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In this article, we review several models where tiny neutrino masses are radiatively

generated via loop diagrams. In such models, additional scalar fields are often introduced

so that the Standard Model Higgs sector is extended.Such an extension results in a rich

phenomenology of the model. We briefly discuss such a model and its UV completion to

highlight some of its phenomenological consequences.
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1. INTRODUCTION

Precise measurement of the Higgs boson property at the LHC experiments [1–6] suggests that the
Standard Model (SM) provides quite a good explanation of the physics of elementary particles.
However, there still are several unsolved problems in the SM. For example, there is no dark matter
(DM) candidate, no successful baryogenesis scenario works, gauge hierarchy problems should be
solved by some additional mechanism, and so on. An origin of tiny neutrino mass has been one of
such problems for more than two decades. The neutrino oscillation data [7–12] requires that there
are tiny mass squared differences among three neutrino mass eigenvalues, and the absolute value of
the neutrino masses have quite a severe upper bound ofmν . O(0.1) eV [13, 14].

In many models, the tiny neutrino masses are originated from the dimension five operator
(H · ℓ̄c)(H · ℓ) [15] after the electroweak symmetry breaking. The question is how to provide
the suppressed coefficient of the operator. There are essentially three possibilities to get such a
suppression factor naturally. One idea is using a suppression by a mass scale. Since the operator is
dimension five, the coefficient is suppressed by some mass scale. If such a mass scale is significantly
larger than the electroweak scale, the coefficient of the dimension five operator gets a strong
suppression. The necessary mass scaleM in this case is naively estimated by the relation 〈H〉2/M ∼
mν , so thatmν ∼ 0.1 eV suggestsM ∼ 1015 GeV. The most famous mechanism of this possibility is
so-called type I seesaw model [16–20], where heavy right handed neutrinos (RHNs) are introduced
to the SM and the dimension five operator is suppressed by this heavymass scale after decoupling of
the RHNs. The second mechanism is that the smallness of the coefficient is naturally explained as a
result of slightly broken symmetry. This idea is realized e.g., in inverse seesaw mechanism [21, 22].
The third possibility is that the operator is generated through quantum loop effect [23–34]. In this
case, the suppression comes from the loop factor. For example, in a one-loop model, the coefficient
gets a suppression factor of 1/(4π)2 in addition to a suppression by a particle mass in the loop. In
Figure 1, examples of relevant diagrams for neutrino masses are shown in several models. A recent
comprehensive review on the third possibility can be found, for example, in Cai et al. [35].

Comparing to the first cases (e.g., type-I seesaw mechanism), one can find that the
mass scale of new particles should be much lower in the second cases. In a case that the
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neutrino mass is induced via n-loop diagram, the neutrino mass
can be roughly estimated as

mν ∼
(

λ2

(4π)2

)n 〈H〉2

M
, (1)

where λ is some coupling constant, and M is a mass scale of
new particle running in the loop. For example, in a 3-loop model
with λ ∼ 0.1, a new particle with a mass M ∼ O(100 GeV)
is necessary. Such a new particle can be discovered by future
collider experiments such as LHC.

In models where colored new particles run in the loop
diagrams for the neutrino masses, these particles can also
contribute to several processes in B physics [36–40]. By these
new contributions, one can give an explanation of B anomalies
reported by the BaBar experiment and the LHCb experiment [41–
47]. From this viewpoint, models with loop induced neutrino
masses have been attracting a lot of attention.

However, in many cases, such models are constructed as a
phenomenological model. We strongly expect that there is a UV
complete theory above a cutoff scale as a more fundamental
picture of such a phenomenological model. There are a few
attempts to construct such a UV picture. For example, in Doršner
et al. [48], a grand unified model which leads to loop induced
neutrino masses at a low energy scale is proposed. In this article,
we introduce another possibility based on SUSY gauge theory
with confinement [49–52]. In the low energy effective theory of
this theory, the Higgs sector is extended to include necessary
fields to draw loop diagrams which leads to the dimension five
operator. In the model, DM candidates are included, and the
electroweak phase transition is enhanced strongly enough for
successful electroweak baryogenesis [53–61].

This review is organized as follows. In section 2, we introduce
typical concrete examples of models with loop induced neutrino
masses. In section 3, we discuss an example UV picture
of such a phenomenological model. We there also discuss
phenomenological consequences of the UV theory. A summary
is presented in section 4.

2. RADIATIVE NEUTRINO MASS MODELS

In this section, we review typical examples of models with
loop induced neutrino mass. The models are classified into two
groups. In a class of models with RHNs, there should be an
additional symmetry, which is a discrete symmetry inmany cases,
and the RHNs have a charge under that symmetry. For example,
in a model with Z2 parity, odd parity is assigned to the RHNs,
since the tree level Yukawa coupling of RHNs with the lepton
doublets should be forbidden. In another class of models, no
RHNs are introduced.

In this review, we focus on models with RHNs [28–34],
because such models has a big advantage, which is that there is a
DM candidate. In order to generate the dimension five operator,
the lepton number should be broken in the loop. In a model
with RHNs, the Majorana mass of each RHN breaks the lepton
number. As already described, a new symmetry is necessary to
forbid the tree level Yukawa couplings of RHNs. To realize this
with keeping the Majorana mass term of RHNs, the simplest

symmetry is a Z2 parity and the odd parity is assigned to the
RHNs. In this setup, the lightest neutral Z2-odd particle in the
model can be a DM candidate, unless the Z2 is broken.

A very well-known example of such models with one-loop
induced neutrino mass is the Ma model [29], where the Z2 odd
inert doublet scalar η and three Z2 odd RHNs Ni are introduced
to the SM. The dimension five operator is generated via the one-
loop diagram shown in Figure 1A. In this model, the lighter
one among Ni and the neutral component of η can be a DM
candidate.

Two-loop models with RHNs are also discussed e.g., in Aoki
et al. [62], Kajiyama et al. [63]. In the model proposed in Aoki
et al. [62] , the vertex corresponding to the ηηHH coupling in
the Ma model is induced by one-loop. On the other hand, In the
model proposed in Kajiyama et al. [63], the Majorana mass terms
of Ni in the Ma-model are induced by one-loop.

There are examples of three loopmodels. Let us here introduce
two examples. One is called Kraus-Nasri-Trodden model (KNT
model) [28], and the other is called Aoki-Kanemura-Seto model
(AKS model) [32–34]. In the KNT model, in addition to three
Z2 odd RHNs, a Z2 even singly (electric) charged singlet scalar
ω−
1 and a Z2 odd singly charged singlet scalar ω−

2 are introduced.
The three loop diagram for the dimension five operator is shown
in Figure 1B.

In the AKS model, the discrete symmetry Z2 × Z′
2 is imposed.

The Z2 parity is assumed to be unbroken, while the Z′
2 symmetry

is softly broken in the Lagrangian. For the particle content, an
extra scalar doublet H′, three RHNs Ni, a neutral singlet scalar
ζ , and a charged singlet scalar �− are introduced to the SM.
Under the Z2 × Z′

2, the SM particles and the new particles
are charged as q(+,+), uR(+,−), dR(+,−), ℓ(+,+), eR(+,+),
H(+,+), H′(+,−), �−(−,+), ζ (−,−), and Ni(−,+). With this
parity assignment, the Higgs sector of the model is nothing but
the Type-X two Higgs doublet model [64]. The neutrino masses
are generated by the three loop diagram shown in Figure 1C. In
this model, the unbroken Z2 symmetry guarantees the stability
of the DM, so that the lightest neutral particle among Ni and
ζ can be a DM candidate. In addition, it is nice that the
electroweak phase transition is enhanced by loop contributions
of Z2-odd particles in this model. As mentioned later, such
enhancement of electroweak phase transition is required for
successful electroweak baryogenesis. Therefore, the AKS models
has a potential to solve three big problems in the SM, neutrino
mass, DM, and baryogenesis.

SUSY extension of these models are also discussed in
literature. For example, the SUSY version of the Ma model is
studied in e.g., [30, 31]. The SUSY version of the AKS model is
provided as a low energy effective theory of a SUSY SU(2)H gauge
theory with confinement, which is briefly introduced in section 3.

3. A UV PICTURE

The models discussed in the previous section are interesting
as phenomenological models, since several new particles are
introduced at around the TeV scale so thatmany new phenomena
are predicted and will be tested in future experiments. However,
they seem to be artificial from a view point of a fundamental
theory. Here we would like to consider a example UV picture of
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FIGURE 1 | Relevant diagrams for neutrino mass in (A) the Ma model [29], (B) the KNT model [28], and (C) the AKS model [32–34].

such a phenomenological model. In Kanemura et al. [49–52], an
concrete example of UV theory of a loop induced neutrino mass
model is proposed. The theory is based on a SUSY gauge theory
with confinement.

In SUSY SU(Nc) gauge theory with Nc + 1 flavor fields, it
is known that confinement occurs at some scale [65]. We use
this setup and we consider a model with SU(2)H symmetry
with three flavor fields. These three flavor fields are fundamental
representations of SU(2)H . Note that each of three fields has their
anti-matter partner so that there are six flavor fields in total. We
describe these fields as Ti(i = 1, · · · , 6). After confinement, we
have fifteen mesonic fields Hij ∼ TiTj. The setup of this model is
almost the same as in the minimal SUSY fat Higgs model [66]. In
this model, additional fields are introduced in order to make only
two doublets and one singlet mesonic fields light. In the model
considered here, in contrast, all the mesonic fields appears in the
low energy effective theory.

We here additionally introduce a RHN which is singlet under
both SU(2)H and the SM gauge symmetries. We assume that the
model has an unbroken discrete symmetry Z2 which forbids tree
level contributions to neutrino masses. The RHN is considered
as an Z2 odd field. Table 1I shows the charge assignments of Ti

and the RHNNc
R under the SM gauge symmetry, SU(2)H , and the

Z2 parity, and Table 1II shows the fifteen mesonic fields below
the confinement scale 3H which are canonically normalized as
Hij ≃ 1

4π3H
TiTj(i 6= j).

The superpotential of the Higgs sector below 3H is given by

Weff = λN
(

HuHd + υ2
0

)

+ λN8

(

8u8d + υ2
8

)

+ λN�

(

�+�− − ζη + υ2
�

)

+ λ {ζHd8u + ηHu8d

− �+Hd8d − �−Hu8u − NN8N�} . (2)

TABLE 1 | (I) The charge assignment of the SU(2)H doublets Ti and the RHN Nc
R

under the electroweak gauge group (SU(2)L×U(1)Y ) and the Z2 parity. (II) The field

content of the extended Higgs sector in the low energy effective theory below the

scale 3H.

Superfield SU(2)H SU(2)L U(1)Y Z2

(I)




T1

T2



 2 2 0 +1

T3 2 1 +1/2 +1

T4 2 1 −1/2 +1

T5 2 1 +1/2 −1

T6 2 1 −1/2 −1

Nc
R

1 1 0 −1

Superfield Z2

(II)

Hd ≡





H14

H24



, Hu ≡





H13

H23



 +1

N ≡ H56, N8 ≡ H34, N� = H12

8d ≡





H15

H25



, 8u ≡





H16

H26



 −1

�− ≡ H46, �+ ≡ H35

ζ ≡ H36, η ≡ H45

By the naive dimensional analysis, one expects λ ≃ 4π at the
confinement scale3H . We here assume that the mass parameters
µ = λ〈N〉, µ8 = λ〈N8〉 and µ� = λ〈N�〉 are induced by the
vacuum expectation values (vev’s) of Z2-even singlet fields N, N8

and N�. The Yukawa couplings and the Majorana mass term of
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the RHNs are given by

WN =yiNN
c
RLi8u + hiNN

c
RE

c
i�− +

MR

2
Nc
RN

c
R +

κ

2
NNc

RN
c
R .

(3)

In the low energy effective theory of this model, the dimension
five operator is generated via loop contributions shown in
Figure 1 of Kanemura et al. [52] (one of the diagrams is shown
in Figure 1C in this paper). There are both one-loop and
three-loop contributions. The one-loop and three-loop diagrams
correspond to the SUSY versions of the Ma model [29] and AKS
model [32–34], respectively. It is worthwhile pointing out that
the one-loop diagrams and three-loop diagrams are controlled
by different coupling constants, i.e., one-loop diagrams are
driven by the coupling yN and the three-loop diagrams are
controlled by another coupling hN . Both one-loop and three-
loop contributions can be significant if these coupling constants
are hierarchical as hN ≫ yN . Therefore, two different mass
squared differences can be generated even if only one RHN
is introduced1.

In the SU(2)H model, not only the tiny neutrino masses
but also other unsolved problems in the SM such as DM
and baryogenesis may be solved. For the DM, the model
contains the unbroken Z2 symmetry as well as the unbroken R-
parity. These discrete symmetries guarantee the stability of DM
candidates. Since there are two different unbroken parities, there
are potentially three kinds of DM candidates, i.e., the lightest
particles with the parity assignments of (−,+), (+,−), and
(−,−). If we consider the case that one of them is heavier than
the sum of the masses of the others, the heaviest one decays into
the other two DM particles so that the heaviest particle cannot be
a DM.

Also, electroweak baryogenesis may work in the SU(2)H
model. It is known that for successful electroweak baryogenesis,
the 1st order phase transition (1stOPT) should be strong enough.
This condition can be described by the inequality ϕc/Tc >

1. In addition, new CP violation phases are required in order
to reproduce the correct amount of baryon asymmetry of the
Universe. In this model, the 1stOPT can be enhanced by loop
contributions of extra Z2-odd scalar particles strongly enough.
Though the analysis on CP phases in this model has not
been done yet, it is naively expected that we can introduce
several CP phases relevant to baryogenesis as in the case of
MSSM [67, 68].

In Kanemura et al. [52], a benchmark scenario is provided.
It reproduces the appropriate neutrino mass matrix, explains
the DM relic abundance, and satisfies the 1stOPT condition
as well as the constraints from the experimental data such as
from lepton flavor violating processes searches. In Figure 3 of
Kanemura et al. [52], the mass spectrum of the relevant particles
in this benchmark scenario is shown.

The benchmark parameter point discussed above is already
excluded by the direct detection experiment of the DM [69].
However, the predicted spin independent cross section can be

1In the ordinary type-I seesaw model, at least two RHNs are necessary for

generating two different mass squared differences.

significantly smaller, if we take into account the CP phases [70].
It is because the pseudo-scalar interaction with DM fermions
are not relevant to the spin-independent cross section. Such
CP phases can affect the BAU. Therefore, it may be interesting
to discuss the correlation among BAU, spin-independent cross
section, and other CP violating phenomena such as electric dipole
moments of electron, neutron, and so on. This kind of analysis
remains as a future task.

We here discuss phenomenological consequences of the
benchmark scenario. The Z2-even part of the spectrum is similar
to the one in the nMSSM. In order to reproduce the relic
abundance of the DM, a large mixing between doublet fields
and singlet scalars are required. As a consequence, large mass
splitting between the charged Higgs boson and the heavy Higgs
bosons is predicted. The Z2-even part of this scenario can be
distinguished from the MSSM by looking at such a specific mass
spectrum.

The condition ϕc/Tc > 1 is satisfied by loop effects of 8u

and �−. The same scalars also significantly affect the SM-like
Higgs boson couplings, especially, the h-γ -γ coupling and the
triple Higgs boson coupling. The prediction on the deviation of
the SM-like Higgs couplings in this benchmark scenario is given
by

κhWW = 0.990 , κhZZ = 0.990 , κhūu = 0.990 ,

κhd̄d = 0.978 , κhℓ̄ℓ = 0.978 ,

κhγ γ = 0.88 , κhhh = 1.2 , (4)

where the κ ’s denote the ratios between coupling constants
predicted in this benchmark point and ones predicted in the SM,
i.e.,

κhφφ =
ghφφ

gSM
hφφ

. (5)

Here, in particular, the deviations in h → γ γ and the
self coupling constant of the Higgs boson are as significant
as 10-20%. By precise measurements of the SM-like Higgs
boson couplings at future collider experiment such as the
ILC [71, 72], the model can be distinguished from the
nMSSM too.

Let us consider the Z2-odd sector. By direct search for inert
doublet particles [73] and inert charged singlet searches [74] at
a lepton collider, we expect to get a strong hint on the Z2-odd
sector of the scenario.

4. SUMMARY

We have reviewed some models with loop induced neutrino
masses. Although such models are phenomenologically quite
interesting, they seems to be artificial. We have discussed
an example based on SUSY SU(2)H gauge theory with
confinement as a UV picture of such a phenomenological
model. In the low energy effective theory, three problems in
the SM namely baryogenesis, DM, and tiny neutrino mass
can be solved. The 1stOPT is enhanced strongly enough for
successful electroweak baryogenesis [53–61], multi-components
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DM scenario is realized, and tiny neutrino masses [23–34] are
generated via one-loop and three-loop diagrams. This model has
a big advantage over the canonical type-I seesaw model. It is that
new particles are required at a few TeV range so that the model
will be tested at future experiments.

In models where tiny neutrino masses are radiatively
generated via loop diagrams, the Higgs sector is often
extended by introducing additional scalar fields. These additional
scalar fields can contribute to various phenomenology. Some
models can be distinguished with use of patterns of various
phenomenological signals which are expected to be measured
in future experiments. Then, it is expected that a UV theory
which leads to a model with loop induced neutrino masses can
be explored by investigating a pattern of various experimental

signals. This situation is very different from a case of a
grand unified theory with a grand desert such as SUSY
SU(5) GUT.
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