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Collisionless plasmas, mostly present in astrophysical and space environments, often

require a kinetic treatment as given by the Vlasov equation. Unfortunately, the

six-dimensional Vlasov equation can only be solved on very small parts of the considered

spatial domain. However, in some cases, e.g. magnetic reconnection, it is sufficient

to solve the Vlasov equation in a localized domain and solve the remaining domain

by appropriate fluid models. In this paper, we describe a hierarchical treatment of

collisionless plasmas in the following way. On the finest level of description, the Vlasov

equation is solved both for ions and electrons. The next courser description treats

electrons with a 10-moment fluid model incorporating a simplified treatment of Landau

damping. At the boundary between the electron kinetic and fluid region, the central

question is how the fluid moments influence the electron distribution function. On the

next coarser level of description the ions are treated by an 10-moment fluid model

as well. It may turn out that in some spatial regions far away from the reconnection

zone the temperature tensor in the 10-moment description is nearly isotopic. In this

case it is even possible to switch to a 5-moment description. This change can be done

separately for ions and electrons. To test this multiphysics approach, we apply this full

physics-adaptive simulations to the Geospace Environmental Modeling (GEM) challenge

of magnetic reconnection.

Keywords: multiphysics coupling, kinetic plasmas, fluid descriptions, numerical simulations, reconnection

1. INTRODUCTION

One of the most important challenges in astrophysical, space and fusion plasmas is the treatment of
different spatial and temporal scales and the correct physical description on each of these different
scales.

In order to give a rough estimate for different plasma systems, let us first consider the warm
ionized phase (diffuse ionized hydrogen) in the interstellar medium. Here, the smallest relevant
kinetic scales are in the order of magnitude of kilometers, while the global scale of the system
is about 1013 km. In the heliosphere the scales are altogether smaller (kinetic scales about 2 km,
system scale about 108 km), but the ratio of global to kinetic scales is still astronomical in the truest
sense. The situation is similar in fusion plasmas: the electron skin depth is about 5 · 10−4 m and the
vessel measures about 10meters. In all these cases, it is not possible to carry out simulations which
represent all scales with the finest level (kinetic equations) of the physical description. Most of these
plasmas can be considered as collisionless, since collision times are orders of magnitude larger than
time scales relevant for the dynamical evolution of the plasma. Such plasmas can be modeled with
the kinetic Vlasov equation. Nevertheless, kinetic models are inherently computationally expensive,
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so that large–scale simulations of typical phenomena, as for
example magnetic reconnection or collisionless shocks, are
hardly feasible and only possible in localized regions of interest.
As an alternative, much cheaper fluid models can be considered,
but they lack the expressiveness and some physics of full kinetic
models, even though some of the effects may be included. Simple
treatments andmodeling of Landau damping in the same context
were proposed and analyzed in Wang et al. [1], Ng et al. [2],
and Allmann-Rahn et al. [3]. These studies were based on the
closure introduced by Hammett and Perkins [4] and successive
work in this direction [5, 6]. An extension providing heat fluxes
in the parallel and perpendicular directions (with respect to the
magnetic field) was presented in Sharma et al. [7]. An excellent
overview is given in Chust et al. [8].

Fortunately, many relevant problems like magnetic
reconnection or collisionless shocks exhibit a rather clear
separation of scales and regimes such that an adaptive approach
is promising and might combine the best of the two worlds:
cheap models where they are sufficient and detailed models
where they are necessary and interesting. The idea of coupling
different physical models is not new and has been applied in
different physical contexts. Schulze et al. [9] couple kinetic
Monte-Carlo and continuum models in the context of epitaxial
growth. Considerable efforts have been made to couple kinetic
Boltzmann descriptions with fluid models (see [10–14]). In the
context of plasma physics Sugiyama et al. [15, 16], Markidis
et al. [17] and Daldorff et al. [18] show ways to combine PIC
and MHD fluid models, Kolobov and Arslanbekov [19] describe
the transition from neutral gas models to models of weakly
ionized plasmas. In Rieke et al. [20] a coupling between the
Vlasov equation and a 5-moment model is presented. In recent
simulations by Tóth et al. [21, 22] and Makwana et al. [23] not
only the multiphysics but also the multiscale aspects have been
addressed by utilizing adaptive mesh refinement (AMR) in the
coupling strategy.

We take a slightly different route in solving the Vlasov
equation on the finest relevant scales and then adaptively use
less and less detailed fluid models outside the kinetic region.
In this way we have some control where to use which kind of
physical model at the expense of dealing with a substantiallymore
complicated computational infrastructure.

Our group has developed and is continuously developing and
improving methods and codes that are capable of combining
kinetic and fluid models during runtime [20], making it possible
to consider problems of the type mentioned above at much lower
expenses than before.

A sketch of this hierarchy is depicted in Figure 1. In the inner
zone, both ions and electrons are treated kinetically and solved
with the Vlasov equation. Adjacent to this zone, ions are still
modeled with the Vlasov equation but electrons are described
with a 10-moment fluid model. On the next coarser level of
description, the ions are also described by a 10-moment fluid
model. To ease the transition from the kinetic to the 10-moment
fluid description we apply the Landau closure developed inWang
et al. [1] in the fluid description. It may turn out that in some
spatial regions outside the reconnection zone the temperature
tensor in the 10-moment description is nearly isotopic. In this

case it is even possible to switch to a 5-moment description.
This change can be done separately for ions and electron. In
future studies we will also try to include the coupling of the 5-
moment model to magnetohydrodynamic (MHD) models (with
generalized Ohms law) which would represent the last step in this
hierarchy.

With this multiphysics strategy, these codes can be applied to
problem sizes that are otherwise impossible to reach with kinetic
simulations and the understanding of the impact of small scale
phenomena on the dynamics on global scales is in reach.

The outline of the paper is as follows: first we briefly describe
all the plasma models and the necessary numerical schemes
(Vlasov equation, 10- and 5-moment fluid equations, Maxwell’s
equations, the coupling procedure, the Landau fluid closure). We
will then study the Geospace Environmental Modeling (GEM)
reconnection setup [24] and perform comparisons to pure kinetic
and pure fluid simulations.

2. PLASMA MODELS

The plasma models that we have to consider are: (i) the Vlasov
equation, (ii) Maxwell’s equations, and (iii) the 10- and 5-
moment fluid equations. We will briefly summarize these sets of
equations.

2.1. Vlasov Equation
Collisionless plasmas on the finest level of description are
governed by the Vlasov equation

∂tfs(x, v, t)+v·∇xfs(x, v, t)+
qs

ms

(

E+v×B
)

·∇vfs(x, v, t) = 0 , (1)

where fs(x, v, t) denotes the phase-space density, qs and ms the
particle charge andmass for species s ∈ {e, i} (electrons and ions).
The electric and magnetic fields E and B are given by Maxwell’s
equations:

∇ · E =
ρ

ε0
(2a)

∇ · B = 0 (2b)

∂tB = −∇ × E (2c)

∂tE = c2
(

∇ × B− µ0j
)

(2d)

with speed of light c and electric constant ε0. Maxwell’s equations
depend on charge and current densities ρ and j, which are
obtained from the phase-space densities fs(x, v, t):

ρ : =
∑

s

qs

∫

fs(x, v, t) d
3v, (3a)

j : =
∑

s

qs

∫

vfs(x, v, t) d
3v . (3b)

Vlasov equation (1) andMaxwell’s equations (2) form a closed set
of equations and constitute the most fundamental description of
a collisionless plasma.
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FIGURE 1 | Oversimplified sketch of a multiphysics approach for tail reconnection.

2.2. Two-Species Fluid Equations
Fluid descriptions can be obtained from the Vlasov Equation (1)
by taking moments of the phase-space density fs,

µn,s : =

∫

vnfs(x, v, t) d
3v . (4)

Here, vn denotes the n-fold tensor product of v with itself, v0 : =
1. Typically, only the first few moments are considered since
a Gaussian distribution fs(x, v, t) is exactly represented by the
moments µ0,s, µ1,s, µ2,s (and all other moments equaling zero).

We will subsequently describe the 10- and 5-moment
equations. Consider the lowest moments up to µ3,s :

particle density: ns : = µ0,s =

∫

fs(x, v, t) d
3v (5a)

bulk velocity: ûs : =
µ1,s

µ0,s
=

1

ns

∫

vfs(x, v, t) d
3v

(5b)

energy density tensor: Es : = msµ2,s = ms

∫

v2fs(x, v, t) d
3v

(5c)

heat flux tensor: Qs : = msµ3,s = ms

∫

v3fs(x, v, t) d
3v

(5d)

ns, ûs, Es are evolved by the following equations, obtained from
the Vlasov Equation (1):

∂tns =− ∇ · (nsûs) (6a)

∂t(msnsûs) =− ∇ · Es + qs
(

nsE+ nsûs × B
)

(6b)

∂tEs =− ∇ ·Qs + 2qs sym

(

nsûsE+
1

ms
Es × B

)

(6c)

where sym(·) symmetrizes its argument. Naturally, these
equations are not closed. Designing appropriate fluid closures
have a long history. An excellent overview is given in Chust and
Belmont [8]. In order to mimic kinetic Landau damping effects,
several closures have been developed (see [5, 6]), all based on the
early Hammett and Perkins model [4].

Wang et al. [1] suggested a heat flux closure which
approximates a spectrum of wave numbers by one single
wave number k0. Following this idea, Allmann-Rahn et al. [3]
developed an improved model that is able to correctly describe
the kinetic scaling of average reconnection rate (λ/di)

−0.73 as
a function of the distance between the islands’ O-points λ and
where di denotes the ion skin depth (see Figure 9 in [3]).

In the simulations used in this paper the original k0-closure
fromWang et al. [1] is used. It approximates the divergence of the
heat flux with an expression that forces an anisotropic pressure
tensor to a more isotropic one. More precisely, the expression
reads

∇ ·Qs = vth,s|k0|(Ps − ps1) , (7)

with the pressure tensor Ps = Es −msnsûsûs, the scalar pressure
ps=

1
3 trPs and thermal velocity vth. The parameter k0 is choosen

on the order of the inverse Debye length. Together with (6), this
constitutes a closed set of ten fluid equations.

In future simulations it is planed to switch to the improved
model introduced in Allmann-Rahn et al. [3].

As an alternative to the 10-moment description, an even
simpler 5-moment description can be introduced where the
energy density tensor and heatflux tensor are replaced by the
scalar energy density Es = 1

2 trEs and vector heat flux Qs. The
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scalar energy density evolves in time according to:

∂tEs = −∇·Qs−∇·

(

5

2
psus −

1

2
msns(us · us)us

)

+qsnsus ·E (8)

Together with the assumption of adiabaticity, ∇ · Qs ≡ 0 ,
(6a, 6b, 8) form the set of five moment equations.

Completely analogous to the case of the Vlasov equation, the
source terms ρ and j in Maxwell’s Equations (2) are formed from
the particle densities ns (see Equation (5a)). Actually, as will be
described in section 3.3, only the current density j is needed to
propagate Maxwell’s equations.

3. NUMERICAL METHODS

3.1. Vlasov Equation
In order to circumvent the complexity that could arise from the
high dimensionality of the phase space, the Vlasov equation is
split into five one-dimensional problems using Strang splitting
[25]. These one-dimensional advection problems are solved
with a third order semi-Lagrangian flux-conservative scheme
introduced by [26]. Thus the scheme conserves density but
not energy. Work on conservation of momentum and energy
is in progress (see [27]) but not yet fully implemented in our
multiphysics framework.

In order tominimize the error due to the Strang splitting when
calculating the backward characteristics needed in the semi-
Lagrangian method, the cascade interpolation [28] is combined
with the Boris step [29] to form the backsubstitution method
introduced in Schmitz and Grauer [30]. Details of this procedure
can be found in Schmitz and Grauer [31].

The code is fully parallelized using the message passing
interface (MPI) [32] where the Vlasov part is solved in parallel
on distributed graphics cards using CUDA programming tools
[33].

3.2. Two-Species Fluid Equations
Both the 10-moment and the 5-moment two-species fluidmodels
are all discretized with the same numerical methods.

For the discretization in space, we use the CWENO scheme
introduced by Kurganov and Levy [34], an easy to implement
third order finite-volume scheme which is a perfect compromise
between sharp shock resolution and high-order approximation
in spatially smooth regions. A third order strong-stability-
preserving Runge-Kutta scheme [35] is employed for the time
integration.

3.3. Maxwell’s Equation
The electromagnetic fields are positioned on a staggered Yee grid
[36] in order to maintain the divergence free condition for the
magnetic field: ∇ ·B = 0. Equations (2c, 2d) are evolved through
the FDTD method presented in Taflove and Brodwin [37]. Here,
only the current density j enters as a source term. Since the
speed of light exceeds all other speeds found in the plasma by far,
subcycling is used in order to resolve lightwaves while keeping
the global timestep as large as possible. In addition, the speed of
light is artificially reduced to 20 times the Alfvén speed.

3.4. Adaptive Coupling
The coupling strategy is the most important and at the same
time the most critical part of the multiphysics simulations. The
coupling strategy involves two separate problems: first, providing
the correct boundary conditions at interfaces between different
physical models and second, designing criteria to decide which
model can be used in which part of the computational domain in
an adaptive way.

We start with discussing the strategy for obtaining boundary
conditions at the interfaces. Providing boundary conditions
for the fluid part at the kinetic/fluid interface is rather
straightforward: the fluid boundary conditions are obtained by
taking the necessary moments of the phase-space densities fs
at the interface. Providing boundary conditions for the phase-
space densities fs from the fluid description is far less trivial and
described in detail in Rieke et al. [20]. In short the procedure
can be summarized as follows: we first extrapolate the phase-
space density fs to the boundary region. Next, we adjust the
extrapolated phase-space density fs such that the moments equal
the moments from the 10-moment fluid description. In this way,
we only manipulate the phase-space density fs rather “smoothly”
with minimal changes and do not force fs to a Gaussian shape.
The coupling between the 10-moment and 5-moment fluid
regions is done in a very natural way. The boundary conditions
for the 5-moment description is simply obtained by calculating
the energy scalar from the trace of the energy density tensor.
In the other direction, the energy tensor has to be constructed
from the energy scalar by assuming a diagonal shape at the
10-/5-moment interface.

The criteria to decide which of the available models shall be
used in which subregion of the domain is a highly non-trivial
issue. Presently, our strategy is still in a phase of proof of concept
and further work has to be invested. For the case of magnetic
reconnection, we implemented heuristic criteria based on the
current density jz since it is a good indicator for regions of
high reconnection. In order to allow for a finer detachment of
electrons and ions, we actually use the velocity uz,s = nsûz,s for
electrons and ions separately. This is reasonable as the current
density is given by jz =

∑

s qsuz,s (compare (3b)). We note that
the same criterium is used to introduce a finer level of description
(e.g. changing a 10 moment fluid region into a Vlasov region) as
well as “coarsening” the physical model (e.g. changing a Vlasov
region into a fluid region). Also note that we do not introduce
overlap regions or buffer zones. It should be stated clearly that a
criterion based on the current density is rather heuristic and far
from universally applicable approach and further work has to be
invested on robust criteria.

In addition, once a criterion is considered satisfactory for the
context, thresholds have to be defined that mirror a good trade-
off between the need to use a higher-information model for a
correct representation and the opportunity to save computational
resources with a lower-information model. Up to know we can
only state that this is based on educated guesses.

3.5. Code Performance
The described numerical codes, the adaptive coupling procedures
and the parallelization framework based on space-filling curves
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TABLE 1 | Scaling behavior of muphy on JURECA across different problem sizes (absolute number of grid cells) and number of GPUs.

#GPUs →

#Cells ↓
20 21 22 23 24 25 26 27

226
1.27 h

(14.7)

0.59 h

(31.4)

228
4.60 h

(4.06)

2.40 h

(7.80)

1.23 h

(15.2)

0.62 h

(29.9)

230
18.7 h

(1.00)

9.71 h

(1.92)

4.92 h

(3.79)

2.76 h

(6.77)

1.25 h

(15.0)

0.70 h

(26.63)

232
20.6 h

(0.91)

10.0 h

(1.86)

4.97 h

(3.75)

2.62 h

(7.12)

1.32 h

(14.1)

0.69 h

(27.2)

234
20.8 h

(0.90)

10.8 h

(1.74)

5.24 h

(3.57)

2.83 h

(6.61)

Given are the times needed for 2,000 steps (in hours) and the relative speedup normalized to 230 cells on one GPU.

FIGURE 2 | Scaling behavior of muphy on JURECA. Same data as in Table 1.

TABLE 2 | Numerical setup of GEM.

dimensions of physical domain {x, y} ∈ {[−4π ..4π ], [−2π ..2π ]}di

cell-width of physical space dx =dy = π
64 di

size of subregions in physical space Ñx = Ñy = 32 cells

resolution of velocity space (kinetic region) Nvx = Nvy = Nvz = 32 cells

mass ratio
mi
me

= 25

temperature ratio
Ti
Te

= 5

speed of light c = 20 vA

isotropization length scale k0 = 5.0di

[38] is build in our framework called muphy. This framework
has been developed over the last 10 years. It is written in
C++/CUDA, runs partly on GPUs and partly on CPUs and
employs MPI for parallelization.

Scaling runs have been performed on the JURECA
supercomputer at the FZ Jülich, Germany [39], on a fully
kinetic Whistler-wave setting [18]. Scaling results are excellent
as shown in Table 1 and Figure 2. Note that the number
of GPUs was only restricted by the actual configuration of
JURECA.

TABLE 3 | Numerical setup of GEM.

kinetic iff … 10-moment iff not kinetic and …

thresholds
electrons max

∣

∣uz,e
∣

∣ ≥ 0.3vA max

∣

∣uz,e
∣

∣ ≥ 0.1 vA

ions max

∣

∣uz,i
∣

∣ ≥ 0.6vA max

∣

∣uz,i
∣

∣ ≥ 0.2 vA

Thresholds for the uz-criterion in units of Alfen-speed vA. They are evaluated for every

subregion separately. The five-moment model is used iff neither the kinetic nor the

ten-moment thresholds are met

4. RESULTS

We apply the described models and the multiphysics coupling
strategy to the Geospace Environmental Modeling (GEM)
Magnetic Reconnection Challenge [24], which has been set up
to study 2d reconnection. It is a Harris sheet equilibrium with
magnetic field

Bx(y) = B0 tanh(y/λ) ,

density

n(y) = n0 sech
2(y/λ) = n∞,
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FIGURE 3 |
∣

∣uz,e
∣

∣, jz and
∣

∣uz,i
∣

∣ for different times in units of inverse ion-gyrofrequencies ω−1
c,i . On the outsides, the preferred models are depicted based on the values

of uz,s and threshold as given in Table 3. Red areas are solved with the kinetic solver, blue areas with the ten-moment and yellow areas with the five-moment fluid

solver. Note that the initial spacial distribution of models at time t = 0 have been prescribed.

magnetic flux perturbation

ψ(x, y) = ψ0 cos(2πx/Lx) cos(πy/Ly),

initially uniform electron and ion temperatures of ratio Ti/Te =

5, and mass ratio mi/me = 25. Moreover, B0 = 1, n0 = 1, ψ0 =

0.1, λ = 0.5 in the standard normalized units. While the original

domain size is Lx = 25.6 di, Ly = 12.8 di, we use the slightly
smaller Lx = 8π di, Ly = 4π di with ion inertial length di, as we
have depicted in Table 2. The symmetry properties of the GEM
problem make it sufficient to calculate only one quarter of the
spatial domain. We use a uniform cell-width of dx = dy = π

64 di
in 2d physical space and a uniform resolution of 32 cells in each

direction in 3d velocity space. To reduce the computational costs,
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FIGURE 4 | jz at highest reconnection rate for the coupled run and some uncoupled comparison runs with a single solver.

FIGURE 5 | Reconnection fluxes for the coupled run and some uncoupled comparison runs with a single solver. Crosses mark the point of highest reconnection rate

throughout the respective run.

we use the reduced speed of light of 20 times the Alfvén speed.
The numerical setup is depicted in Table 2.

In the simulation we use the uz,s-based criterion with a
thresholds depicted in Table 3. The criterion is reassessed every
0.1ω−1

c,i (inverse ion-gyrofrequencies) for every subregion.

In Figure 3 the fields jz , uz,e and uz,i are shown together with
the areas depicting the different physical models for different
times of the simulation. From these figures one can deduce
that substantial saving in simulation time can be achieved since
the performance gain is approximately proportional to the ratio
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of the computational domain to the area where the Vlasov
equation is solved. A video showing the dynamical evolution
depicted in Figure 3 is available in the Supplementary Material

section.
In Figure 4, a comparison of different simulations are shown

and compared to the multiphysics run. Depicted is the current
density jz at the time of the highest reconnection rate. The fully
kinetic Vlasov simulation agrees rather well with themultiphysics
simulation. The overall agreement is substantially better than
the results obtained from the 10- and 5-moment simulations.
However, differences especially in the precise values of the
absolute maxima of the current density, are visible. Whether this
is an effect of the model selection criteria has to be tested in
further investigations.

As a more quantitative comparison, the reconnecting flux
for the multiphysics simulation is plotted in Figure 5 together
with purely kinetic and fluid runs. There are a number of things
to observe from the plot: While the reconnecting flux of the
fluid runs does not saturate within the simulation time, the
kinetic and the multiphysics runs saturate. In addition, they
both saturate at the same level and thus capture essentially the
same small scale physics which is not possible with the fluid
models.

Alone the presence of electron and ion kinetic regions in the
very center of reconnection zone and 10-moment fluid regions
around it seems to ensure the characteristic behavior of the full
kinetic reconnection scenario.

5. DISCUSSION

We showed that the proposed multiphysics coupling hierarchy
can give excellent results even when only a small part of
computational domain near the reconnection zone is captured
with a kinetic model.

However, still many questions and challenges remain and it

is clear that the present simulations are only on the level of a

proof of concept. Most important is the issue of designing robust
physics refinement criteria and their thresholds. First attempts
based on the heat flux are under investigation. In addition,
the multiphysics coupling strategy should be formulated as an

asymptotic preserving scheme [40, 41]. The coupling of the 10-
and 5-moment models is already in this state when incorporating
the effect of Landau damping [1, 3]. Presently, we are also
reformulating the coupling between the Vlasov and the 10-
moment model. For this, we formulate the kinetic description as
an adaptive (in time and space) δf method and ease the transition
to the fluid description as an asymptotic preserving scheme.
Finally, the multiphysics hierarchy should not stop at the level of
the 5-moment fluid description. Work to couple the 5-moment
model to MHD is in progress.
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