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Strictly adaptive walks on uncorrelated and correlated fitness landscapes have been

a subject of intense research. However, some experimental findings tend to advance

the notion of non-adaptive evolution in terms of epistasis. To address such evolutionary

paths, herein we introduce the concept of topologically inspired walks on connected

and correlated landscapes with complex topologies. These walks are dictated solely by

the topology of connections and are not explicitly dependent on the underlying fitness

values. In the biologically significant regime of sparse randomness, we observe that

such topologically inspired walks might carry a population to a local optimum even

faster than strictly adaptive walks. This effect becomes more pronounced with increasing

correlations in fitness. We observe interesting tradeoffs between topologically inspired

walks governed by the minimum and maximum value of a set of given network metrics.

Keywords: fitness landscapes, network science, random networks, non-adaptive evolution, epistasis

1. INTRODUCTION

The notion of fitness landscapes variously referred to as “adaptive topographies”, “adaptive
landscapes”, and “surfaces of selective value”, have been extensively used to model the process of
evolution [1–5]. Recently, there has been a surge of theoretical and experimental activity in this
area [6–24] attesting to its immense importance.

Originally, fitness landscapes were conceived of as a genotype space represented on a
hypercube [1]. Thus, each genotype is a sequence configuration with assigned fitness value and
has the same number of neighbors. Fitness landscapes intend to relate either an individual’s fitness
with its genotype or the genetic state of the population with its allele frequency. Evolution on a
fitness landscape is visualized as movement of the state of a population or an individual over the
genotype space due to mutation, natural selection etc. [23]. Notably, fitness landscapes are also
used for modeling evolution of a specific nucleotide sequence (DNA or RNA), gene sequence or
protein [6, 8, 24–27]. In fitness landscapes with a single smooth peak, all mutations along any
evolutionary path result in an increase in fitness. Strictly adaptive walks in the original hypercubic
model is visualized as a movement from one genotype toward a neighboring genotype of higher
fitness, differing merely by a single mutation [2, 3, 5]. The walk continues as long as a beneficial
mutation is available [11].

However, experimentally observed fitness landscapes possess complexities which are not
captured by simple models. They can be rather rugged, with a number of local peaks which are
surrounded by valleys. Evolutionary walks on rugged fitness landscapes have been modeled as
different types of adaptive walks [2, 3]. In random adaptive walks (RAW), a neighboring genotype
with higher fitness is selected randomly. In gradient or greedy adaptive walks (GAW), the neighbor
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with the highest fitness value is selected. These walks are expected
to take the population to a local optimum in the multi-peaked
fitness landscape. Of prime interest is the mean walk length of
evolutionary walks that will eventually lead to a local optimum in
the fitness landscape [3, 4].

2. VARIOUS PATHS SUGGESTED BY
EXPERIMENTAL EVOLUTION

Adaptive walks have proved as a great starting point to model
evolution. However, apart from adaptive walks, experimental
evidence suggests that non-adaptive evolutionary paths could
also exist [28–31]. The central idea responsible for the emergence
of ruggedness in fitness landscape is the idea of epistatic
interactions where the expression of one gene is affected by
another gene at a different locus [28]. These interactions are
well known in evolution and have been thoroughly studied in
experiments. An interesting case of such epistatic interactions is
reciprocal sign epistasis where the occurrence of two deleterious
mutations result in an increment of fitness [24].

Various experimental studies support such non-adaptive
evolutionary paths. It was observed in E. coli [30] and
S. typhimurium [31] that mutations responsible for streptomycin
resistance cause a decrease in fitness where a compensatory
second site mutation helps in increasing the overall fitness due
to epistatic interaction. The same phenomenon of decrease in
fitness in an evolutionary path is also observed in experiments
on lac operon [29]. In in vivo experiments with TEM-1 β-
lactamase, it was observed that the evolutionary path toward a
resistant mutant of higher fitness went through lower fitness due
to decrease of stability [9, 24].

All these studies indicate that a decrease of fitness in an
evolutionary path is entirely possible, which however is not
allowed by up-hill climbing walks. Our primary motive is to
model an alternative evolutionary walk which can pass through
not just fitness hills but also fitness valleys in a rugged fitness
landscape as represented in Path “a” of Figure 1. Results from
extensive numerical simulations show that our proposed walks
indeed successfully capture this phenomenon and are non-
adaptive in nature.

There also exist studies suggesting heterogeneous connectivity
in a fitness landscape. Simultaneous multiple mutations are also
observed in certain experiments [32] which suggest evolutionary
walks similar to that represented by Path “b” of Figure 1. Such
paths arise due to long range connections in the landscape with
heterogeneous connectivity, unlike landscapes with hyper-cubic
structure.

It is observed that many point mutations are responsible for
the lethality of an individual [28, 33–36]. These lethal genotypes
are not connected with other viable genotypes through an
evolutionary path due to natural selection [4, 5, 37]. This results
in isolated genotypes as represented in Path “c” of Figure 1, and
also contributes to the heterogeneous connectivity in a fitness
landscape.

It should be noted that fitness landscapes may not be
uncorrelated as suggested by some studies on RNA [26, 27]

FIGURE 1 | Experimentally observed yet lesser studied paths for a 2-string

genotype are shown in above representation of a realistic fitness landscape. All

possible mutations for a 2-string genotype can be represented as

“ab, ”“AB, ”“Ab, ” and “aB.” Here “aB” is presumed as lethal. Fitness value of

each genotype resulting from epistatic interaction is also mentioned. Apart

from well-known adaptive walks, three other possible evolutionary paths are:

(a) Non-adaptive path passing through a valley “ab” → “Ab” → “AB” as

studied in Poelwijk et al. [8] and Wang et al. [9], (b) multiple mutations in a

single step as studied in Refs. [24, 32], and, (c) infeasible path leading to the

lethal mutation “aB” [33]. Topologically inspired walks on fitness landscapes

with heterogeneous connectivities can successfully model (a), (b), and (c).

and bacterial system [38]. Our motive is to incorporate above
mentioned phenomena in our model for the construction of the
fitness landscape and evolutionary walks.

To summarize—recent studies and experiments [6, 24, 27,
28, 30–33, 38] show that evolutionary trajectories in realistic and
correlated fitness landscapes may pass through fitness valleys due
to epistatic interactions or through long-range connections due
to multiple mutations in a single step. Also, lethal mutations
would lead to infeasible paths. . The aforementioned scenarios
are depicted in Figure 1. Path “a,” which is a non-adaptive path,
shows that uphill climbing might not always be favored due to
complex epistatic interaction between genes. Path “b” shows that
multiple mutations can be achieved even in a single step. Path “c”
shows that lethal mutations would produce isolated genotypes.

3. NETWORKS AND TOPOLOGICALLY
INSPIRED WALKS ON FITNESS
LANDSCAPES

Amajor aspect of network science is the intricate role of topology,
as quantified by variousmetrics [39–42], which plays a prime part
in the characterization, design and functioning of such systems.
However, while networks have been used in a variety of biological
problems [43–48], they have seen only limited application [4, 5]
in fitness landscapes and adaptive walks on them.

In this work, we propose a new class of walks, namely
topologically inspired walks (TIW). TIW are directed by the
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topology of the randomly connected fitness landscape and are
not explicitly dependent on the underlying fitness values. In
consonance with experiments [9, 24, 30, 31, 49]—TIW traverse
not only fitness peaks but also fitness valleys, unlike strictly
adaptive walks like RAW and GAW. Further, in the biologically
significant regime of sparse random graphs [50], TIW can carry
a population to a local optimum faster than GAW or RAW. We
also find that correlations [4, 5, 26, 27, 38] in fitness landscapes
have a profound effect over such walks.

To model TIW on fitness landscapes, we studied well known
network metrics based upon which TIW can be performed,
namely, degree, closeness and betweenness. We explain below,
how these measures capture various important topological
aspects of nodes in the network.

Degree, k, of node, i, in a network, G, which does not possess
any self-loop, is the total number of connections it has to other
nodes in a given network. Thus, its distribution is likely to offer
ques into the connectivity pattern of the network.

Closeness, Ci, of node i, is the reciprocal of the average
distance of i to every other node, j, in a network, G, of N nodes.
Thus,

Ci =
N − 1
∑

j dij
, (1)

where, dij is the shortest distance between nodes i and j. The
shortest distance between two nodes in a network, i and j is the
minimum number of edges which is required to be traversed in
order to reach from node i to node j. As such, more than one
shortest path may exist between two given nodes of a network.
Closeness of a node signifies how easily a given node in a network
is accessible from the other nodes in the network. In a star graph
for example, a single edge is required to reach the central node.
Whereas, any other node apart from the central node, will need
at least two edges to reach from the rest of the nodes in the star
graph. Obviously, nodes in graphs with predominantly chain like
structures will typically possess the opposite behavior with regard
to closeness.

Betweenness, Bk, of node, k, in G is a measure of the number
of shortest paths passing through k in G. Thus,

Bk =
∑

i6=k 6=j

σij(k)

σij
, (2)

where, σij is the number of shortest paths in G between node,
i, to node, j, and σij(k) the number of such paths between i
and j, passing through k. Thus, betweenness centrality of a node
quantifies its influence over the communication or information
flow between all pairs of the nodes in a network.

In order to introduce heterogeneous connectivity in fitness
landscapes as described in the above section, the topology of
connections in the fitness landscape ismodeled upon Erdös Rényi
(ER) random graphs [4, 5]. It may be noted that a node refers to
a mutation in the fitness landscape. Henceforth, we will use the
terms node and mutation interchangeably. In ER graphs, every
pair of nodes is randomly connected with probability, p, and the
expected total number of connections therefore is pN(N − 1)/2.

Thus, the mean connectivity z of the resulting graph is z =

p(N − 1) ≃ pN, for large N. The degree distribution of an ER
network is approximated by a Poisson distribution in the limit
N → ∞ and is given by,

P(k) =
e−zzk

k!
(3)

An Erdös Rényi network is generated with fixed number of nodes,
N. Pairs of nodes are connected randomly with probability, p. For
z > 1, a single giant component is most likely to appear in the
network. Here, we consider only those nodes that are present in
the giant component.

We then ascribe a fitness value fi = 1+ si to each node i in the
giant component to define the fitness landscape. Here, si is the
selective effect of the mutation i. Let us randomly choose a node,
i, which can be referred to as the seed node. This seed node is
then assigned a value, si, which is a random number drawn from
an exponential distribution, P(Si) = αeαSi , with mean 1/α. In
the present context, the mean of this distribution represents the
selection strength of beneficial mutations in the population. In
accordance with earlier literature, we have set α = 20 [4, 51]
under the presumption of high influx of beneficial mutations
[51–54]. Now, to assign correlations in the fitness landscape, the
selective effect of sj of the neighboring node is drawn from a
distribution such that sj is conditional on si of the seed node.
Thus, each {sj| j ∈ neighborhood,H of i} is drawn from a gaussian
distribution having mean λsi and variance σ 2(1− λ2), according
to bivariate Gaussian distribution as shown in Equation (4).

P(sj|si) =
1

√

2πσ 2(1− λ2)
exp

(

−
(sj − λsi)

2

2σ 2(1− λ2)

)

(4)

Here, λ is a correlation parameter defined in [0, 1] where λ = 0
corresponds to uncorrelated fitness landscape.We now repeat the
same exercise for all neighbors of every member of {j | j ∈ H},
which have not yet been assigned a fitness value. This process
is conducted until all nodes in the network are assigned with a
fitness value [4].

We consider TIW based on node degree, node betweenness,
and node closeness [39–42] upon these networks. For a given
metric, two types of walks were performed—min-directed TIW
and max-directed TIW. A min-directed TIW starts from a
randomly chosen non local optimum. The walk is then directed
toward the neighboring node possessing minimum value of
the network metric under consideration, among all neighbors.
Similarly, a max-directed TIW starts from a randomly chosen
non local optimum. The walk is then directed toward the
neighboring node possessing the maximum value of the network
metric under consideration, among all neighbors. The process is
repeated until a local optimum is reached. Tomake the walks self-
avoiding, if a neighbor possessing the minimum (or maximum)
value of a given metric has already been traversed, the neighbor
with the second lowest (or highest) value is selected to continue
the walk. Thus, by definition, these walks are dictated by the
topology of connections in the fitness landscape and are not
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FIGURE 2 | Change in mean walk length of strictly adaptive walks (RAW, GAW) and topologically inspired walks (TIW) governed by minimum value of degree (ND),

betweenness (NB) and closeness (NC) of nodes vs. probability of connections, p. The topology of the genotype space is based upon Erdös Rényi graphs. The fitness

values are drawn from a bivariate Gaussian distribution having correlation parameter, λ and σ2 = 0.001,α = 20. (A–I) Are for a set of NE = 103 networks, with 103

walks performed on each network of nodes N = 512, 1024, and 2048, respectively, resulting in a total of 106 walks at a given value of p. (J–L) are for a set of

NE = 500 networks, with 103 walks performed on each network of N = 32768 nodes, resulting in a total of 5× 105 walks at a given value of p. Independent of N,

TIW can perform better than strictly adaptive walks on sparser random graphs at higher λ. The standard error is smaller than the size of the data points.

dependent upon fitness. As TIW are not explicitly driven by
genotype fitness, it might happen that TIW could fail to reach
a local optima. This scenario occurs when all the neighboring
nodes are already traversed but none leads to a local optimum,
owing to the self avoiding nature of these walks. We will discuss
this particular case in further detail in the next section.

In this work, mean walk length, Lmean, has been studied over
networks with number of genotypes (nodes), N = 29, 210, 211,
and, 215. The averages were obtained for network ensembles of
size NE = 1000 for a given value of probability, p. A set of
1000 walks are performed on each network, resulting in a total
of 106 walks for a given value of p, unless specified otherwise. For

N = 215, NE = 500 resulting in total of 5× 105 walks for a given
value of p. For every network, a set of correlated fitness values
governed by Equation (4) is assigned.

4. RESULTS AND DISCUSSIONS

Since TIW are not directed by fitness, questions arise as to
whether TIW would be able to reach a local optimum at all.
Remarkably however, we observe that some TIW can reach a
local optimum faster than even strictly adaptive walks—especially
in the biologically important regime of sparseness [50]. Figure 2
shows the mean walk length, Lmean, to reach a local optimum for
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points. All other conditions are as in Figure 2F.

different evolutionary walks, namely RAW, GAW and various
TIW, with respect to probability, p in a network with N =

512, 1024, 2048 and 32768 genotypes. This effect gets more
pronounced with increase in correlations of fitness value, λ. The
basic nature of variation of Lmean with respect to p is similar for
all values of genotypes, N, studied by us, thereby minimizing
concerns about results arising as artifacts of finite size effects.
The strong effect of fitness correlations over evolutionary walks
on a randomly connected genotype space is well-known [4]. For
completeness, degree distribution for different types of genotypes
depending on their fitness profiles are shown in Figure 3 for
λ = 0.9.

As aforementioned, TIW traverse paths where neighboring
nodes need not have higher fitness, unlike strictly adaptive walks.
Therefore, it would be interesting to determine the extent to
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other conditions are as in Figure 2F.

 0

 4

 8

 1  2  3  4  5

<
χ>

 (
%

) →

p * 10
3
 →

NDmax
NCmax
NBmax

NDmin
NCmin
NBmin

GAW
RAW

FIGURE 6 | Percentage of ensemble averaged fraction of TIW and strictly

adaptive walks that reach the global optimum, χ , vs. p. TIW can be governed

by the minimum and maximum value of degree (ND), closeness (NC) and

betweenness (NB) of nodes. λ = 0.9, N = 1024, and NE = 40000 with 105

walks performed on each network. The standard error is smaller than the size

of the data points. All other conditions are as in Figure 2F.

which TIW would permit a decrease in fitness, while venturing
from one genotype to another during evolution. Let 〈ns〉 denote
the ensemble averaged fraction of steps in a walk, where there
is a decrease in fitness. Obviously, ns = 0 for strictly adaptive
walks. As Figure 4 shows, TIW differ significantly from strictly
adaptive walks in this respect. Such action can be related to
actual evolutionary processes where to reach a local peak of
the fitness landscape, the population may choose a less fitter
mutation for their eventual survival in the long run [30, 31]. Thus
TIW, exhibit the characteristic of passing through genotypes
with lower fitness, and can successfully model non-adaptive
evolutionary experiments as discussed in the earlier section. As
mentioned therein, in vitro evolutionary experiments with E.
coli [30], S. typhimurium [31] and in vivo experiments with

Frontiers in Physics | www.frontiersin.org 5 December 2018 | Volume 6 | Article 138

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Grewal et al. Fitness Landscapes: Topologically Inspired Walks

TEM-1 β-lactamase [9, 24] display this effect. These results
on TIW are also in agreement with the evolutionary study
on lac operon where evolutionary paths connecting 19 fitness
peaks in the experimental fitness landscape, pass through
valleys [29].

Notably, Figure 5A shows that the mean walk length of max-
directed TIW is much larger than min-directed TIW. While
strictly adaptive walks are guaranteed to reach a local optimum,
TIW may not reach a local optimum but might remain at a
non local optimum. The propensity to remain in a non local
optimum indicates the inability of the genotype to evolve any
further. Such situations could correspond to unavailability of
fitter mutants or significant selection pressure cast upon the
genetic state of a population due to change in environmental
variables. Hence, such walks can be associated with routes toward
extinction when a population fails to adapt [55–57]. Let Wr

T

denote the total number of walks on the rth network ensemble
until a specified number of “successful” walks, Wr

S, can be
achieved. Obviously, here a “successful” walk refers to one where
a local optimum is reached. Herein, we choose Wr

S = 1000,∀r.
A number of walks, Wr

E are “exhausted” toward achieving Wr
S

walks, because these walks do not end up at a local optimum.
The ensemble averaged fraction of such exhausted walks is,
〈η〉 = 〈WE/WT〉. Obviously, η = 0 for strictly adaptive
walks. Interestingly, Figure 5B shows that max-directed TIW are
far more successful than min-directed TIW in reaching a local
optimum.

We further compare the fraction of TIW which successfully
reach the global optimum. Let, Wr

G be the number of walks
that reach the global optimum for the rth network ensemble.
Then, the ensemble averaged fraction of such walks is, 〈χ〉 =

〈WG/WT〉, where WT is defined earlier in the text. We find
that max-directed TIW outperform min-directed TIW as shown
in Figure 6. However, we also note that RAW and GAW has
a higher chance to reach the global optimum—which is not
surprising. We wish to emphasize that there neither of max-
TIW or min TIW is consistently better or preferred. Indeed, we
encounter an interesting tradeoff when it comes to choosing the
“better” TIW. On one hand, max-directed TIW possess a higher
chance of reaching the global optimum and are more “successful”
in reaching a local optimum. On the other hand, min-directed
TIW have a far smaller mean walk length for reaching a local
optimum.

Our results are in broad agreement with known evolutionary
facts. In a fitness landscape, the degree of a genotype indicates
the availability of viable mutations. A high degree genotype
enjoys the luxury of a broad range of viable mutations. This
seems to be associated with phenotypic diversity [58]. For
example, the vast majority of lin mutations are viable while
few are not [59]. On the other hand, a low degree genotype
in a fitness landscape has access to a lesser number of viable
mutations. It should be especially noted that availability of
lesser options for viable mutations does not mean that such
genes are unimportant in any way. In fact, the chances of

viable mutations for essential genes are extremely low, as well
known. Thus, evolution is likely to choose rather conserved
paths having such low degree nodes [60]. However, at the
same time, such paths may fail to reach a local optimum
due to limitations in genetic variation. Evolution may also
prefer genotypes with a higher degree, as in maximum-
degree directed TIW, to increase the phenotypic possibilities
in adverse conditions. Maximum-degree directed walks can
therefore explore larger part of the landscape due to constant
availability of a higher number of viable options. Thus they
have a higher probability in reaching a local optimum as
compared to minimum-degree directed walks, which is reflected
in Figure 5B.

5. CONCLUSION

In summary, modeling evolutionary walks on randomly
connected fitness landscapes by using topology rather than fitness
sheds new insight into evolutionary patterns. We introduce
the notion of topologically inspired walks. These walks are
dictated by the topology of connections in the fitness landscape
and are not dependent on fitness. TIW are not always hill
climbing and can go through hills and valleys as seen in
experiments [9, 24, 30, 31, 49, 61]. We have also considered
isolated genotypes due to the presence of lethal mutants [4, 5, 37]
in our model of correlated [26, 27] fitness landscapes. Interesting
tradeoffs are observed between topological walks directed by the
minimum and maximum value of any given network metric.
The mean length of adaptive walks, Lmean does not exhibit a
remarkable qualitative and indeed quantitative dependence upon
the topology of the underlying fitness landscape [4]. Lmean is
slightly smaller for networks with a scale-free degree distribution
(SF) when compared to ER networks on correlated fitness
landscapes [4]. This could be due to the reason that in SF
networks—the shortest path length, l, between two randomly
chosen nodes on a network of N nodes exhibits l ∝ log log N [62,
63]. On the other hand, in ER networks l ∝ logN [64].
Nevertheless, it would be interesting to see how TIW perform on
scale free networks or even on random networks with connection
probabilities dependent on fitness. Also, it would be interesting
to compare how TIW fare vis-a-vis fitness biased random walks
or foraging random walks which have been studied well in
literature [65–67].
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