with
these results whereas the interpolated ISM result of Barea et al.
[8] and the results of Suhonen and Civitarese [41] and Faessler
et al. [40] for 100Mo are in the range geffA ≈ 0.7− 0.8.

4. QUENCHING OF GA IN FORBIDDEN β

DECAYS

In forbidden β transitions the low-q limit (5) can be studied for
different multipoles Jπ . In this section we denote all these weak
axial couplings as gA for simplicity.

4.1. Theoretical Background
4.1.1. Forbidden Non-unique β Decays

The half-life of a forbidden non-unique β decay can be written
in the same way as that of the allowed β decay in (9).
The corresponding integrated shape function can be expressed
as written in Equation (11) but the shape factor C(we) of

Equation (12) has to be replaced by a much more complicated
expression:

C(we) =
∑

ke,kν ,K

λke

[

MK(ke, kν)
2

+mK(ke, kν)
2 −

2γke
kewe

MK(ke, kν)mK(ke, kν)
]

, (22)

where the notation of unitless leptonic quantities was discussed
in the context of Equation (11). The factor λke contains the
generalized Fermi function Fke−1 [45] as the ratio

λke =
Fke−1(Zf ,we)

F0(Zf ,we)
, (23)

Zf being the charge number of the final nucleus. The indices ke
and kν (ke, kν = 1,2,3...) are related to the partial-wave expansion
of the electron (e) and neutrino (ν) wave functions, K is the order

of forbiddenness of the transition, and γke =
√

k2e − (αZf )2,

α ≈ 1/137 being the fine-structure constant. The nuclear-
physics information is carried by the quantities MK(ke, kν)
and mK(ke, kν), which are conglomerations of different NMEs
and leptonic phase-space factors. For more information on the
integrated shape function, see Behrens and Bühring [45] and
Mustonen et al. [46].

The shape factor C(we) can be decomposed into vector,
axial-vector, and mixed vector-axial-vector parts. In this
decomposition the shape factor is

C(we) = g2A

[

CA(we)+
gV

gA
CVA(we)+

(

gV

gA

)2

CV(we)

]

, (24)

where the quantitiesCA,CV andCVA are complicated expressions
including Coulomb functions, nuclear matrix elements, etc. This
is the decomposition used in Haaranen et al. [47, 48] and
Kostensalo et al. [49] and it enables studies of the effects caused
by the ratio gV/gA on the shape factor. Integrating Equation (24)
over the electron kinetic energy, we get an analogous expression
for the integrated shape function (11)

C̃ = g2A

[

C̃A +
gV

gA
C̃VA +

(

gV

gA

)2

C̃V

]

, (25)

where the factors C̃A, C̃V and C̃VA in Equation (25) do not depend
on the electron kinetic energy.

4.1.2. First-Forbidden Non-unique β Decays

For the first-forbidden non-unique β decays the shape factor (22)
has to be supplemented with a 1J = |Ji − Jf | = 0 term C(1)(we)
[26, 45, 50, 51], where Ji (Jf ) is the initial-state (final-state) spin
of the mother (daughter) nucleus. In the papers (see [52–54]) the
shape factor for first forbidden decays has been given in the form

C(we) = k+ kawe + kb/we + kcw2
e , (26)

where k, ka, kb, and kc contain the Coulomb functions, nuclear
matrix elements and weak coupling constants. Writing the shape
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TABLE 3 | The change in angular momentum and parity in a Kth forbidden unique

β decay.

K 1 2 3 4 5 6 7

1J 2 3 4 5 6 7 8

πiπf -1 +1 -1 +1 -1 +1 -1

TABLE 4 | The change in angular momentum and parity in a Kth forbidden

non-unique β decay.

K 1 2 3 4 5 6 7

1J 0,1 2 3 4 5 6 7

πiπf -1 +1 -1 +1 -1 +1 -1

factor in this form is often useful for comparing the theoretical
and experimental shape factors. It should be noted that the shape
factors of Equations (24) and (26) are different but equivalent
ways of expressing the shape factor but in the first one the terms
with the same product of weak coupling constants have been
collected, while in the latter the terms with the same power of
electron kinetic energy we are combined.

4.1.3. Forbidden Unique β Decays

An important special case of forbidden β decays are the
forbidden unique decays for which the theory simplifies
considerably. The classification of forbidden unique decays by
change in parity and angular momentum is presented in Table 3.
For the non-unique case these are presented in Table 4.

For unique β-decay transitions the half-life (9) can be
expressed analogously to (14), valid for the Gamow-Teller β
transitions. Thus we have

t1/2 =
κ

fKuBKu
; BKu =

1

2Ji + 1

(

gAMKu
)2

, (27)

where fKu is the phase-space factor and gAMKu is the nuclear
matrix element. The phase-space factor fKu for the Kth forbidden
unique β± decay can be written as

fKu =
(

3

4

)K (2K)!!

(2K + 1)!!

∫ w0

1
CKu(we)pewe(w0 − we)

2

× F0(Zf ,we)dwe (28)

and the corresponding shape factor can be written as (see e.g.,
[15, 55])

CKu(we) =
∑

ke+kν=K+2

λkep
2(ke−1)
e (w0 − we)2(kν−1)

(2ke − 1)!(2kν − 1)!
. (29)

The notation was explained in the context of the allowed and
forbidden non-unique β transitions, around Equations (11) and
(22) and the ratio λke was given in Equation (23).

The NME in (27) can be expressed as

MKu =
∑

ab

MKu(ab)(ψf ||[c†
a c̃b]K+1||ψf ) , (30)

where the factors MKu(ab) are the single-particle matrix
elements and the quantities (ψf ||[c†

a c̃b]K+1||ψf ) are the one-body
transition densities with ψi being the initial-state wave function
andψf the final-state wave function. The operator c

†
a is a creation

operator for a nucleon in the orbital a and the operator c̃a is the
corresponding annihilation operator. The single-particle matrix
elements are given (in the Biedenharn-Rose phase convention
[15]) by

MKu(ab) =
√
4π(a||rK[YKσ ]K+1i

k||b) , (31)

where YK is a spherical harmonic of rank K, r the radial
coordinate, and a and b stand for the single-particle orbital
quantum numbers. The NME is given explicitly in Suhonen [15].

4.2. First-Forbidden β Decays
The shape factor C(we) of Equation (22) contains complicated
combinations of both (universal) kinematic factors and nuclear
form factors [26–28]. The nuclear form factors can be related to
the corresponding NMEs using the impulse approximation [45].
For the first-forbidden non-unique decays the relevant NMEs are
those of the transition operators denoted here by O(0−) [rank-
0 tensors], O(1−) [rank-1 tensors] and O(2−) [rank-2 tensors].
The O(0−) operators mediate pseudoscalar transitions, O(1−)
pseudovector transitions and O(0−) pseudotensor transitions.
In the non-relativistic reduction there are six matrix elements
corresponding to the operators

O(0−) :gA
σ · pe
MN

, igA
αZf

2R
(σ · r) , (32)

O(1−) :gV
pe

MN
, gA

αZf

2R
(σ × r) , gV

αZf

2R
r , (33)

O(2−) :
i
√
3
gA[σ r]2

√

p2e + q2ν , (34)

where r is the coordinate vector and pe (qν) is the electron
(neutrino) momentum, and the square brackets in the O(2−)
operator denote angular-momentum coupling. The nuclear
matrix elements related to the first forbidden decays are
suppressed relative to the Gamow-Teller matrix elements by the
small momenta of the leptons, the large nucleon mass, and the
small value of the fine-structure constant α.

The quenching of the effective value of gA in first-forbidden
decays in the lead region was observed in the late 1960’s in
a study by Bohr and Mottelson [56]. In this study the so-
called ξ approximation, discussed in Behrens and Bühring [45],
Schopper [50], and Bohr and Mottelson [56], was adopted.
The wave functions were assumed to be dominated by certain
single-particle configurations around the double-magic 208Pb
nucleus. For the decays mediated by the rank-1 operatorsO(1) in
Equation (33), the obtained effective values of the weak coupling
constants were

geffA (1−) = 0.46− 0.56 , (35)

geffV (1−) = 0.3− 0.7 . (36)
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The effective value of the vector coupling constant deviates
significantly from the canonical value gV = 1, pointing to
large nuclear-model-dependent effects. Also the value of the axial
coupling is quite low.

Next we discuss more recent and complete studies of the
quenching or enhancement of the weak couplings in the first-
forbidden β transitions.

4.2.1. Rank-0 Tensors

The mesonic enhancement of the γ5 NME (σ · pe of
Equation (32) in the non-relativistic limit) was discussed in
Kubodera et al. [57] for the pseudoscalar 0+ ↔ 0− β transitions.
The enhancement of the γ5 NME stems from the renormalization
of the pion-decay constant and the nucleon mass MN in nuclear
medium [58] and exchange of heavy mesons [59, 60]. The γ5
NME is accompanied by a pseudo-scalar axial coupling gA(γ5).
The effective value of this coupling can be expressed in terms of
an enhancement factor ǫMEC through the relation

gA(γ5) = (ǫMEC)gA , (37)

where gA is the usual axial-vector coupling strength. Related to
this, a fundamental enhancement factor ǫMEC = 1.4 − 1.7,
insensitive to nuclear-structure aspects, was predicted [61, 62].
In the paper of Kirchbach and Reinhardt [63] enhancements of
40 − 50% were predicted for singe-particle transitions between
s1/2 and p1/2 orbitals. This work was extended by Towner [60]
to include several single-particle transitions in multiple mass
regions from light nuclei to A ≈ 208. Enhancement factors

ǫMEC = 1.6− 1.8 (A = 16− 208) (38)

were obtained.
The mesonic enhancement was considered also in the

framework of the interacting shell model for A = 11 − 16.
In the studies Millener and Alburger [64] and Warburton et al.
[65] some 40− 50% enhancement of the axial charge was found.
Further systematic studies in the A = 11 − 16 [66] and A =
205 − 212 [53, 67, 68] regions reported mesonic enhancement
factors of

ǫMEC =
{

1.61± 0.03 (A = 11− 16)

2.01± 0.05 (A = 205− 212) .
(39)

Interestingly, in the lead-region practically no quenching of the
σ · r operator was found with gA/g

free
A (0−) = 0.97 ± 0.06, as

reported inWarburton [53, 67, 68]. The value of ǫMEC in the lead
region was derived by Kubodera and Rho [58] by adopting an
effective Lagrangian incorporating approximate chiral and scale
invariance of QCD. The result of Kubodera and Rho was

ǫMEC = 2.0± 0.2 (A ≈ 208) , (40)

which agrees well with the phenomenological shell-model result
(39). In addition, separate studies for 50K [69] and 96Y [70]
yielded enhancement factors 1.52±0.07 and 1.75±0.30. However,
in the case of 50K there was no estimate of the theoretical error so
the reported uncertainty is purely experimental.

FIGURE 9 | Mesonic enhancement factors ǫMEC of the previous studies and

the study of Kostensalo and Suhonen [71] as a function of the mass number

A. The red squares represent the previous systematic studies done in the

A ≈ 16 and A ≈ 208 regions and the separate studies done for 50K and 96Y.

The other points represent the results of Kostensalo and Suhonen [71] for

different effective values of gA. The linear fit is an error-weighted fit, where the

results of the previous studies and the study [71] with gA = 0.70 are used.

Mesonic enhancement of the axial-charge matrix element,
as well as the quenching of gA, was systematically studied in
the previously less studied A ≈ 95 and A ≈ 135 regions by
the present authors [71]. In this systematic shell-model study
of the two regions, using state-of-the-art two-body interactions,
a single effective value of geffA for all axial-vector operators was
used. The mesonic enhancement was found to depend on the
chosen effective value of gA. Since the mesonic enhancement has
been found to vary between 40 % and 100 %, the effective value
of gA was extracted for several different values of ǫMEC. In the
A = 92− 97 region the results were

geffA (0−) =











0.94± 0.08 (ǫMEC = 1.4)

0.77± 0.07 (ǫMEC = 1.7)

0.65± 0.06 (ǫMEC = 2.0) .

(41)

In the A = 133− 139 region the results were quite similar:

geffA (0−) =











0.87± 0.04 (ǫMEC = 1.4)

0.75± 0.03 (ǫMEC = 1.7)

0.66± 0.03 (ǫMEC = 2.0) .

(42)

This is quite strong evidence of the quenching of gA in first-
forbidden decays, since significant quenching is found regardless
of the exact strength of the mesonic enhancement. In Kubodera
and Rho [58] it was pointed out that the mesonic enhancement
should be larger for heavier nuclei, which is in line with the earlier
shell-model results [53, 67, 68]. In Kostensalo and Suhonen [71]
this was used to extract the effective value of gA by fitting all the
available data from the previous studies. The fit of this study is
shown in Figure 9. As can be seen from the figure, a suitably
increasing mesonic enhancement as a function of A is seen only
when gA ≈ 0.70. The linear fit obtained for the wholemass region
A = 11− 212 reads

ǫMEC = 1.576+ 2.08× 10−3 A . (43)
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4.2.2. Rank-1 Tensors

Since the early findings (35) and (36) of Bohr and Mottelson
[56], the effective values of the weak coupling constants related to
rank-1 operatorsO(1−) in (33) have been studied also separately
using the available data on the corresponding pseudovector
transitions. In Warburton [53, 67] the effective values

geffA (1−) ≈ 0.6 ; geffV (1−) ≈ 0.6 (Warburton) (44)

were obtained in the lead region, where the heavy quenching
was attributed to core-polarization effects. The shell model
study of Rydström et al. [72] of the transition 205Pb(1/2−) →
205Tl(1/2+g.s.) yielded similar results:

geffA (1−) ≈ 0.43−0.65 ; geffV (1−) ≈ 0.38−0.85 . (Rydström et al.)
(45)

In the work Zhi [52] half-lives of a number of nuclei at the
magic neutron numbers N = 50, 82, 126 were analyzed by
comparing the results of large-scale shell-model calculations with
experimental data. Both Gamow-Teller and first-forbidden β

decays were included in the analysis. By performing a least-
squares fit to the experimental data the following quenched weak
couplings were extracted

O(0−) : gA(γ5) = 1.61 ; gA(σ · r) = 0.66 , (46)

O(1−) : geffA (1−) ≈ 0.48 ; geffV (1−) ≈ 0.65 , (47)

O(2−) : geffA (2−) ≈ 0.53 . (48)

For the rank-1 operators the obtained effective value on gV is
quite far from the CVC value gV = 1.0 [9]. In the recent work
of Hayen et al. [73] the first-forbidden decays related to the
cumulative reactor antineutrino spectrum were studied in the
ISM. In this short letter type article it was not possible to give
the details related to the calculations, so they are presented here
for the first time. In the A = 86− 97 region the interaction glepn
[70] was used and in the region A = 133−142 the (unpublished)
interaction jj56pnb of Alex Brown was used. For the decays
with 1J = 1 the half-lives could not be reproduced with any
reasonable gA, with the exception of the decay 134mSb(7−) →
134Te(6−2 ) for which gA = 0.34(12) works, if the CVC hypothesis
gV = 1 was not broken. Since there were so few decays calculated
in different model spaces, it was not meaningful to start fitting
the values of both gA and gV to this data. However, this might
be an interesting research topic in the future. Since the previous
studies, discussed above, point to gA ≈ gV, we set the two
coupling constants to be equal and then fitted this value to
the experimental data. As can be seen from Table 5 the recent
calculations seem to also point to heavy quenching gA = gV ≈
0.5 for the first-forbidden rank-1-tensor-mediated β decays in
medium-heavy nuclei.

4.2.3. Rank-2 Tensor

The quenching of gA related to the pseudotensor transitions
mediated by the rank-2 operator (34) is best studied in the
context of first-forbidden unique ground-state-to-ground-state
decays in even-A nuclei, as this is the only operator at work in

TABLE 5 | Values of the weak couplings gA = gV needed to reproduce the

experimental half-lives of the listed β transitions, mediated by rank-1 tensors (33)

of the first-forbidden β decay.

Transition gA(= gV)

86Br(1−)→ 86Kr(0+) 0.35 (11)

87Se(3/2+)→ 87Br(5/2−) 0.89 (2)

91Kr(5/2+)→ 91Rb(3/2−) 0.37 (10)

134mSb(7−)→ 134Te(6+2 ) 0.49 (2)

140Cs(1−)→ 140Ba(0+) 0.46 (2)

the leading order. In the early work [74] a systematic schematic
analysis of the first-forbidden unique β decays was performed
from the point of view of suppression factors stemming from
the effect of E1 (electric dipole) giant resonance in the final odd-
odd nucleus. In Towner et al. [75] the suppression mechanism of
the first-forbidden and third-forbidden β decays of light nuclei
(A ≤ 50) was studied by using simple shell-model estimates and
first-order perturbation theory. The hindrance was traced to the
repulsive T = 1 (isospin 1) particle-hole force.

In the work Ejiri et al. [76] 19 first-forbidden unique ground-
state-to-ground-state β-decay transitions were studied. The
interesting transitions are the ones where a central nucleus
(here only 84Kr) is fed by a left-branch and a right-branch
2− → 0+ transition or a central nucleus (74As, 86Rb, 122Sb
and 126I) is feeding the neighboring even-even nuclei by left-
branch and right-branch 2− → 0+ transitions. By denoting
the associated left-branch and right-branch NMEs by gAML and
gAMR, respectively, one can compute the geometric mean (16) of
these MNEs and compare with experimental data.

In Ejiri et al. [76] a gph- and gpp-renormalized Bonn-A
G matrix (one-meson-exchange nucleon-nucleon interaction
adapted to nuclear matter by enforcing the Pauli principle) was
used as the two-nucleon interaction in a pnQRPA framework.
The two-quasiparticle and pnQRPAmean NMEs were compared
with the ones extracted from the measured comparative half-
lives. The analysis yielded

geffA (2−) ≈ 0.57 (49)

for the effective axial-vector coupling strength using the pnQRPA
wave functions. This in excellent agreement with the result of
Zhi et al. given in (48). The average of the values of the leading
two-quasiparticle NMEs gives in turn

geffA (2−) ≈ 0.23 (50)

implying the ratio

k =
Mm

pnQRPA

Mm
qp

≈ 0.4 (51)

and thus a drastic nuclear many-body effect when going
from the two-quasiparticle level of approximation to the more
sophisticated pnQRPA level. The 2qp-NME to pnQRPA-NME
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comparison is the only one where a clean separation between
the nuclear-medium effects and the nuclear-model effects can be
achieved, the nuclear-model effect being responsible for the (in
this case large) shift in the values of the NMEs.

4.3. Higher-Forbidden Decays
4.3.1. Higher-Forbidden Non-unique Decays

The shape factors of forbidden non-unique β decays are rather
complex combinations of different NMEs and phase-space
factors. Furthermore, their dependence on the weak couplings gV
and gA is very nontrivial as shown by the decomposition (24) and
its integrated version (25).

In Haaranen et al. [47] the spectrum-shape method (SSM)
was proposed. In this method the computed β-electron spectra
can be used to determine the values of the weak coupling
strengths by comparing the computed spectra with the measured
one for forbidden non-unique β decays. In this work it
was found that the computed β-electron spectra were very
sensitive to the effective value of gA in the 4th-forbidden
non-unique ground-state-to-ground-state β-decay transitions
113Cd(1/2+) → 113In(9/2+) and 115In(9/2+) → 115Sn(1/2+).
The related calculations were done in the frameworks of the
MQPM and the ISM (see section 2). It was also found that for
all values of gA the best fits to the spectrum-shape and half-life
data were obtained by using the canonical value gV = 1.0 for the
vector coupling strength. This result is in conflict with the results
for the first-forbidden non-unique pseudovector decays, where
quenched values for gV were obtained (see section 4.2.2).

The work in Haaranen et al. [47] was extended in Haaranen
et al. [48] by including the microscopic interacting boson-
fermion model (IBFM-2) (see section 2), in the calculations.
Interestingly all three models gave gA ≈ 0.92 when the
SSM method was applied to the transition 113Cd(1/2+) →
113In(9/2+) where the experimental spectrum shape was
available. For the three models, in the whole range of electron
energies, the two components, CV(we) and CA(we) are roughly of
the same size whereas the magnitude of the component CVA(we)
is practically the sum of the previous two, but with opposite sign.
Hence, for the whole range of electron energies there is a delicate
balance between the three terms, and their sum is much smaller
than the magnitudes of the individual components. However, the
half-life comparisons were not in line with the SSM analyses,
giving gA ≈ 0.65 for ISM and MQPM and gA ≈ 0.10 for IBFM-
2. The possible cure to this could be to independently vary the
weak couplings for multipole operators of different rank as was
described for the first-forbidden β transitions in section 4.2.

The works [47, 48] were continued by the works [49, 77] where
both the MQPM and ISM frameworks were used as theory tools.
It was found that the spectrum shapes of the third- and fourth-
forbidden non-unique decays depend strongly on the value of gA,
whereas the first- and second-forbidden decays were practically
insensitive to the variations in gA. Furthermore, the gA-driven
evolution of the normalized β spectra was found to be quite
universal, largely insensitive to small changes of the nuclear
mean field and the adopted residual many-body Hamiltonian.
This makes SSM a robust tool for extracting information on the
effective values of weak couplings.

FIGURE 10 | Normalized ISM-computed electron spectrum for the

first-forbidden non-unique β− decay of 210Bi. The value gV = 1.0 was

assumed and the color coding represents the value of gA.

All the potentially interesting nuclei for the application of
the spectrum-shape method found in Kostensalo et al. [49] and
Kostensalo and Suhonen [77] had mass numbers A = 87 − 115
and were second-, third-, or fourth-forbidden. In order to better
understand the evolution of the quenching of gA it would be
preferable to have also lighter and heavier nuclei to study. Also,
in these papers there were no first-forbidden decays discovered
for with the SSM could be applicable. However, in Kostensalo
and Suhonen [78] the first potential heavy candidate, the ground-
state-to-ground-state decay of 210Bi was pointed out. This decay
is also first-forbidden and its spectrum is given in Figure 10.

In Kostensalo and Suhonen [71] a modest gA dependence was
reported in the spectra of the decays 93Y(1/2−) → 93Zr(1/2+)
and 138Cs(3−)→ 138Ba(3+), as can bee seen in Figure 11. In the
spectrum on 93Y some dependence on the value of ǫMEC is also
seen, which opens up the possibility for investigating the mesonic
enhancement of the axial-charge matrix element using the SSM.

Concerning the lighter nuclei, so far there are not any good
candidates yet discovered. However, our recent shell-model
calculation in the full fp shell using the interaction gxpf1a [79, 80]
shows that the second-forbidden ground-state-to-ground-state
decay of 59Fe possesses the necessary gA dependence, as can be
seen from Figure 12. The branching ratio on the other hand is
only 0.18 % [81], which complicates the measurement of this
spectrum to the required precision. In any case, this discovery
gives us hope that there might be some good candidates for the
SSM also in this mass region.

The main issue with the SSM is the quality of the theoretical
wave functions. However, the spectral shapes have been found to
depend very little on the details of the wave functions making it
possibly a very robust tool [49, 78]. The best candidates for the
SSM found so far are, unfortunately, decay transitions between
mid-shell nuclei, such as 113Cd, which are not easy to describe
theoretically. Even though the SSM seems to be robust, in order
to make strong claims about the effective value of gA it would be
preferable to have precise wave functions. In the case of the β−-
decay transition 98Tc(6+) → 98Ru(4+) our recent calculations
using the glepn interaction [70] have given results which are in
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FIGURE 11 | Normalized ISM-computed electron spectra for the first-forbidden non-unique β− decays of 138Cs and 93Y. The value gV = 1.0 was assumed and the

color coding represents the value of gA and the dash coding the value of the mesonic enhancement factor ǫMEC.

FIGURE 12 | Normalized ISM-computed electron spectrum for the

second-forbidden non-unique β− decay of 59Fe. The value gV = 1.0 was

assumed and the color coding represents the value of gA.

good agreement with the available spectroscopic data. For the 2+

state in 98Ru the calculated magnetic dipole moment +0.445µN

is in agreement with the experimental value +0.8(6)µN [82]
and the electric quadrupole moment −0.129e2b agrees with the
experimental value -0.03(14)e2b [83] also. The interaction also
manages to predict that the 4+, 5+, 6+ states in 98Tc are below 70
keV, though does not get the ordering quite right. Furthermore,

the experimental half-life of the β decay is reproduced with a
reasonable gA = 0.96. In comparison, the calculation carried
out in Kostensalo and Suhonen [77], using the interaction by
Gloeckner [84], fails to reproduce the half-life 4.2(3)×106 yr with
any effective value of gA giving 2.1 × 106 yr for gA = 1.04 and
less for all other values. As can be seen from Figure 13 the two
Hamiltonians still predict very similar spectral shape evolution
regardless of the failures in half-life prediction.

On the experimental side advances have been made by
measuring the 113Cd spectrum to high accuracy [85]. When
compared with the spectral shapes given in Haaranen et al. [48]
the following effective values of gA were obtained

geffA (ISM) = 0.915± 0.021 , (52)

geffA (MQPM) = 0.911± 0.009 , (53)

geffA (IBFM-2) = 0.943± 0.090 , (54)

which are in excellent agreement with each other.

4.3.2. Higher-Forbidden Unique Decays

Early studies of the quenching in the second- and third-forbidden
unique β decays were performed in Towner et al. [75] and
Warburton et al. [86]. In Towner et al. [75] the suppression
mechanism of the first-forbidden and third-forbidden β decays
of light nuclei (A ≤ 50) was studied by using simple shell-model
estimates and first-order perturbation theory. The hindrance of
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FIGURE 13 | Normalized ISM-computed electron spectra for the second-forbidden non-unique β− transition 98Tc(6+)→ 98Ru(4+) using two different Hamiltonians.

The branching to this decay channel is 100%. The value gV = 1.0 was assumed and the color coding represents the value of gA.

FIGURE 14 | Predicted half-lives and their error estimates (in parenthesis) for β− and EC (electron-capture) transitions in the isobaric chain A = 136. The spin-parity

assignment, life-time and decay energies (Q values) of the 5+ ground (gs) state and 8+ isomeric (isom) state of 136Cs are experimental data and taken from ENSDF

[89]. The 2νββ half-life is taken from Barabash [90]. In addition to the predicted half-lives the degree of forbiddenness and the leading single-particle transition are

shown.

the decay transitions was argued to result from the repulsive
T = 1 (isospin 1) particle-hole force. InWarburton et al. [86] the
second- and third-forbidden unique β decays were studied using
a simple interacting shell model and the unifiedmodel (deformed
shell model) for six β transitions in the A = 10, 22, 26, 40
nuclei. The incentive for the studies was the hindrance of certain
measured β transitions. A later study of second-forbidden unique
β decays in the mass range A = 10 − 54 was performed in
Martínez-Pinedo and Vogel [87] by using the ISM. A reasonable
correspondence with the measured half-lives was achieved by
using the free value of the axial coupling but a quenched value
would have improved the correspondence.

The quenching related to the virtual β transitions of the 0νββ
decay can be studied at the low-q limit (5) by using the theoretical

machinery of section 4.1. In Kostensalo and Suhonen [88] this
machinery was applied to 148 potentially measurable second-,-
third-, fourth-, fifth-, sixth- and seventh-forbidden unique beta
transitions. The calculations were done using realistic single-
particle model spaces and G-matrix-based microscopic two-body
interactions. The results of Kostensalo and Suhonen [88] could
shed light on the magnitudes of the NMEs corresponding to the
high-forbidden unique 0+ ↔ Jπ = 3+, 4−, 5+, 6−, 7+, 8− virtual
transitions taking part in the 0νββ decays.

In the work of Kostensalo and Suhonen [88] the expected
half-lives of the studied β-decay transitions were derived by
comparison with the analyses performed for the Gamow-Teller
and first-forbidden unique β transitions in the works [38, 76].
An example of such predictions is given in Figure 14. In the
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figure one sees that the expected half-lives are very long and
hard to measure. On the β− side the fourth-forbidden and
seventh-forbidden decay transitions are masked by the strong β−

branches to the excited states of 136Ba.

5. CONCLUSIONS

Double β decay is a hot issue in modern day’s particle, neutrino
and nuclear physics. To gain the full benefit from the potential
results of the running and future ββ-decay experiments, accurate
evaluation of the involved nuclear matrix elements is crucial.
This evaluation calls for reliable nuclear many-body approaches
in order to produce realistic wave functions for ββ calculations.
Beyond this, systematic estimation of the effective value of
the weak axial coupling, gA, is necessary. The value of this
coupling plays a notable role in both the two-neutrino and
neutrinoless ββ decays.

The effective value of gA can be studied at low momentum-
exchange limit by using data on β and two-neutrino ββ decays.
Data on Gamow-Teller 0+ ↔ 1+ β transitions are relatively
abundant and the most clean-cut to compare with calculations,
thus enabling systematic studies of the quenching of gA within
different nuclear-structure frameworks. The β-decay analyses
(see Figure 8) suggest that effective values geffA ≈ 0.9 for masses

A ≤ 82, around geffA ≈ 0.5 in the mass A = 98 − 110 region,

around geffA ≈ 0.7 in the mass A = 112− 124 region and close to

geffA ≈ 1.0 for the masses A = 126− 142 are appropriate.
Available data on first-forbidden unique β decays offer a

straightforward systematic way to access the quenching of gA
beyond the allowed β decays. A recent analysis (see section 4.2.2)
suggests geffA (2−) ≈ 0.5 − 0.6. A more involved analysis has

to be performed for the first-forbidden non-unique β decays
owing to the meson-exchange enhancement of the weak axial
charge, combined with the quenching of gA. A recent study
(see Figure 9) suggests enhancement factors ǫMEC obeying the
simple linear law of Equation (43) all through the mass region
A = 16 − 208. Higher-forbidden non-unique β transitions
offer yet another way to study, at low-momentum-transfer limit,
the quenching of gA in virtual transitions to high-angular-
momentum intermediate states in the neutrinoless ββ decay. In
particular, the shapes of electron spectra in these transitions can,
in selected cases and once more experimental data are available,
offer a viable alternative to access the quenching of gA. Here
a study, combining theory with data of a recent experiment,
suggests values around geffA ≈ 0.9 for the 4th-forbidden β decay
of 113Cd (see Equations (52)–(54)).
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