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Adding the terms quadratic in the curvature to the Einstein-Hilbert action renders

gravity renormalizable. This property is preserved in the presence of the most general

renormalizable couplings with (and of) a generic quantum field theory (QFT). The price to

pay is a massive ghost, which is due to the higher derivatives that the terms quadratic

in the curvature imply. In this paper, the quadratic gravity scenario is reviewed including

the recent progress on the related stability problem of higher derivative theories. The

renormalization of the theory is also reviewed and the final form of the full renormalization

group equations in the presence of a generic renormalizable QFT is presented. The

theory can be extrapolated up to infinite energy through the renormalization group if

all matter couplings flow to a fixed point (either trivial or interacting). Moreover, besides

reviewing the above-mentioned topics, are some further insight on the ghost issue and

the infinite energy extrapolation are provided. There is hope that in the future, this scenario

might provide a phenomenologically viable and UV complete relativistic field theory of all

interactions.

Keywords: renormalization group, gravity, fixed point, relativity, field theory

1. INTRODUCTION AND SUMMARY

Relativistic field theories are the commonly accepted framework to describe particle physics and
gravity, at least at currently accessible energies. An important question is whether such a framework
could hold up to infinite energies and still agree with the experimental data. There are two serious
difficulties that one has to overcome in order to give a positive answer to such a challenging
question: the non-renormalizability of Einstein gravity [1, 2] and the presence of Landau poles
in the Standard Model (SM).

Even if one does not quantize the gravitational field, it is known that quantum corrections due to
any relativistic QFT generate terms that are not present in the Einstein-Hilbert action: specifically,
local terms quadratic in the curvature tensor and with coefficients of dimension of non-negative
powers of energy are generated [3], even if one sets them to zero at the classical level. Therefore, it
is not possible to avoid them in a relativistic field theory. The resulting theory is commonly known
as quadratic gravity1 (QG). Starobinsky [4] exploited these unavoidable terms and noted that a
non-singular solution that is initially in the de Sitter space can be obtained by taking them into
account. This resulted in a pioneering model of inflation, one of the models favored by the Planck
collaboration [5].

What happens if the quantum dynamics of the gravitational field is taken into account in QG?
Weinberg [6] and Deser [7] suggested that QG is renormalizable (all physical quantities can be
made finite by redefining the parameters and re-normalizing the fields) and few years later Stelle
proved it rigorously [8].

1Other names sometimes used are “R2 gravity” and “higher derivative gravity,” as terms quadratic in the curvature have more

than two derivatives of the gravitational field.
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The presence of these local quadratic terms implies that
classical QG belongs to the class of higher derivative theories
analyzed a long time ago by Ostrogradsky [9], who proved
that their Hamiltonian is unbounded from below. In QG, this
manifests in the presence of a massive ghost, which is the price
to pay to have a relativistic field theory of quantum gravity2.
The importance of the quantum gravity problem has, however,
encouraged several physicists to investigate whether QG can
make sense and some recent progress in the ghost problem
has been made. Most of the work done so far addressed the
ghost problem within finite dimensional quantum mechanical
models, and therefore, the case of a relativistic field theory (and
in particular of QG) remains an important target for future
research.

Another potential issue of QG is the clash between stability
(understood as the absence of tachyons) and the absence of
Landau poles [12, 13]: whenever the parameters were chosen
to ensure stability, perturbation theory featured a Landau pole.
Specifically, this Landau pole affected the parameter f0 appearing
in the Lagrangian as

√−gR2/f 20 , where g is the determinant of the
spacetime metric gµν and R is the Ricci scalar. Some progress has
also been made in regards to this problem. In Salvio and Strumia
[14], it was shown that QG coupled to a renormalizable QFT
can hold up to infinite energies provided that all the couplings
flow to a UV fixed point and the gravitational sector flows to
conformal gravity (a version of gravity that is invariant under
Weyl transformations, gµν(x) → e2σ (x)gµν(x), where σ is a
generic function of the spacetime point x.). The requirement that
the QFT part enjoys a UV fixed point indicates the presence of
several particles beyond the SM, which could be searched for with
current and/or future particle experiments and could account for
the strong evidence of new physics that we undoubtedly already
have (such as neutrino oscillations and dark matter).

The aim of this work is to review what is known so far about
QG (taking into account the coupling to a general renormalizable
QFT). Other monographs and books on QG are present in the
literature (see e.g., [15, 16], which focused on the renormalization
of the theory). This review also includes the recent progress on
the two problems mentioned above (the ghost and the Landau
poles) and provides further insight on these issues. The article is
structured as follows:

• In section 2, the action of QG coupled to a generic
renormalizable QFT is discussed and the known physical
degrees of freedom are identified with a new physically
transparent method.

• Section 3 discusses the renormalizability of the theory; given
that detailed proofs are present in the literature and, as
mentioned above, books and reviews on this subject already

2It should be noted that QG is distinct from the asymptotic safety proposal for

quantum gravity made in Weinberg [10], where all the possible terms (including

the non-renormalizable ones beyond the quadratic order) are included: in QG

only renormalizable interactions are introduced so that only a finite number of

parameters are present. This guarantees the predictivity of the theory. Possibly

the ghost can be avoided by introducing an infinite series of higher-derivative

terms [11], which can be viewed as non-local terms, but the resulting gravity

theories contain infinite free parameters and are not known to be renormalizable.

exist, we recall and elucidate a known intuitive argument
in favor of renormalizability by providing more details than
those currently available. In section 3, we also collect from
the existing literature the full renormalization group equations
(RGEs) for the dimensionless and dimensionful parameters of
QG coupled to the most general renormalizable QFT.

• Section 4 is devoted to a pedagogical and detailed discussion of
the ghost problem and the recent progress that has been made
on this subject; most of the discussion, however, will be limited
to simple finite dimensional quantum mechanical models and
the extension to the full QG case remains an important target
for future research.

• Section 5 reviews the issue of the Landau poles and how QG
can flow to conformal gravity even in the presence of a generic
QFT sector.

2. THE THEORY (INCLUDING A GENERAL
MATTER SECTOR)

In this review, we do not consider only pure gravity but also its
couplings to a general renormalizable matter sector.

2.1. Jordan-Frame Lagrangian
The full action in the so-called Jordan frame is,

S =
∫

d4x
√

−g L, L = Lgravity + Lmatter + Lnon−minimal.

(2.1)
We describe in turn the three pieces—the pure gravitational
Lagrangian, Lgravity; the matter Lagrangian, Lmatter; the non-
minimal couplings, Lnon−minimal.

The Pure Gravitational Lagrangian
Lgravity in quadratic gravity is obtained from the Einstein-
Hilbert action by adding all possible local terms quadratic in
the curvature, whose coefficients have the dimensionality of
non-negative powers of energy:

Lgravity = αR2 +βRµνRµν + γRµνρσRµνρσ −
M̄2

P

2
R−3, (2.2)

where Rµνρσ , Rµν , and R are the Riemann tensor, Ricci tensor,
and Ricci scalar, respectively3, and the Greek indices are
raised and lowered with gµν . Furthermore, α, β , and γ are
generic real coefficients. If the theory lives on a spacetime with
boundaries, then one should also introduce in Lgravity a term
proportional to 2R, where 2 is the covariant d’Alembertian, in
order to preserve renormalizability [17–19]; in the applications
described in this review such a term will not play any
role and, therefore, will be neglected. Finally, M̄P and 3

are the reduced Planck mass and the cosmological constant,
respectively.

3In this review we use the signature ηµν = diag(+1,−1,−1,−1) and define

R ρ
µν σ ≡ ∂µŴ

ρ
ν σ − ∂νŴ ρµσ + Ŵ ρµ τŴ τν σ − Ŵ ρν τŴ τµ σ , Ŵ ρµσ ≡ 1

2
gρτ

(

∂µgστ

+∂σ gµτ − ∂τ gµσ
)

, Rµν ≡ R ρ
ρµ ν , R ≡ gµνRµν .
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One combination of the terms in (2.2) is a total (covariant)
derivative, the topological Gauss-Bonnet term:

G ≡ RµνρσR
µνρσ−4RµνR

µν+R2 = 1

4
ǫµνρσ ǫαβγ δR

αβ
µνR

γ δ
ρσ = divs.,

(2.3)
where ǫµνρσ is the antisymmetric Levi-Civita tensor and “divs"
represents the covariant divergence of some current. This total
derivative does not contribute to the field equations and can be
often ignored. It is therefore convenient to write (2.2) as,

Lgravity = (α−γ )R2+(β+4γ )RµνR
µν+γG− M̄2

P

2
R−3. (2.4)

Furthermore, for reasons that will become apparent when the
degrees of freedom will be identified in section 2.3, it is also
convenient to express RµνR

µν in terms of W2 ≡ WµνρσW
µνρσ ,

whereWµνρσ is the Weyl tensor.

Wµναβ ≡ Rµναβ +
1

2
(gµβRνα − gµαRνβ + gναRµβ − gνβRµα)

+1

6
(gµαgνβ − gναgµβ )R. (2.5)

One has

1

2
WµνρσW

µνρσ = 1

2
RµνρσR

µνρσ − RµνR
µν + 1

6
R2, (2.6)

which, together with the definition of G in (2.3), gives

RµνR
µν = W2

2
+ R2

3
− G

2
. (2.7)

By inserting this expression of RµνR
µν in (2.4), one finds,

Lgravity =
R2

6f 20
− W2

2f 22
− ǫG− M̄2

P

2
R−3. (2.8)

where

f 20 ≡ 1

2β + 2γ + 6α
, f 22 ≡ − 1

β + 4γ
, ǫ ≡ β

2
+ γ . (2.9)

We have introduced the squares f 20 and f 22 because the absence of
tachyonic instabilities requires f 20 > 0 and f 22 > 0, as we will see
in Sections 2.2, 2.3, and, in a more general context, in section 5.

The Matter Lagrangian
The general matter content of a renormalizable theory includes
real scalars φa, Weyl fermions ψj, and vectors VA

µ (with field

strength FAµν) and its Lagrangian is,

Lmatter = −1

4
(FAµν)

2 + Dµφa D
µφa

2
+ ψ̄ji /Dψj

−1

2
(Ya

ijψiψjφa + h.c.)− V (φ)− 1

2
(Mijψiψj + h.c.),

(2.10)

where

V(φ) = m2
ab

2
φaφb +

Aabc

3!
φaφbφc +

λabcd

4!
φaφbφcφd, (2.11)

where all the terms are contracted in a gauge-invariant way. The
covariant derivatives are4:

Dµφa = ∂µφa + iθAabV
A
µφb Dµψj = ∂µψj + itAjkV

A
µψk

+1

2
ωab
µ γabψj

The gauge couplings are contained in the matrices θA and
tA, which are the generators of the gauge group in the scalar
and fermion representation, respectively, whereas Ya

ij and λabcd
are the Yukawa and quartic couplings, respectively. We have
also added general renormalizable mass terms and cubic scalar
interactions. Of course, for specific assignments of the gauge and
global symmetries, some of these parameters can vanish, but here
we use a general expression.

The Non-minimal Couplings
Lnon−minimal represents the non-minimal couplings between the
scalar fields φa and R:

Lnon−minimal = −1

2
ξabφaφbR, (2.12)

where all terms are contracted in a gauge-invariant way. Non-
minimal couplings are required by renormalizability, and if they
are omitted at the classical level, quantum corrections generate
them (as we will see in section 3.2.1).

2.2. Einstein Frame Lagrangian
The action in the Jordan frame is most suited to address the
quantum aspects and to make contact with particle physics.
However, when it comes to cosmological applications it is often
better to express the gravitational part of the theory in a form
closer to Einstein gravity [20, 21]. This will also help us in
identifying the degrees of freedom in section 2.3. We now review
how to obtain such a form of the theory and, in doing so, we shall
neglect quantum corrections, which are anyway best studied in
the Jordan frame.

The non-standard R2 term can be removed by adding to the
Lagrangian the term

−
√

−g
(R+ 3f 20 χ/2)

2

6f 20
, (2.13)

where χ is an auxiliary field. This Lagrangian vanishes once the
χ EOM are used and we are therefore free to add it to the total
Lagrangian. However, this has the effect of modifying the non-
minimal couplings. The term linear in R in the Lagrangian now
reads as:

− 1

2

√

−g f (χ ,φ)R, f (χ ,φ) ≡ M̄2
P+ξabφaφb+χ . (2.14)

4The spin-connection ωab
µ is defined as usual by ωab

µ = eaν∂µe
bν + eaρŴ

ρ
µσ e

bσ and

γab ≡ 1
4 [γa, γb].
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In order to get rid of this remaining non-standard term, we
perform a Weyl transformation:

gµν →
M̄2

P

f
gµν , φa →

(

f

M̄2
P

)1/2

φa, ψj →
(

f

M̄2
P

)3/4

ψj, VA
µ → VA

µ . (2.15)

Now the Lagrangian can still be written as in (2.1), but with

Lgravity = −W2

2f 22
− M̄2

P

2
R+ divs., Lnon−minimal = 0, (2.16)

Lmatter = −1

4
(FAµν )

2 + ψ̄ji /Dψj −
1

2
(Ya

ijψiψjφa + h.c.)

−
√
6M̄P

2ζ
(Mijψiψj + h.c.)+ 6M̄2

P

ζ 2

Dµφa D
µφa + ∂µ ζ∂µζ

2

−U(ζ ,φ), (2.17)

where we defined5 ζ ≡
√

6f and

U(ζ ,φ) ≡ 36M̄4
P

ζ 4

[

V (φ)+3+ 3f 20
8

(

ζ 2

6
− M̄2

P − ξabφaφb
)2
]

.

(2.18)
In Lgravity, we have not explicitly written the total derivatives as
they typically do not play an important role in cosmology. These
total derivatives emerge when theWeyl transformation is applied
to the two terms proportional to ǫ in (2.8).

The advantage of this form of the Lagrangian, known as the
Einstein frame, is the absence of the non-minimal couplings and
the R2 term. The latter has effectively been traded with the new
scalar ζ , which appears non-polynomially. The scalar kinetic
terms are non-canonical and cannot be put in the canonical
form with further field redefinitions given that the scalar field
metric is not flat. Moreover, the Einstein frame potentialU differs
considerably from the Jordan-frame one, V + 3. This result is a
particular case of a more general theorem involving the generic
functions f (R) of the Ricci scalar (for a review on f (R) theories
see e.g., [22] and references therein). Also, note that theW2 term
is present in the Einstein frame.

It is instructive to write the potential for ζ when the
other fields φa are not present or are at the minimum of the
potential and are not allowed to fluctuate (for example, because
they have very large masses). In this case, one can make the
kinetic term of ζ canonical through the field redefinition ζ =√
6M̄P exp(ω/(

√
6M̄P)). The new field ω feels a potential,

U(ω) = 3e−4ω/
√
6M̄P + 3f 20 M̄

4
P

8

(

1− e−2ω/
√
6M̄P

)2
, (2.19)

where we have neglected V (φ) and ξabφaφb as they can be
absorbed in3 and M̄2

P, when the scalar fields φa are absent or they
are fixed to constant values. This is the potential of the famous
Starobinsky’s inflationary model [4]. There is a stationary point
of U for

e−2ω/
√
6M̄P = 3f 20 M̄

4
P/8

3+ 3f 20 M̄
4
P/8

(2.20)

5Notice that in order for the metric redefinition in (2.15) to be regular one has to

have f > 0, and thus we can safely take the square root of f .

whenever the right-hand side of the above equation is positive.
For positive cosmological constant, 3 > 0, such a stationary
point always exists for f 20 > 0 when it is a point of minimum,
but for f 20 < 0 either the stationary point does not exist or it is
a point of maximum, not minimum. This situation is illustrated
in Figure 1 and it is a special case of a more general result (valid
when the other scalars φa can fluctuate freely), which proves that
a minimum of the potential exists only for f 20 > 0 and will be
presented in section 5.

2.3. The Degrees of Freedom of Quadratic
Gravity
In section 2.2 we have seen that the R2 term is equivalent to a
real scalar ζ . We now complete the determination of the degrees
of freedom of QG. We do so by working in the Einstein frame,
where the gravity Lagrangian is the same as that in (2.16). The
degrees of freedom associated with the matter Lagrangian can be
identified with standard field theory methods and, therefore, we
do not discuss them explicitly here.

The total derivatives (“divs") in (2.16) do not modify the
degrees of freedom and for this reason will be neglected.
Therefore, we focus on the following two terms in the gravity
action:

SW + SEH , (2.21)

where SW is the part due to the unusual Weyl-squared term,

SW =
∫

d4x
√

−g

[

− W2

2f 22

]

, (2.22)

and SEH is the usual Einstein-Hilbert part,

SEH =
∫

d4x
√

−g

[

− M̄2
P

2
R

]

. (2.23)

We will use a 3+ 1 formalism (where space and time are treated
separately). We do so because the identification of the degrees of
freedom is particularly simple within that formalism.

In this section, however, we will expand the metric around
the flat spacetime, ds2

flat
= dt2 − dEx2 as that is sufficient to

determine the degrees of freedom perturbatively6. By choosing
the Newtonian gauge, the metric describing the small linear
fluctuations around the flat spacetime can be written as,

ds2 = (1+ 28(t, Ex))dt2 − 2Vi(t, Ex)dtdxi −
[

(1− 29(t, Ex))δij
+hij(t, Ex)

]

dxidxj. (2.24)

By definition, the vector Vi (not to be confused with the
spatial components of the gauge fields VA

µ ) and the tensor hij
perturbations satisfy the following conditions:

∂iVi = 0, hij = hji, hii = 0, ∂ihij = 0. (2.25)

The Newtonian gauge is often used to study the small linear
fluctuations around the Friedmann-Robertson-Walker (FRW)

6For a discussion of a possible form of the non-perturbative spectrum see Holdom

and Ren [23, 24].
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FIGURE 1 | Einstein frame potential as a function of the canonically normalized scalar ω equivalent to the scalar ζ corresponding to the R2 term in the Lagrangian.

The quantity f20 is chosen to be positive (negative) on the left (right). A minimum exists only for f20 > 0, which corresponds to Starobinsky’s inflationary model.

TABLE 1 | Degrees of freedom in the gravitational sector.

Field Spin Mass

Graviton 2 0

Ghost 2 M2 ≡ f2M̄P/
√
2

Scalar ζ 0 M0 ≡ f0M̄P/
√
2+ . . .

The scalar ζ is due to the R2 term in the Lagrangian; the dots in its mass M0 represent

the possible contribution of other scalars mixing with ζ (if any), which can be present in

specific models.

cosmological metric (see e.g., [25] for a textbook treatment).
Instead, here we study the fluctuations around the flat spacetime
for simplicity. Also, sometimes the Newtonian gauge is defined
for the scalar perturbations 8 and 9 only (see e.g., [25]). Here
we consider a generalization, which also includes the non-scalar
perturbations7. In Table 1, we provide the degrees of freedom of
the gravitational sector (the part of the spectrum due to Lgravity).
This includes the scalar ζ found in section 2.2 and the ordinary
graviton and a massive spin-2 ghost graviton, which will be
identified in the following sections (2.3.1, 2.3.2, and 2.3.3).

2.3.1. Helicity-2 Sector
We start with the helicity-2 sector, whose quadratic action is
denoted as S(2). Both SEH and SW contribute to this action. The
helicity-2 quadratic action from SEH and SW are, respectively,

S
(2)
ES = M̄2

P

8

∫

d4x
(

ḣijḣij + hij E∇2hij

)

,

S
(2)
W = − 1

4f 22

∫

d4x
(

ḧijḧij + 2ḣij E∇2ḣij + hij E∇4hij

)

, (2.26)

7A possible gauge dependent divergence of hij has been set to zero by choosing the

gauge appropriately.

where a dot denotes a derivative w.r.t. to time t, E∇4 ≡ ( E∇2)2 and
E∇2 is the three-dimensional Laplacian. Therefore,

S(2) = SEH + SW = M̄2
P

8M2
2

∫

d4x
[

−ḧijḧij − 2ḣij E∇2ḣij − hij E∇4hij

+M2
2

(

ḣijḣij + hij E∇2hij

)]

, (2.27)

whereM2
2 ≡ f 22 M̄

2
P/2.

One can go to momentum space with a spatial Fourier
transform,

hij(t, Ex) =
∫

d3p

(2π)3/2
eiEp·Ex

∑

λ=±2

hλ(t, Ep)eλij(p̂), (2.28)

where eλij(p̂) are the usual polarization tensors for helicities λ =
±2. We recall that for p̂, along the third axis, the polarization
tensors satisfying (2.25) are given by,

e+2
11 = −e+2

22 = 1/2, e+2
12 = e+2

21 = i/2, e+2
3i = e+2

i3 = 0,

e−2
ij = (e+2

ij )∗ (2.29)

and for a generic momentum direction p̂ we can obtain eλij(p̂)

by applying to (2.29) the rotation that connects the third axis
with p̂. The polarization tensors defined in this way also obey the
orthonormality condition,

eλij(q̂)(e
λ′
ij (q̂))

∗ = δλλ
′
. (2.30)
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By using the Fourier expansion in (2.28), one obtains

S(2) = M̄2
P

8M2
2

∑

λ=±2

∫

dtd3p
[

−ḧ∗λḧλ + 2ḣ∗λEp 2ḣλ − h∗λEp 4hλ

+M2
2

(

ḣ∗λḣλ − h∗λEp 2hλ

)

]

= M̄2
P

8M2
2

∑

λ=±2

∫

dtd3p
[

−ḧ∗λḧλ + (ω2
1 + ω2

2)|ḣλ|2

−ω2
1ω

2
2|hλ|2

]

, (2.31)

where

ω1 ≡
√

Ep 2 +M2
2 , ω2 ≡ |Ep |. (2.32)

The action S(2) is the sum of the actions of Pais-Uhlenbeck
oscillators, which will be studied in section 4.1.2. There we
will see that this system is equivalent to a ghost d.o.f. with
frequency ω1 and a normal d.o.f. with frequency ω2. Therefore,
the conclusion is that the helicity-2 sector features a massless
field (the ordinary graviton) and a ghost field8 with mass M2 ≡
f2M̄P/

√
2. Therefore, as anticipated before, we see that f 22 > 0

is required to avoid tachyonic instabilities. Lorentz invariance
implies that the helicity-1 and helicity-0 components of the
massive ghost should be present too.Wewill see how they emerge
in the following sections 2.3.2 and 2.3.3. The derivation of the
ghost field presented here simplifies and agrees with previous
proofs based on the hµν propagator [8, 27].

2.3.2. Helicity-1 Sector
Next, we move to the helicity-1 sector, whose quadratic action
is denoted here by S(1). S(1) is given by the sum of the Einstein-
Hilbert contribution,

S
(1)
EH = M̄2

P

4

∫

d4x
(

∂iVj

)2
, (2.33)

and the Weyl contribution,

S
(1)
W = − 1

2f 22

∫

d4x
(

∂iV̇j∂iV̇j − Vi E∇4Vi

)

. (2.34)

Therefore, the full quadratic action in the helicity-1 sector is,

S(1) =
∫

d4x
M̄2

P

4M2
2

[

V̇j E∇2V̇j + Vi E∇4Vi −M2
2Vj E∇2Vj

]

. (2.35)

Given that E∇2 is a negatively-defined operator, we see that Vi

has a ghost kinetic term and a mass M2 and has, therefore, to be
identified with the helicity-1 components of the massive spin-2
ghost.

8Starting from the initial action (2.8), it is possible to perform field redefinitions

and use the auxiliary field method to make the ghost field explicitly appear in the

Lagrangian [26]. This is equivalent to what has been done in section 2.2 to make

the scalar field ζ appear explicitly in the Lagrangian.

2.3.3. Helicity-0 Sector
We denote the helicity-0 action by S(0), which has one
contribution from the Weyl-squared term and one from the

Einstein-Hilbert term, S(0) = S
(0)
W + S

(0)
EH . Expanding around the

flat spacetime leads to the following helicity-0 action (modulo
total derivatives)

S
(0)
W = − 2

3f 22

∫

d4x
[

E∇2 (8+9)
]2

, (2.36)

S
(S)
ES = M̄2

P

2

∫

d4x
[

−69̇2 + 49 E∇28− 29 E∇29
]

. (2.37)

The variation of S(0) with respect to8 gives

− 4

3f 22 M̄
2
P

E∇4 (8+9)+ 2 E∇29 = 0. (2.38)

We see that this equation does not depend on the time derivative
of the fields and, therefore, has to be considered as a constraint.
Solving for8:

8 = −9 + 3M2
2
E∇−29 . (2.39)

In the expression above, E∇−2 denotes the inverse Laplacian,
which can be defined by going to momentum space, Ep,
and identifying E∇−2 → −1/Ep 2. Inserting (2.39) into
Equations (2.36) and (2.37) we get,

S(0) = M̄2
P

2

∫

d4x
[

−69̇2 − 69 E∇29 + 6M2
29

2
]

= 3M̄2
P

∫

d4x
[

−(∂9)2 +M2
29

2
]

. (2.40)

We see that the kinetic term of9 is of the ghost type and its mass
is M2. Therefore, 9 represents the helicity-0 component of the
ghost spin-2 field.

3. RENORMALIZATION

One of the main motivations for considering QG is its improved
quantum behavior with respect to Einstein theory. Therefore, it
seems appropriate to discuss the renormalization properties right
after the definition of the theory.

3.1. Renormalizability
The renormalizability of QG is suggested by simple power
counting arguments, general covariance, and dimensional
analysis. It is therefore not surprising that some authors [6, 7]
noted this property several decades ago. There are also formal
proofs [8, 28] of the renormalizability of QG, but we do not
reproduce them here because they are described in detail in the
original articles9.

It is illuminating, however, to recall the main ingredients
of the intuitive arguments in favor of renormalizability. Let
us consider the expansion of QG around the flat spacetime,

9These formal derivations can also be extended to include the general

renormalizable matter sector considered in section 2.
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gµν = ηµν + hµν , and a generic loop correction in momentum
space. The vertices involving hµν contain at most 4 powers of
the momenta p, whereas the hµν-propagator behaves as 1/p4

for large momenta if an appropriate quantization is used [8]
(see below). Therefore, in this case, the superficial degree of
divergence should be four or less (see, for example, Chapter 12
of [29]). This conclusion holds good both in the pure QG and in
the presence of the most general renormalizable QFT.

It is instructive to illustrate the quantization that leads to a
propagator that behaves as 1/p4 for large momenta. The presence
of the ordinary graviton and the spin-2 ghost with mass M2 tells
us that the hµν-propagator should have two poles,

Zgraviton

p2 + iǫ
,

Zghost

p2 −M2
2 + iǫ′

, (3.1)

where Zgraviton and Zghost are the corresponding residues and we
have allowed for two a priori different prescriptions, ǫ and ǫ′.
Both the poles are proportional to the same tensor structure as
they both have spin-2. The requirement that the hµν-propagator
behaves as p4 for largemomenta leads to the condition Zgraviton =
−Zghost. In this case, the hµν-propagator is proportional to,

1

p2 + iǫ
− 1

p2 −M2
2 + iǫ′

= − M2
2

(p2 + iǫ)(p2 −M2
2 + iǫ)

(3.2)

+π iδ(p2 −M2
2)(sign(ǫ

′)− sign(ǫ)),

where we have used the formula,

1

x± iǫ
= P

1

x
∓ iπδ(x) (3.3)

with P being the principal part. The second term on the right-
hand side of Equation (3.3) corresponds to the fact that the poles
are shifted in different directions in the complex energy plane
for sign(ǫ′) 6= sign(ǫ). Therefore, one obtains a propagator that
behaves as 1/p4 only if10 sign(ǫ′) = sign(ǫ). Given that the
absolute values of ǫ and ǫ′ are not important this final condition
can be simplified to ǫ = ǫ′.

The condition ǫ = ǫ′ implies that the ghost should be
quantized by introducing an indefinite metric on the Hilbert
space [8]. The easiest way to show this is by looking at the action
S(0) of the helicity-0 component of the ghost in (2.40). This
allows us to avoid the complications due to spacetime indices.
The corresponding Lagrangian is,

L
(0) = 1

2

(

−9̇2 −9 E∇29 +M2
29

2
)

, (3.4)

where we have canonically normalized 9 by rescaling 9 →
9/

√
6M̄P. The conjugate variable is then,

59 = ∂ L
(0)

∂9̇
= −9̇ (3.5)

10To convince ourselves of the correctness of this statement one could insert the

propagator in (3.3) in a loop integral; the effect of the Dirac δ-function is to drop

one momentum integration and to add a power of momentum at the denominator,

for a total of two (not four) momenta in the power counting.

and the canonical commutators are:

[9(t, Ex), 9̇(t, Ey)] = −iδ(3)(Ex− Ey), [9(t, Ex),9(t, Ey)] = 0,

[9̇(t, Ex), 9̇(t, Ey)] = 0. (3.6)

Performing a spatial Fourier transform and demanding 9 to
solve its EOM leads to,

9(t, Ex) =
∫

d3p
√

2(2π)3ω(Ep)
(

b0(Ep)eiEp·Ex−iω(Ep)t + b0(Ep)†e−iEp·Ex+iω(Ep)t
)

,

(3.7)

where ω(Ep) ≡
√

Ep 2 +M2
2 , and the commutation rules above

imply the following:

[b0(Ep), b0(Eq)†] = −δ(Ep− Eq), [b0(Ep), b0(Eq)] = 0. (3.8)

At this point we have a choice. We can either

1 interpret the b0 (b
†
0) as annihilation (creation) operators, or

2 interpret the b0 (b
†
0) as creation (annihilation) operators.

In Case 1, as we will see in section 4.2.1, one should introduce an
indefinite metric on the Hilbert space. In Case 2, the indefinite
metric can be avoided, but the energies are negative; this
statement will be shown in section 4.2.1, but its correctness is
intuitive because in that case one would interpret −ω(Ep) (rather
than +ω(Ep)) as the energy. Let us compute the propagator P(x)
in the two cases. The definition is,

P(x) ≡ 〈0|T9(t, Ex)9(0)|0〉 = θ(t)P+(x)+ θ(−t)P−(x), (3.9)

where

P+(x) ≡ 〈0|9(t, Ex)9(0)|0〉, P+(x) ≡ 〈0|9(0)9(t, Ex)|0〉 (3.10)

1 In Case 1, we have,

P+(x) = −
∫

d3p e−ipx

2(2π)3p0
, P−(x) = P+(−x) (3.11)

where p0 ≡ ω(Ep). The minus sign in (3.11) is due to the
minus sign in the commutation relation (3.8). Therefore, by
using a standard text-book derivation,

P(x) = −
∫

d4p e−ipx

(2π)4(p2 −M2
2 + iǫ)

, (3.12)

where ǫ > 0. We see that this corresponds to Zghost =
−Zgraviton and ǫ

′ = ǫ.

2 In Case 2, we still have,

P+(x) = −
∫

d3p e−ipx

2(2π)3p0
, P−(x) = P+(−x), (3.13)

but now p0 = −ω(Ep) (the energies are negative) and one
ends up with

P(x) = −
∫

d4p e−ipx

(2π)4(p2 −M2
2 − iǫ)

. (3.14)
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Note that the overall minus sign has a different origin than
in Case 1: here it is due to the negative energy condition
p0 = −ω(Ep), not to the commutators as the role of b0
and b†

0 is switched. So, in this case, one still has Zghost =
−Zgraviton but ǫ′ = −ǫ and renormalizability does not
occur.

Therefore, the conclusion is that renormalizability requires a
quantization with an indefinite metric on the Hilbert space.
In section 4.2.1, we will show that such a metric should be
introduced also to ensure that the Hamiltonian is bounded from
below. This raises an interpretational problem as in quantum
mechanics the positivity of the metric is related to the positivity
of probabilities. This problem will be addressed in section 4.2.6,
where the state of the art of the related literature will be
discussed.

3.2. RGEs
The renormalizability of the theory (including the gravitational
sector) allows us to use the standard renormalization group
machinery developed for field theories without gravity. The
modified minimal subtraction (MS) scheme will be adopted in
this review.

3.2.1. RGEs of the Dimensionless Parameters
The 1-loop RGEs of the dimensionless parameters are
independent of the dimensionful quantities and it is therefore
convenient to present them separately. Their expression for a
general renormalizable matter sector is,

df 22
dτ

= −f 42

(

133

10
+ NV

5
+ NF

20
+ NS

60

)

, (3.15)

df 20
dτ

= 5

3
f 42 + 5f 22 f

2
0 + 5

6
f 40 + f 40

12
(δab + 6ξab)(δab + 6ξab), (3.16)

dǫ

dτ
= −

[

196

45
+ 1

360

(

62NV + 11

2
NF + NS

)]

, (3.17)

dξab

dτ
= 1

6
λabcd (6ξcd + δcd)+ (6ξab + δab)

∑

k=a,b

[

Yk
2

6
− Ck

2S

2

]

+

−5f 42
3f 20

ξab + f 20 ξac

(

ξcd +
2

3
δcd

)

(6ξdb + δdb), (3.18)

dYa

dτ
= 1

2
(Y†bYbYa + YaY†bYb)+ 2YbY†aYb +

+Yb Tr(Y†bYa)− 3{C2F ,Y
a} + 15

8
f 22 Y

a, (3.19)

dλabcd

dτ
=

∑

perms

[

1

8
λabef λefcd +

3

8
{θA, θB}ab{θA, θB}cd

−TrYaY†bYcY†d ++5

8
f 42 ξabξcd +

f 40
8
ξaeξcf (δeb

+6ξeb)(δfd + 6ξfd)++ f 20
4!
(δae + 6ξae)(δbf + 6ξbf )λefcd

]

+λabcd
[

∑

k=a,b,c,d

(Yk
2 − 3Ck

2S)+ 5f 22

]

, (3.20)

where

τ ≡ ln (µ/µ0) /(4π)
2, (3.21)

µ is the MS energy scale, µ0 is a fixed energy, and NV , NF , and

NS are the numbers of gauge fields, Weyl fermions, and real scalars,

respectively. Also, Yk
2 , C

k
2S, and C2F are defined by

Tr(Y†aYb) = Ya
2 δ

ab, θAacθ
A
cb = Ca

2Sδab, C2F = tAtA. (3.22)

The sum over “perms" in the RGEs of the λabcd runs over the 4!
permutations of abcd. We do not show the RGEs of the gauge
couplings because they are not modified by the gravitational
couplings (see [30–33]).

Some terms in the 2-loop RGEs have been determined [14].
For example, switching off all couplings, except f0, one obtains
the 2-loop RGE for f0 [14] as,

df 20
dτ

= 5

6
f 40 − 1

(4π)2
5

12
f 60 . (3.23)

However, a complete expression of the 2-loop RGEs for all
couplings is not available yet.

Note that the coefficient ǫ of the topological term G does
not appear in the RGEs of the other parameters. Indeed, G
vanishes when the spacetime is topologically equivalent to the flat
spacetime, and the RGEs, being UV effects, are independent of
the global spacetime properties.

The RGEs obtained as above are the result of several works.
The first attempt to determine the RGEs of f2 and f0 was presented
in Julve and Tonin [34]. The results of Julve and Tonin [34] are
incomplete and contain some errors. An improved calculation
was later provided by Fradkin and Tseytlin [30, 35], which,
however, still contains an error in the RGE of f0. The first correct
calculation of the RGE of f0 in the pure gravity case appeared
in Avramidi and Barvinsky [13]; indeed, the result of Avramidi
and Barvinsky [13] was later checked by Salvio and Strumia
[33] and Codello and Percacci [36] with completely different
techniques. Salvio and Strumia [33] also extended the results
of Avramidi and Barvinsky [13] to include the general couplings
to renormalizable matter sectors. The RGE for ǫ in the presence
of general renormalizable matter fields can be found in Avramidi
[16] (see also [37] for a more recent discussion). Also, Ohta and
Percacci [38] checked the RGEs of f2, f0, and ǫ with functional
renormalization group methods.

Equations (3.15) and (3.16) clearly show that even if the
spacetime metric is not quantized and we do not introduce the
terms quadratic in the curvature in the Lagrangian, such terms
are anyhow generated by loops of matter fields, as originally
shown in Utiyama and DeWitt [3].

3.2.2. RGEs of the Dimensionful Parameters
The 1-loop RGEs of the dimensionful parameters are,

dM̄2
P

dτ
= 1

3
m2

aa +
1

3
Tr(M†M)+ 2ξabm

2
ab +

(

2f 20
3

− 5f 42
3f 20

+2X) M̄2
P, (3.24)

d3

dτ
= m2

ab
m2

ab

2
− Tr[(MM†)2]+ 5f 42 + f 40

8
M̄4

P

+(5f 22 + f 20 )3+ 43X, (3.25)
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dM

dτ
= 1

2
(Y†bYbM +MY†bYb)+ 2YbM†Yb (3.26)

+Yb Tr(Y†bM)+−3{C2F ,M} + 15

8
f 22M +MX,

dm2
ab

dτ
= λabefm

2
ef + AaefAbef − 2

[

Tr(Y{aY†b}MM†)+

+Tr(Y†{aYb}M†M)+ Tr (YaM†YbM†)

+Tr (MY†aMY†b)
]

+

+5

2
f 42 ξabM̄

2
P +

f 40
2
(ξab + 6ξaeξeb) M̄

2
P +

+f 20

(

m2
ab + 3ξbfm

2
af + 3ξafm

2
bf + 6ξaeξbfm

2
ef

)

+

+m2
ab





∑

k=a,b

(Yk
2 − 3Ck

2S)+ 5f 22 + 2X



 , (3.27)

dAabc

dτ
= λabefAefc + λacefAefb + λbcefAefa +

−2 Tr
(

Y{aY†bYc}M†
)

− 2 Tr
(

Y†{cYaY†b}M
)

+
+f 20

(

Aabc + 3ξafAfbc + 3ξbfAfac + 3ξcfAfab

)

+
+6f 20

(

ξaeξbfAefc + ξaeξcfAefb + ξbeξcfAefa

)

+

+Aabc





∑

k=a,b,c

(Yk
2 − 3Ck

2S)+ 5f 22 + X



 , (3.28)

where the curly brackets represent the sum over the
permutations of the corresponding indices, e.g., Y{aY†b} =
YaY†b + YbY†a. The symbol X represents a gauge-dependent
quantity [14]. The RGEs of massive parameters are gauge
dependent as the unit of mass is gauge dependent. Any
dimensionless ratio of dimensionful parameters is physical and
the corresponding RGE is indeed gauge-independent, as it can be
easily checked from Equations (3.24) to (3.28).

The RGEs above for the most general renormalizable matter
sector were obtained in Salvio and Strumia [14] and later checked
in Anselmi and Piva [39]. However, before Salvio and Strumia
[14] appeared, a number of articles computed the RGEs of some
massive parameters in less general models. The RGE for 3/M̄4

P
in the pure gravity theory was determined in Avramidi and
Barvinsky [13] and a detailed description of the methods used
can be found in Avramidi [16]. The RGE of the ratio between
the Higgs squared massM2

h
and M̄2

P was computed in Salvio and
Strumia [33] (where the matter sector was identified with the
SM).

These general RGEs can be used to address issues related to
the high-energy extrapolation, such as the UV-completeness or
the vacuum stability of generic theories of the sort studied here.

4. GHOSTS

In this section, we discuss systems (such as quadratic gravity)
featuring ghosts, recall the related problems, and present some
possible solutions. We will mostly focus on finite dimensional
systems but also discuss both the classical and quantum
mechanical aspects.

4.1. Ghosts in Classical Mechanics
We consider a physical system described by a certain number of
coordinates11 qi and restrict our attention to Lagrangians that
depend on qi, q̇i, q̈i and, possibly, on time t,

L(q, q̇, q̈, t), (4.1)

where the dot is the derivative w.r.t. t and, from now on,
we understand the index i. This setup covers the case we are
interested in: the Lagrangian of quadratic gravity depends both
on the first and second derivatives of the field variables because
of the extra terms quadratic in the curvature; moreover, an
explicit dependence on time emerges, e.g., when a cosmological
background is considered [21].

In the following paragraphs, we will first discuss the derivation
of Euler-Lagrange equations of motion and then introduce the
Hamiltonian approach. This discussion will be valid for QG as a
particular case.

The least action principle in this context tells us that the
variation δS of the action, S ≡

∫

dtL, with respect to variations δq
of the coordinates that vanish on the time boundaries (together
with their first derivatives, δq̇) should be zero12:

0 = δS =
∫

dt

(

∂L

∂q
δq+ ∂L

∂ q̇
δq̇+ ∂L

∂ q̈
δq̈

)

. (4.2)

Here, we should require that δq̇ also vanishes on the time
boundaries because the values of q at two times are not sufficient
to identify the motion as the equations involve derivatives higher
than the second order. On performing integration by parts
once on the second term in (4.2) and twice on the third term,
we obtain the Euler-Lagrange equations of motion for four-
derivative theories as follows,

d

dt

(

∂L

∂ q̇
− d

dt

∂L

∂ q̈

)

= ∂L

∂q
. (4.3)

We nowmove to the Hamiltonian approach.We start by defining
two canonical coordinates,

q1 ≡ q, q2 ≡ q̇. (4.4)

In this case, the conjugate momenta are defined by

pl ≡
δL

δq̇l
≡ ∂L

∂ q̇l
− d

dt

∂L

∂ q̈l
, (4.5)

where the index l runs over {1, 2}. Amotivation for this definition
will be given below in section 4.1.1. For l = 1 and l = 2
separately, the conjugate momenta read

p1 =
∂L

∂ q̇
− d

dt

∂L

∂ q̈
, p2 =

∂L

∂ q̈
. (4.6)

Then as usual, one defines the Hamiltonian H as,

H = plq̇l − L(q, q̇, q̈, t). (4.7)

.

11Note that the case of fields can be obtained by interpreting the index i as a space

coordinate Ex.
12The summation on the index i is understood, for example, ∂L

∂q δq ≡∑

i
∂L
∂qi
δqi.
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4.1.1. The Ostrogradsky Theorem
Under a non-degeneracy assumption, i.e., the fact that13

det(∂2L/∂ q̈2) 6= 0, it is possible to argue that the system is
classically unstable14.

Indeed, this assumption allows us to express q̈ as,

q̈ = f (q, q̇, p2, t), (4.8)

where f is the inverse of ∂L/∂ q̈ viewed as a function of q̈. Once
Equations (4.4) and (4.8) are used, H reads

H = p1q2 + p2f (q1, q2, p2, t)− L(q1, q2, f (q1, q2, p2, t), t), (4.9)

which is manifestly a function of the form,

H = H(ql, pl, t). (4.10)

The form of H in (4.9) implies the celebrated Ostrogradsky
theorem [9]: the Hamiltonian obtained from a Lagrangian of
the form L(q, q̇, q̈, t), which depends non-degenerately on q̈ (i.e.,
det(∂2L/∂ q̈2) 6= 0), is not bounded from below. Indeed, the
expression of H in (4.9) shows that H depends linearly on the
momentum p1 and therefore goes to −∞ if p1 tends either to
+∞ or −∞ (when q2 is non-vanishing). Note that this result is
valid for QG as a particular case.

One may wonder why the conjugate momenta is defined as in
(4.5). The reason is that the standard form of the Hamiltonian
equations of motion follows in this case and, therefore, the
Hamiltonian is a constant of motion if it does not depend
explicitly on time. In order to see this, let us consider an
infinitesimal variation of the Hamiltonian and compute it in two
different ways, by using (4.7) and (4.10). Respectively we have,

dH = pldq̇l + q̇ldpl −
∂L

∂q
dq− ∂L

∂ q̇
dq̇− ∂L

∂ q̈
dq̈− ∂L

∂t
dt, (4.11)

dH = ∂H

∂ql
dql +

∂H

∂pl
dpl +

∂H

∂t
dt. (4.12)

By using the definition of the conjugate momenta in (4.6) and
q2 = q̇ in the first expression of dH, we obtain,

dH = q̇ldpl−
∂L

∂q
dq− d

dt

∂L

∂ q̈
dq̇− ∂L

∂t
dt = q̇ldpl−

∂L

∂q
dq− ṗ2dq̇−

∂L

∂t
dt.

(4.13)
The Euler-Lagrange equations allow us to write the term ∂L

∂qdq as

follows:

∂L

∂q
dq = d

dt

(

∂L

∂ q̇
− d

dt

∂L

∂ q̈

)

dq = ṗ1dq (4.14)

so,

dH = q̇ldpl − ṗldql −
∂L

∂t
dt. (4.15)

13∂2L/∂ q̈2 denotes the Hessian matrix of L, whose elements are ∂2L/∂ q̈i∂ q̈j.
14Lagrangians that depend on even higher derivatives of q have been considered

in the literature in the time-independent case [40], but these situations go beyond

our scope as the quadratic gravity Lagrangian only depends on the derivative of q

up to the second order.

Now, by comparing this expression with the one in (4.12) we
obtain,

q̇l =
∂H

∂pl
, ṗl = −∂H

∂ql
,

∂H

∂t
= −∂L

∂t
. (4.16)

Therefore, we see that in theories with a Lagrangian of the
form L(q, q̇, q̈, t), which depends non-degenerately on q̈ (i.e.,
det(∂2L/∂ q̈2) 6= 0), the Hamiltonian equations have the standard
form provided that the definition of the conjugate momenta are
modified according to (4.5). By inserting the first two equations
in (4.16) into (4.12), we obtain that the Hamiltonian is a constant
of motion provided that ∂H/∂t = 0.

(In)stabilities
If a system fulfills the hypothesis of the Ostrogradsky theorem,
then it can develop instabilities. However, this theorem does not
directly imply that all solutions of such a system are unstable.
Here, by “stable solution” we mean a solution of the equations
of motion such that for initial conditions close enough to the
region of the phase space spanned by this solution the motion
is bounded (it does not run away). There are several examples
of systems of this type that feature bounded motions: the Pais-
Uhlenbeck model [40] to be discussed in section 4.1.2 (in some
cases even in the presence of interactions [41–46]) and quadratic
gravity expanded at linear level around the flat or de Sitter
spacetime [21, 47, 48].

4.1.2. The Pais-Uhlenbeck Model
The Ostrogradsky theorem applies to a large class of higher
derivative theories, but we have seen that it does not directly
forbid the existence of stable solutions. To further understand
the issues of higher derivative theories, it is convenient to
analyze a simple system, which captures some of the essential
characteristics of quadratic gravity. Therefore, in this section we
focus on the Pais-Uhlenbeck model [40], whose Lagrangian is

L = − q̈2

2
+ (ω2

1 + ω2
2)
q̇2

2
− ω2

1ω
2
2

q2

2
− V(q) = (4.17)

−1

2
q(

d2

dt2
+ ω2

1)(
d2

dt2
+ ω2

2)q− V(q)+ total derivatives.

Here, V is a function of q representing a possible interaction,
and ω1 and ω2 are real parameters. As we will see, ω1 and ω2

represent the frequencies of two decoupled oscillators when V =
0. Apart from its simplicity, another reason for considering this
model is that it closely resembles the helicity-2 sector of QG (see
Equation 2.31). In QG ω1 6= ω2 at finite spatial momentum
(see Equation 2.32); therefore, the unequal frequency case is
particularly relevant.

Lagrangian Analysis
The Lagrangian equation of motion is,

(
d2

dt2
+ ω2

1)(
d2

dt2
+ ω2

2)q+ V ′(q) = d4q

dt4
+ (ω2

1 + ω2
2)
d2q

dt2

+ω2
1ω

2
2q+ V ′(q) = 0. (4.18)
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Equation (4.18) makes it clear why one chooses ω2
1 and ω2

2 to
be positive; otherwise the solutions of the equations of motion
would feature tachyonic instabilities at least for vanishing V .

The corresponding classical solution, for given initial
conditions q0 ≡ q(0), q̇0 ≡ q̇(0), q̈0 ≡ q̈(0),

...
q0 ≡ ...

q(0) at t = 0,
is

q(t) = −ω
2
2q0 + q̈0

ω2
1 − ω2

2

cos(ω1t)+
ω2
1q0 + q̈0

ω2
1 − ω2

2

cos(ω2t) (4.19)

− ω2
2q̇0 +

...
q0

ω1(ω
2
1 − ω2

2)
sin(ω1t)+

ω2
1 q̇0 +

...
q0

ω2(ω
2
1 − ω2

2)
sin(ω2t).

This is a well-behaved system without run-away issues for
unequal frequencies, ω1 6= ω2. By taking the limit ω1 → ω2 ≡ ω

in the expression above, one obtains

q(t) = sin(tω)

[

t
(

q0ω
2 + q̈0

)

2ω
+ 3q̇0ω

2 + ...
q0

2ω3

]

+ cos(tω)

[

q0 −
t
(

q̇0ω
2 + ...

q0
)

2ω2

]

. (4.20)

Note that the amplitudes of the sine and cosine functions above
grow linearly with t.

Run-away (i.e., unstable) solutions can also appear for
ω1 6= ω2 if a non-quadratic potential, i.e., V 6= 0, is
introduced. However, it has been found numerically that the
system admits stable solutions regardless of the unboundedness
of the Hamiltonian for some choices ofV , such asV(q) ∝ sin(q)4

[43]. The situation for this potential is illustrated in Figure 2.
In Pavs̆ic̆ [45], it was found that the solutions are unstable unless
V is bounded from below and above. Of course, this can only be
generically true for ω1 6= ω2 because, for equal frequencies, we
have seen that the motion is unbounded even for V = 0, which is
certainly bounded from below and above.

Hamiltonian Analysis
We can now construct the Hamiltonian15 by using the general
formulæ of section 4.1. Ostrogradsky’s canonical variables
defined in (4.5) and (4.4) in this case read

q1 = q, p1 =
∂L

∂ q̇
− d

dt

∂L

∂ q̈
= (ω2

1 + ω2
2)q̇+

...
q ,

q2 = q̇, p2 =
∂L

∂ q̈
= −q̈.

(4.21)

Note that the non-degeneracy hypothesis of the Ostrogradsky
theorem is obviously satisfied in this case: ∂2L/∂ q̈2 = −1 6= 0.
Indeed, by using the general formula in (4.9) we obtain (in the
Pais-Uhlenbeck model f (q, q̇, p2, t) = −p2),

H = p1q2 −
1

2
p22 −

ω2
1 + ω2

2

2
q22 +

ω2
1ω

2
2

2
q21 + V(q1), (4.22)

15An analogous construction for QG was performed in Buchbinder et al. [15],

Buchbinder and Lyakhovich [49, 50], and Kluson et al. [51].

which is obviously unbounded from below. From (4.16) the
Hamiltonian equations of motion are,



















q̇1 =
∂H

∂p1
= q2, ṗ1 = − ∂H

∂q1
= −ω2

1ω
2
2q1 − V ′(q1),

q̇2 =
∂H

∂p2
= −p2, ṗ2 = − ∂H

∂q2
= −p1 + (ω2

1 + ω2
2)q2.

(4.23)
They imply the classical Euler-Lagrange equation of motion in
(4.18).

When ω1 6= ω2, the Hamiltonian in (4.22) can be brought in
diagonal form (except for the effect of the interaction V)

H = −1

2
(p̃21 + ω2

1 q̃
2
1)+

1

2
(p̃22 + ω2

2 q̃
2
2)+ V(q1) (4.24)

through the canonical transformation,

q1 =
q̃2 − p̃1/ω1
√

ω2
1 − ω2

2

, q2 =
p̃2 − ω1q̃1
√

ω2
1 − ω2

2

,

p1 = ω1
ω1p̃2 − ω2

2 q̃1
√

ω2
1 − ω2

2

, p2 =
ω2
2 q̃2 − ω1p̃1
√

ω2
1 − ω2

2

. (4.25)

which satisfies q1p1 − q2p2 = p̃2q̃2 − p̃1q̃1. Its inverse is

q̃1 =
p1 − ω2

1q2

ω1

√

ω2
1 − ω2

2

, q̃2 =
ω2
1q1 − p2

√

ω2
1 − ω2

2

,

p̃1 = ω1
ω2
2q1 − p2

√

ω2
1 − ω2

2

, p̃2 =
p1 − ω2

2q2
√

ω2
1 − ω2

2

. (4.26)

Note that, given the first equation in (4.25), V(q1) introduces
interactions between q̃2 and p̃1. However, from (4.24) one can
see that the system for V = 0 is equivalent to two decoupled
oscillators with frequencies ω1 and ω2. Note that the first
oscillator contributes negatively to the Hamiltonian; this is the
manifestation of the Ostrogradsky theorem in this basis. Since the
derivation of (4.24) is valid only for ω1 6= ω2 (because otherwise
the transformation in (4.25) would be singular), one might hope
to have a classical Hamiltonian that is bounded from below for
ω1 = ω2. This is not the case as the Hamiltonian in the form
given in (4.22) is valid for ω1 = ω2 too and is not bounded from
below.

4.2. Quantum Mechanics With Ghosts
Before examining the peculiar features of the quantization with
ghosts, let us spell out some basic assumptions of standard
quantummechanics, which will bemade in the presence of ghosts
too, including in the case of QG.

• Quantizing the theory consists in substituting the canonical
coordinates qj and conjugate momenta pj with some operators
acting on a vector space, whose elements are identified with
the possible states of the system16.

16For simplicity, we will continue to use the same symbol to denote the quantum

operators and the corresponding classical variables (when this does not create

confusion).
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FIGURE 2 | Solution to the equation of motion (4.18) of the Pais-Ulhenbeck model with V (q) = λ sin(q)4. The plot is presented in units of ω2. The other parameters

are set as follows: ω1 = 2.1, λ = 1.022. The motion appears to be bounded and periodic (the vertical dashed lines indicate the period).

• The HamiltonianH in quantummechanics is defined as a self-
adjoint operator (H† = H) with respect to some metric on the
vector space of states.H generates the time evolution: the state
|ψt〉 at time t is given by,

|ψt〉 = U(t)|ψ0〉, U(t) ≡ e−iHt . (4.27)

Moreover, the Hamiltonian is assumed to have the same
expression in terms of qj and pj as in classical mechanics,
Equation (4.10).

• The canonical coordinates qj and their conjugate momenta
pj are promoted to operators by imposing the canonical
commutators, i.e.,

[qj, pk] = iδjk, [qj, qk] = 0, [pj, pk] = 0 (4.28)

and requiring them to be self-adjoint: q†
j = qj and p†

j = pj.

The possible probabilistic interpretations of quantum theories
with ghosts will be discussed in section 4.2.6.

Most of the efforts that have been done so far in quantizing
theories with ghosts have focused on simple toy models, which
isolate the main source of concern—the presence of four time-
derivatives. The model that is typically studied is the quantum
version of the Pais-Uhlenbeck construction given in section 4.1.2,
which is perhaps the simplest four-derivative extension of an
ordinary quantum mechanical model. Therefore, we will mostly
focus on it. However, some of the results reviewed in this section
can be applied to other models too.

4.2.1. Trading Negative Energies With Negative

Norms
The first thing one can prove is that some Hamiltonians that are
not bounded from below can be quantized in a way that their
quantum spectrum is instead bounded from below, but this is
achieved by introducing an indefinite metric on the Hilbert space
(as we will see, this is precisely the metric with respect to which
H, qj, and pj have been assumed to be self-adjoint). A classic
example is the Pais-Uhlenbeck Hamiltonian17 in Equation (4.24)
for vanishing V , which we will now discuss in some detail.

17It is important to recall that Hamiltonian (4.24) is equivalent to the original

Hamiltonian in (4.22) when ω1 6= ω2 a condition that is assumed to hold

here (for the quantization of the equal frequency Pais-Uhlenbeck model see

e.g., [46, 52–55]).

The part of the classical Hamiltonian that contributes
negatively is

H1 ≡ −1

2
(p̃21 + ω2

1q̃
2
1), (4.29)

and it is on this part that we shall focus as the other one H2 ≡
1
2 (p̃

2
2 + ω2

2 q̃
2
2), being positive, can be quantized with standard

methods. Note that the quadratic Hamiltonian of the ghost of QG
can be written as the sum of Hamiltonians of the form (4.29), as
is clear from Equations (2.40) and (2.35) and the fact that the
Lagrangian (2.31) of the helicity-2 sector of QG is the sum of
Pais-Uhlenbeck Lagrangians.

What allows us to trade the negative energy in Equation (4.29)
with negative norm is the exchange of creation and annihilation
operators: one defines the annihilation and creation operators,
respectively, as

ã1 ≡
√

ω1

2

(

q̃1 − i
p̃1

ω1

)

, ã†
1 ≡

√

ω1

2

(

q̃1 + i
p̃1

ω1

)

, (4.30)

where we used q̃†
1 = q̃1 and p̃†

1 = p̃1. The relative signs between
q̃1 and p̃1 have been switched with respect to the standard case.
Here, we keep the label 1 to recall that the oscillator with label
2 is subject to the usual definition of annihilation and creation
operators:

ã2 ≡
√

ω2

2

(

q̃2 + i
p̃2

ω2

)

, ã†
2 ≡

√

ω2

2

(

q̃2 − i
p̃2

ω2

)

. (4.31)

From the canonical commutators (4.28) and by using the
canonical transformation in (4.26) it follows

[q̃j, p̃k] = iδjk, [q̃j, q̃k] = 0, [p̃j, p̃k] = 0, (4.32)

which leads to

[ãj, ã
†

k
] = ηjk, [ãj, ãk] = 0, [ã†

j , ã
†

k
] = 0, (4.33)

where η11 = −1, η22 = 1, η12 = η21 = 0. One can now express

q̃1 and p̃1 in terms of ã1 and ã†
1 as usual and find

H1 = −ω1ã
†
1ã1 +

ω1

2
≡ ω1N1 +

ω1

2
, (4.34)
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where we defined a number operator N1 ≡ −ã†
1ã1 (see below)

with an unusual minus sign. Indeed, with this definition N1, ã1,

and ã†
1 satisfy the usual commutation relations

[N1, ã1] = −ã1, [N1, ã
†
1] = ã†

1, (4.35)

which allows us to interpret ã1 and ã†
1 as annihilation and

creation operators, respectively: the eigenstates of N1, i.e.,
N1|n1〉 = n1|n1〉, satisfy

ã1|n1〉 = c(n1)|n1 − 1〉, ã†
1|n1〉 = d(n1)|n1 + 1〉. (4.36)

We can determine c and d up to an overall phase, once the
normalization of |n1〉 is fixed. Here, for reasons that will become
clear shortly, we allow some norms to be negative and we choose
the normalizations18 〈n1|n1〉 = νn1 , where νn1 = ±1. Notice now

−νn1n1 = 〈n1|ã†
1ã1|n1〉 = |c(n1)|2〈n1−1|n1−1〉 = |c(n1)|2νn1−1,

(4.37)
which leads to

|c(n1)|2 = − νn1

νn1−1
n1. (4.38)

If all the norms are positive, i.e., all νn1 = 1, then it
is possible to show with a standard textbook argument
that the spectrum of N1 (and therefore, because of
Equation (4.34), that of the Hamiltonian) is not bounded
from below. This is because Equation (4.38) tells us
that n1 < 0 and we can then reach an arbitrary large
and negative value of n1 by acting with the annihilation
operator.

The only way to avoid n1 < 0 is to take νn1 = −νn1−1. Indeed,
in this case (4.38) gives19

|c(n1)|2 = n1, (4.41)

which as usual implies that the spectrum of N1 is
{n1} = {0, 1, 2, 3, ...} (and therefore N1 can appropriately
be identified with a number operator) and the spectrum
of the Hamiltonian is thus bounded from below. The
state with n1 = 0 is interpreted as that without ghost
quanta and so we require it to have a positive norm.
Therefore, νn1 = −νn1−1 implies that the states with an
even (odd) number of ghost quanta have positive (negative)
norm.

A similar reasoning can be done in QG linearized around
the flat spacetime: the energy becomes bounded from below

18More general assignments, νn1 6= ±1 are equivalent because we can always re-

normalize the states in a way that νn1 = ±1 as long as there are no zero norm

states, which we assume here.
19In order to fix d(n1) consider

− νn1 (n1 + 1) = 〈n1|a†
1a1 − 1|n1〉 = 〈n1|a1a†

1|n1〉 = |d(n1)|2〈n1 + 1|n1 + 1〉
= |d(n1)|2ηn1+1, (4.39)

which gives

|d(n1)|2 = n1 + 1. (4.40)

if an indefinite metric on the Hilbert space is introduced
(see section 3.1). Furthermore, we saw in section 3.1 that an
indefinite metric should also be present in order for QG to
be renormalizable. Therefore, insisting on having arbitrarily
negative energies to preserve the positivity of the metric appears
to have very little motivation.

Asmentioned before, in this construction qj, pj, andH are self-
adjoint w.r.t. the indefinite metric. This leads to problems in the
definition of probabilities, which we shall address in section 4.2.6.

4.2.2. The Problem of the Wave-Function

Normalization
So far we have given some features of the quantum theory, but
we have not yet specified completely the quantization procedure.
We still have to define the spectrum of the operators qj.

Let us discuss this point in the Pais-Uhlenbeck model with
ω1 6= ω2 for the sake of definiteness. One possibility would be
to assume, as usual, that the spectrum is real for both q1 and
q2. However, this leads to non-normalizable wave functions [56,
57]. To see this, we consider the ground-state wave function
ψ0(q1, q2) ≡ 〈q1, q2|0〉, where |0〉 is the vacuum, defined as
ã1|0〉 = 0 and ã2|0〉 = 0, while |q1, q2〉 is an eigenstate of
q1 and q2. Using the standard representation for the conjugate
momentum acting on the wave functions, pi = −i∂/∂qi, one
obtains the ground-state wave function

ψ0(q1, q2) ∝ exp

(−q21ω1ω2 + q22
2

(ω1 + ω2)− iq1q2ω1ω2

)

.

(4.42)
With this quantization, ψ0(q1, q2) is non-normalizable along the
q2-direction. However, ψ0(q1, q2) becomes normalizable when
one performs the integral of |ψ0(q1, q2)|2 on the imaginary q2-
axis.

This suggests that one could obtain a consistent quantization
by requiring q2 to have a purely imaginary spectrum, while
assuming a standard quantization (with real spectrum) for
q1 [58].

4.2.3. The Dirac-Pauli Quantization
The quantization with purely imaginary eigenvalues for a
canonical variable x̂ was first discussed by Pauli [59] for
Lagrangians with at most 2 time-derivatives, elaborating on a
previous work by Dirac [60]. In the rest of this work, we will refer
to this unusual quantization as the Dirac-Pauli quantization. To
proceed, let us deduce some basic properties of the Dirac-Pauli
quantization for a generic variable x̂.

The defining property is that the spectrum of x̂ is purely
imaginary:

x̂|x〉 = ix|x〉. (4.43)

It follows 〈x′|x̂|x〉 = ix〈x′|x〉, which, together with the self-
adjointness of x̂, i.e., 〈x′|x̂|x〉 = 〈x|x̂|x′〉∗ = −ix′〈x|x′〉∗ =
−ix′〈x′|x〉, implies (x + x′)〈x′|x〉 = 0. The general solution to
this equation is 〈x′|x〉 = δ(x + x′)h(x), where h is a function that
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we set to 1 without loss of generality: this can always be done by
rescaling the states |x〉. Then, one obtains

〈x′|x〉 = δ(x+ x′) (4.44)

and the completeness20 condition reads

∫

dx|x〉〈−x| = 1, ⇐⇒
∫

dx|x〉〈x| = η,

⇐⇒
∫

dx|x〉〈x|η = 1, (4.45)

where η is the operator defined by η|x〉 = | − x〉.
It can be shown that the variable p̂ canonically conjugate to

x̂ is also a Dirac-Pauli variable: i.e., p̂|p〉 = ip|p〉, where p is
a generic real number. To show this, we first notice that the
operator exp(p̂a), where a is a generic real number, generates
translations in the coordinate space; for an infinitesimal a we
have,

x̂ep̂a|x〉 = x̂(1+ p̂a)|x〉 = i(x+ a)ep̂a|x〉, (4.46)

where, in the second step, we have used the canonical
commutators in (4.28). This means

ep̂a|x〉 = |x+ a〉 (4.47)

(a possible overall factor k(a, x) in front of |x + a〉 can be set to
one by a suitable definition of p̂). From here we can construct the

entire spectrum of p̂. By applying ep̂a on
∫

dx|x〉, one discovers
that this is an eigenstate with zero momentum, and by applying
e−px̂ on it, where p is a generic real number, one generates all
possible eigenstates |p〉:

|p〉 = 1√
2π

∫

dx e−px̂|x〉 = 1√
2π

∫

dx e−ipx|x〉,

⇐⇒ 〈x|p〉 = 1√
2π

eipx (4.48)

where the factor 1/
√
2π has been introduced to ensure the

normalization condition

〈p′|p〉 = δ(p+ p′), (4.49)

which, once again, leads to the completeness relation
∫

|p〉〈p|η =
1. The states |p〉 satisfy

p̂|p〉 = ip|p〉. (4.50)

There are no other eigenstates as ip̂ is self-adjoint with respect to
the positively defined metric 〈.|.〉η ≡ 〈.|η|.〉 and, therefore, p̂ can
only have purely imaginary eigenvalues.

The Dirac-Pauli quantization may look strange at first sight,
but it can be seen as a complex canonical transformation
performed on variables quantized in the ordinary way: x → ix,
p → −ip.

In Table 2, the basic properties of a Dirac-Pauli variable are
summarized.

20We require the completeness of the states |x〉 as part of the definition of the vector
space.

4.2.4. Making the Wave Functions Normalizable
Let us now come back to our original problem, the non-
normalizability of the wave functions. For the sake of
definiteness, we again consider the Pais-Uhlenbeck model with
ω1 6= ω2 and assume that q2 is a Dirac-Pauli variable, whereas q1
is an ordinary one. Then we obtain

ψ0(q1, q2) ∝ exp

(−q21ω1ω2 − q22
2

(ω1 + ω2)+ q1q2ω1ω2

)

,

(4.51)
which is now normalizable:

〈0|0〉 =
∫

dq1dq2〈0|q1,−q2〉〈q1, q2|0〉

=
∫

dq1dq2ψ0(q1,−q2)
∗ψ0(q1, q2) <∞, (4.52)

where we have used the decomposition of the identity in terms
of eigenstates of the coordinate operators and we have taken
into account Equation (4.45) for the Dirac-Pauli variable q2.
Moreover, recall that we have earlier required 〈0|0〉 to be positive;
we fix 〈0|0〉 = 1 by appropriately choosing the normalization
constant. Then, by using (4.33), one can easily show that the state
|n1, n2〉, where n1,2 are the occupation numbers of ã1,2, has norm
(−1)n1 . So, not only the ground state but also all the excited states
are normalizable with this quantization.

At this point it is good to mention that Hawking and
Hertog [61] proposed a way to deal with four-derivative
degrees of freedom, but they ended up with non-normalizable
wave functions. They then suggested solving the problem by
integrating out q̇. As we have seen, this issue does not arise if the
appropriate quantization described above is performed (treating
q as an ordinary variable and q̇ as a Dirac-Pauli one)

Other consistent quantizations are possible [62, 63]. For
example, one could quantize q̃1 à la Dirac-Pauli, by treating q̃2
as an ordinary variable (the variables with a tilde have been
defined in Equation 4.26). We will address this point after having
introduced the path-integral formulation of the theory.

A Dirac-Pauli quantization for the ghost of QG has not been
studied yet and is a very interesting topic for future research. By
analogy, with the results obtained in the Pais-Uhlenbeck model,
one expects normalizable wave functions in the QG case too.

4.2.5. Path-Integral Formulation
We now present the path-integral formulation of a theory with
an arbitrary number of ordinary canonical variables q1, ..., qn
and Dirac-Pauli variables q̄1, ..., q̄m [58, 64]. A state with definite
canonical coordinates is denoted here as,

|q〉 = |q1, ..., qn, q̄1, ..., q̄m〉. (4.53)

We are interested in understanding whether the quantization
presented above is consistent in the presence of interactions. Even
in ordinary quantum theories the real-time path integral is only a
formal object, whose consistency at the rigorous level is unclear.
For this reason, we consider the imaginary-time path integral
(what would be called the Euclidean path integral in a QFT).
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TABLE 2 | Basic properties of a Dirac-Pauli variable (and its conjugate momentum) compared to the ordinary case.

Canonical variable x̂ on states p̂ on states x̂ on functions p̂ on functions

Dirac-Pauli variable x̂|x〉 = ix|x〉 p̂|p〉 = ip|p〉 〈x|x̂|ψ〉 = −ix〈x|ψ〉 〈x|p̂|ψ〉 = d
dx

〈x|ψ〉

x̂|p〉 = − d
dp

|p〉 p̂|x〉 = d
dx

|x〉 〈p|x̂|ψ〉 = − d
dp

〈p|ψ〉 〈p|p̂|ψ〉 = −ip〈p|ψ〉

Ordinary variable x̂|x〉 = x|x〉 p̂|p〉 = p|p〉 〈x|x̂|ψ〉 = x〈x|ψ〉 〈x|p̂|ψ〉 = −i d
dx

〈x|ψ〉

x̂|p〉 = −i d
dp

|p〉 p̂|x〉 = i d
dx

|x〉 〈p|x̂|ψ〉 = i d
dp

〈p|ψ〉 〈p|p̂|ψ〉 = p〈p|ψ〉

These properties are derived in the text or are simple extensions of the properties derived in the text.

In formulating a quantum theory with the path integral, one
notices that the full information on the dynamics of the system is
encoded in the object 〈qf | exp (−iHt)|qi〉, where |qi〉 and |qf 〉 are
generic states with definite coordinates. Indeed, once this object
is known we can determine how the wave function evolves in
time. In the presence of some Dirac-Pauli variables, one can do
something similar, but one inserts an operator η defined by

η|q1, ..., qn, q̄1, ..., q̄m〉 ≡ |q1, ..., qn,−q̄1, ...,−q̄m〉. (4.54)

Namely, instead of considering 〈qf | exp (−iHt)|qi〉, one
tries to evaluate 〈qf |η exp (−iHt)|qi〉. This is convenient
for reasons that will become apparent soon, but note that
〈qf |η exp (−iHt)|qi〉 encodes the full dynamical information just
like 〈qf | exp (−iHt)|qi〉 as they both give the matrix elements of
the time-evolution operators with respect to a complete basis.

Working with an imaginary time t → −iτ , one
is thus interested in computing the matrix element
〈qf |η exp (−H1τ )|qi〉, where 1τ is some imaginary-time
interval. This, as usual, can be done by decomposing 1τ in the
sum of a very large number N of very small intervals dτ , i.e.,
dτ ≡ 1τ/N. By writing exp (−H1τ ) = 5N

j=1 exp (−Hdτ ) and

inserting N − 1 times the identity
∫

dq|q〉〈q|η = 1, one ends up
with

〈qf |η e−H1τ |qi〉 =
∫ N
∏

j=1

〈qj|η e−Hdτ |qj−1〉
N−1
∏

k=1

dqk, (4.55)

where qN ≡ qf and q1 ≡ q0. To evaluate 〈qj|η exp (−Hdτ )|qj−1〉,
we insert the identity in the form

∫

dpj−1η|pj−1〉〈pj−1| = 1:

〈qj|η exp (−Hdτ )|qj−1〉 =
∫

dpj−1〈qj|pj−1〉〈pj−1|e−Hdτ |qj−1〉(4.56)

=
∫

dpj−1

2π
eipj−1(qj−qj−1)−H̄(qj−1 ,pj−1)dτ ,

where we have used Equation (4.48) and defined

H̄(q, p) ≡ 〈p|H|q〉
〈p|q〉 . (4.57)

Here we use a compact notation where the indices and sums over
the various degrees of q1, ..., qn and q̄1, ...., q̄m are understood.

By letting N → ∞, one, thus, obtains the imaginary-time path
integral

〈qf |η e−H1τ |qi〉 =
∫

δqδp e
∫

dτ (ipq′−H̄(q,p)) where

δqδp = dp0

2π
lim

N→∞

N−1
∏

j=1

dqjdpj

2π
, (4.58)

a prime denotes a derivative w.r.t. τ , the integral over τ is from
an initial time τi and a final time τf , such that 1τ = τf − τi and
it is understood that the integral over δq is performed only over
those configurations that satisfy q(τi) = qi and q(τf ) = qf .

We see that, modulo the usual subtleties related to the
integration over an infinite-dimensional functional space that are
present in any quantum theory, the only requirement for the
existence of the path integral is that the real part of H̄(q, p) (not21

the classical Hamiltonian H(q, p)) be bounded from below and
that H̄(q, p) diverge fast enough when the canonical coordinates
tend to infinity (so that the integrations over q and p converge).

These conditions are satisfied in the Pais-Uhlenbeck model
where q1 is quantized in the ordinary way and q2 is quantized à la
Dirac-Pauli, at least when the interaction termV is bounded from
below22 (the usual condition). Indeed, from the Hamiltonian
(4.22) it follows

H̄(q, p) = ip1q2+
1

2
p22+

ω2
1 + ω2

2

2
q22+

ω2
1ω

2
2

2
q21+V(q1), (4.59)

which has the required properties. For the Pais-Uhlenbeck
model, the Euclidean path integral is

〈qf |η e−H1τ |qi〉 =
∫

δq1δq2δp1δp2 exp

[ ∫

dτ (ip1q
′
1+ip2q

′
2−H̄(q, p))

]

.

(4.60)
This expression can be further simplified since some integrations
can be explicitly performed. Given the first term in (4.59), the
δp1 integral gives δ(q2 − q′1), such that the δq2 path integral

21In ordinary quantum theories H̄(q, p) = H(q, p), but in the presence of Dirac-

Pauli variables this is not generically the case because of the extra i appearing in the

eigenvalues of the Dirac-Pauli coordinates and momenta.
22If one introduces a more complicated interaction that depends on the other

coordinate and momenta V(q, p), the condition is that ReV̄(q, p) be bounded from

below.

Frontiers in Physics | www.frontiersin.org 15 August 2018 | Volume 6 | Article 77

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Salvio Renormalizable Gravity and Matter

just fixes q2 = q′1. Next, the remaining terms in H̄ are a
sum of positive squares and V(q1) so all other integrals are
convergent assuming that V is bounded from below. Performing
the remaining integrals, one finds the Lagrangian Euclidean path
integral:

〈qf |η e−H1τ |qi〉 ∝
∫

δq exp

[

−
∫

dτLE(q)

]

, (4.61)

where the classical Euclidean Lagrangian is

LE = 1

2

(

d2q

dτ 2

)2

+ ω2
1 + ω2

2

2

(

dq

dτ

)2

+ ω2
1ω

2
2

2
q2 + V(q). (4.62)

The Lagrangian path integral appears to be well-defined as LE is
bounded from below.

The expression in (4.62) also allows us to study the classical
limit. Going back to real time one obtains precisely the
Lagrangian we started from, Equation (4.17). As discussed in
section 4.1.2, for some interactions V(q) (bounded from below
and above) there are stable solutions. In a generic theory, one
expects that the requirement of having stable solutions place
stringent conditions on the possible interactions, which so far
have not been fully classified. The path integral formulation
tells us that, in the classical limit, the dynamics is dominated
by the solution(s) with least Euclidean action. In the Pais-
Uhlenbeck case, these correspond to time-independent solutions

that minimize the full potential
ω2
1ω

2
2

2 q2 + V(q). All unbounded
solutions, if any, should be negligible in the classical limit as the
derivative terms always contribute positively to the Lagrangian
in (4.62). As usual, perturbations around a given solution should
be computed through the path integral and, given that the path
integral appears to be well-defined, no pathologies are expected.
Therefore, it is possible that the Dirac-Pauli quantization could
solve the potential problems raised by the Ostrogradsky theorem.

The path integral (4.61) makes it clear that, if V(q) is chosen
to be non-negative everywhere, no negative energies can be
present. If they did, then we should observe a divergence of
〈qf |η exp (−H1τ )|qi〉 as 1τ → ∞, but the right-hand side of
(4.61) does not diverge in that limit as the Lagrangian is a sum of
positive terms.

Another issue is that in a theory where the Hamiltonian H
is self-adjoint with respect to an indefinite norm (and nothing
else is known) there is no theorem guaranteeing the reality of the
energy spectrum. However, it is still possible that the spectrum
is real, as we have seen in the case of the unequal-frequency
Pais-Uhlenbeck model in section 4.2.1. Even if one introduces
a non-trivial interaction term V 6= 0 in the Pais-Uhlenbeck
model with generic unequal frequencies, no complex energies
can appear as long as V is small enough that perturbation theory
can be trusted. Indeed, a complex energy would require a zero-
norm state, but only positive and negative norm eigenstates of H
with no degeneracies are found in section 4.2.1. In a theory where
some of the eigenvalues of H turn out to be complex, one should
find a sensible interpretation for them. A possible interpretation
could be that those states are unstable and some of them (the ones
with eigenvalues with positive imaginary parts) lead to a violation

of causality23 [66, 67]. However, in Sotiriou and Faraoni [21] it
was pointed out that there are some conditions to be fulfilled in
order for this violation of causality to be observable and it is easy
to engineer a model where these conditions are not met.

Let us come back to the path integral. What would have
happened if we had used a different quantization? One could have
quantized q̃1 à la Dirac-Pauli and q̃2 as an ordinary variable (the
variables with a tilde have been defined in Equation (4.26) when
ω1 6= ω2). Then, one would have obtained

〈q̃f |η e−H1τ |q̃i〉 =
∫

δq̃1δq̃2δp̃1δp̃2 exp

[ ∫

dτ (ip̃1q̃
′
1+ip̃2q̃

′
2−H̄(q̃, p̃))

]

,

(4.63)
where

H̄(q̃, p̃) = 1

2
(p̃21 + ω2

1 q̃
2
1)+

1

2
(p̃22 + ω2

2 q̃
2
2)+ V̄(q̃2, p̃1) (4.64)

and, according to Equation (4.25),

V̄(q̃2, p̃1) = V(
q̃2 − ip̃1/ω1
√

ω2
1 − ω2

2

). (4.65)

Given that V is computed in the complex quantity (q̃2 −
ip̃1/ω1)/

√

ω2
1 − ω2

2 , the requirement that ReH̄(q̃, p̃) is bounded

from below leads to very peculiar conditions on the function
V , which seems very hard to be fulfilled for reasonable V , and
thus very hard to be kept in generalizing these results to QG.
Therefore, while other quantizations could still be consistent,
dedicated studies of these alternative path-integral quantizations
in the presence of interactions are not known.

The computation of the Lagrangian path integral has been
carried out here within the Pais-Uhlenbeck model. We have used
explicitly that some variables are quantized à la Dirac-Pauli. If
a Dirac-Pauli quantization for QG will be provided, then one
could also perform the same calculation in QG. One expects that
the Lagrangian path-integral for QG is consistent if the classical
Euclidean Lagrangian is bounded from below, which is the case
for some choices of the parameters, but there is no substitute of a
complete calculation to reach this conclusion. Such calculation
would also provide a non-perturbative definition of quantum
QG.

4.2.6. Probabilities
We now turn to the possible definitions of probabilities in the
presence of ghosts. We have learned in Sections 3.1 and 4.2.1
that both the renormalizability of QG and the requirement that
the quantum Hamiltonian must be bounded from below lead
to the presence of an indefinite metric. This raises problems in
defining the probability that a certain event occurs. In quantum
mechanics, the possible outcomes of the measurement of an
observable A (a self-adjoint operator, A† = A) are in one-to-one

23Nevertheless the commutators between any two field operators at points

separated by a spacelike distance are zero [65], like in usual QFT. In QG, this

property can be easily proved by using the expansion of the free ghost field in

creation and annihilation operators introduced as in section 4.2.1 and then by

applying the unitary operator that transforms the free ghost field in the interacting

one.
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correspondence with the eigenstates |a〉 of A with probabilities
given by the Born rule

P(ψ → a) = |〈a|ψ〉|2
〈a|a〉〈ψ |ψ〉 , (4.66)

where |ψ〉 is the state of the system before the measurement.
If some of the states have negative norms, then the direct
application of the Born rule in the presence of ghosts leads to
some negative probabilities.

Since P(ψ → a) can be negative only when the denominator
〈a|a〉〈ψ |ψ〉 is negative, a first idea could be to substitute (4.66)
with the following modified Born rule:

P(ψ → a) = |〈a|ψ〉|2
|〈a|a〉〈ψ |ψ〉| , (4.67)

However, (4.67) does not generically satisfy another basic
requirement, that the sum of P(ψ → a) over all possible
eigenvalues a is 1. This is because

∑

a

|〈a|ψ〉|2
|〈a|a〉〈ψ |ψ〉| =

∑

a

〈ψ |a〉〈a|ψ〉
|〈a|a〉〈ψ |ψ〉| (4.68)

and here generically we have

∑

a

|a〉〈a|
|〈a|a〉| 6= 1. (4.69)

Indeed, if we assume the eigenstates |a〉 to form a complete basis
and decompose an arbitrary state |α〉 as |α〉 =∑

a′ αa′ |a′〉, where
αa′ are complex numbers, we have

∑

a

|a〉〈a|ψ〉
|〈a|a〉| =

∑

aa′

αa′ |a〉〈a|a′〉
|〈a|a〉| (4.70)

and in general 〈a|a′〉/ |〈a|a〉| is not equal to δaa′ because some of
the states can have negative norm. This is what some people call
the “unitarity problem" (we do not use this terminology here as
the time evolution operator is unitary w.r.t. indefinite norm).

We now discuss the most popular ways to address this
problem.

Lee-Wick Idea
Lee and Wick [68] proposed that a theory with an indefinite
metric can still have a unitary S-matrix provided that all stable
states have positive norm. Since the S-matrix connects only
asymptotic states that, by definition, are stable, one expects
that under this hypothesis the transition probabilities between
asymptotic states are positive and add up to one. The Lee-Wick
idea has been studied in the context of QG in a number of
papers [39, 69–76].

To understand this idea more in detail, let us denote with
|σ 〉 and |σ ′〉 two generic stable states and consider the S-matrix
elements

Sσ ′σ ≡ 〈σ ′|S|σ 〉, (4.71)

where we have normalized |σ 〉 and |σ ′〉 to 1 (the Lee-Wick
hypothesis implies that the norm of stable states are positive
and therefore can be normalized to 1). The operator S ≡
lim1t→∞ U(1t) is unitary with respect to the indefinite norm by
construction, but we are interested in proving the unitarity of the
S-matrix in 4.71 because this is what would allow us to claim that
the probabilities add up to one: indeed, using the standard Born
rule (4.66) leads to

∑

σ ′
P(σ → σ ′) =

∑

σ ′
|〈σ ′|S|σ 〉|2 =

∑

σ ′
S∗σ ′σ Sσ ′σ . (4.72)

Now, one can rewrite

∑

σ ′
|〈σ ′|S|σ 〉|2 =

∑

σ ′
〈σ |S†|σ ′〉〈σ ′|S|σ 〉 (4.73)

and this expression would be equal to 1 in two cases:

1. if
∑

σ ′ |σ ′〉〈σ ′| = 1 or, more generally,
2. if S|σ 〉 can be written as a linear combination of the stable

states only.

The first condition cannot be true because we know there are
negative norm states, which can never be written as linear
combinations of positive norm states only; indeed, in the
presence of negative norm states

∑

σ ′ |σ ′〉〈σ ′| = 1 is replaced
by

∑

σ ′
|σ ′〉〈σ ′| = 1−5−, (4.74)

where 5− is the projector on the negative-norm subspace. So,
one has to assume Condition 2, which, although plausible (as
one expects S to connect stable states with stable states only), has
to be proved. To see when the important probabilistic condition
∑

σ ′ |〈σ ′|S|σ 〉|2 = 1 is satisfied, it is convenient to rewrite it in
a form that can be more easily verified by an explicit calculation.
To do so, we note that

∑

σ ′
〈σ |S†|σ ′〉〈σ ′|S|σ 〉 = 1− 〈σ |S†5−S|σ 〉, (4.75)

where we have used Equation (4.74). By writing as usual S ≡
1+ iT, one has

〈σ |S†5−S|σ 〉 = 〈σ |T†5−T|σ 〉, (4.76)

which follows from 5−|σ 〉 = 0. The unitarity of S implies
i(T† − T) = T†T and, by taking the diagonal matrix element
Tσσ ≡ 〈σ |T|σ 〉 and using once again Equation (4.74),

2ImTσσ =
∑

σ ′
〈σ |T†|σ ′〉〈σ ′|T|σ 〉 + 〈σ |T†5−T|σ 〉 (4.77)

Given that 5− can be written as
∑

g |g〉〈g| where |g〉 represents
a complete basis on the negative-norm subspace, we see that the
condition that the probabilities sum up to one is equivalent to
the condition that the ghost states |g〉 do not contribute to the
imaginary part of the forward scattering amplitude, represented
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here by Tσσ . Anselmi [75] has recently found that this condition
is satisfied if one modifies appropriately the prescription to
determine the ghost propagator24.

One issue is that, in order to claim that the negative norm
states are unstable, which is a basic assumption of the Lee-
Wick proposal, one needs a consistent way of computing the
probability of ghost decays; otherwise how do we tell if the ghost
is unstable or not? Since there is one ghost field in QG, the use of
the standard Born rule (4.66) to compute this probability leads to
a negative number. This is not necessarily a non-sense as Lee and
Wick proposed to consider as physical states only the asymptotic
ones and regard the ghost just as a virtual state, which is not
directly observable. In this case, it might be consistent to assign
negative probabilities to such somewhat unobservable events, as
pointed out by Feynman [79].

However, one can also argue that the Lee-Wick proposal
might not address all potential problems because scattering
theory (described by the S-matrix) is not the only application of
quantum mechanics.

Defining Positive Norms
Although renormalizability and the existence of a state of
minimum energy lead to an indefinite metric, one can still try
to define positively defined metrics with the desired property:
positive probabilities that add up to one when used in the Born
rule. This possibility was studied in a number of articles [58, 63,
80–85].

Let us consider an example of a positively defined metric.
The path-integral formula (4.58) suggests to consider the η-
metric 〈.|.〉η ≡ 〈.|η|.〉, where η is defined for a generic theory
in Equation (4.54). This metric is positively defined because

〈q′1, ..., q′n, q̄′1, ..., q̄′m|η|q1, ..., qn, q̄1, ..., q̄m〉 =
n
∏

j=1

δ(qj − q′j)
m
∏

k=1

δ(q̄j − q̄′j)

(4.78)
and |q1, ..., qn, q̄1, ..., q̄m〉 is complete. In (4.78), we used (4.44) for
the Dirac-Pauli variables q̄1, ..., q̄m and the usual normalization
〈qj|q′j〉 = δ(qj − q′j) for the ordinary variables q1, ..., qn. The η-

metric can be used to compute the probabilities of measuring
q1, ..., qn, q̄1, ..., q̄m and the corresponding conjugate momenta (in
the case of Dirac-Pauli variables, the outcomes of an experiment
can be identified with the imaginary parts of the eigenvalues).
Below we will show that the probabilities add up to one.

Before doing so, we generalize this approach to other
observables. First, we have to clarify the meaning of “observables"
in this context. An observable A is represented by an operator
with a complete set of eigenstates, |a〉. Indeed, in this case we
can define a positively defined metric in the following way. Let
us define an operator PA through25

〈a′|PA|a〉 ≡ δaa′ . (4.79)

24See also Abe et al. [77] and Donoghue and Menezes [78] for other discussions

about unitarity.
25This defines PA because an operator is defined once we give all matrix elements

in a complete basis.

Note that PA satisfies P†
A = PA and depends in general on A. The

new positively defined metric is defined by

〈ψ2|ψ1〉A ≡ 〈ψ2|PA|ψ1〉, (4.80)

where |ψ1,2〉 are generic states. By using this new metric, one can
define the probabilities with the usual Born rule: the probability
that the outcome of an experiment will measure a for an
observable A given that the state before the measurement is |ψ〉
is given by

P(ψ → a) ≡ |〈a|ψ〉A|2
〈a|a〉A〈ψ |ψ〉A

. (4.81)

These probabilities indeed satisfy the basic properties—they are
positive and they add up to one,

∑

a

P(ψ → a) =
∑

a

〈ψ |a〉A〈a|ψ〉A
〈a|a〉A〈ψ |ψ〉A

= 〈ψ |PA√〈ψ |ψ〉A
(

∑

a

|a〉〈a|PA
〈a|PA|a〉

)

|ψ〉√〈ψ |ψ〉A
= 1, (4.82)

where we used

∑

a

|a〉〈a|PA
〈a|PA|a〉

= 1, (4.83)

which follows from the completeness of {|a〉} and the defining
property of PA, Equation (4.79). Note that this result also holds
for time-dependent |ψ〉 and, therefore, probability is conserved
under time evolution. In the specific case when 〈a|a〉 is either
positive or negative (it never vanishes), an explicit expression for
PA is (after having normalized the state in a way that 〈a|a〉 = ±1)

PA ≡ 5A
+ −5A

−, (4.84)

where 5A
+ and 5A

− are the projectors on the positive norm and
negative norm eigenstates of A, respectively.

4.3. Cosmology
In practice, the cosmological predictions of QG would be
basically those of a standard QFT coupled to Einstein gravity
if it were not for the W2 term. This term, as we have seen,
corresponds to a spin-2 ghost with mass M2 = f2M̄P/

√
2.

Therefore, unless one takes f2 really tiny, the only significant
effects of the ghost occur in an inflationary context. We will focus
then on the inflationary behavior of the theory here.

The first step in studying the cosmological applications
of the theory is to find an FRW metric that satisfies the
classical equations. From the experience gained with the Pais-
Uhlenbeck model in section 4.2.5, one expects that the classical
limit provides precisely the classical action we started from,
Equations (2.8), (2.10), and (2.12). This is what is assumed
basically in the entire literature on the subject. The actual
proof of this property would be a significant progress in the
understanding of QG.

The FRWmetric is

ds2 = dt2 − a(t)2δijdx
idxj, (4.85)
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where a is the scale factor and we have neglected the spatial
curvature parameter as during inflation the energy density is
dominated by the scalar fields. The metric in (4.85) leads to
standard Friedmann equations as the W2 term vanishes on
conformally flat metrics and does not contribute to the equations
of motion. When the hypothesis of homogeneity and isotropy is
relaxed the W2 term contributes instead and its effect has been
studied in a number of works [21, 47, 86–94] (see [21] for a
general treatment), where the perturbations around the FRW
metrics were considered. We do not reproduce the calculations
here as they are performed in detail in the original articles.
One of the most important results obtained so far is that all
perturbations found by solving the linear equations around the
FRW metric remain bounded as time passes by Peter et al.
[19], Salvio [21], Ivanov and Tokareva [47], Tokareva [48], and
Salles and Shapiro [95], contrary to what one would naively
expect from the Ostrogradsky theorem. Moreover, by quantizing
these linear perturbations with an indefinite metric (with an
appropriate generalization of section 4.2.1) one obtains that
the conserved Hamiltonian of the full system is bounded from
below [21]. What happens beyond the linear order, however, has
not been discussed in detail and is an important target for future
research.

In QG, there are several possible inflaton candidates.
First, QG gives a natural implementation of Starobinsky’s
inflationary model [4] as the R2 is mandatory in order to have
renormalizability. Furthermore, other possible scalar fields can
participate: at the very least the theory should contain the Higgs
boson, which has been discovered at the Large Hadron Collider.
A detailed analysis of the inflationary dynamics and observable
predictions in some specific realizations of the QG scenario is
provided in Kannike et al. [20], Salvio [21], and Salvio and
Strumia [33].

4.4. Black Holes
After the discovery of gravitational waves interpreted as the
product of a binary black hole merger [96], the interest in
black hole solutions have increased. Therefore, it is important
to study the existence and properties of static spherically
symmetric solutions in QG, where the metric is given in spherical
coordinates {r, θ ,ϕ} by two functions f1 and f2 of r:

ds2 = f1(r)dt
2 − dr2

f2(r)
− r2(dθ2 + sin2 θdϕ2). (4.86)

This has been initiated in a number of articles. The first work was
done by Stelle [12], who computed the correction to Newton’s
law due to the extra gravitational terms. A first, the observation
is that the Schwarzschild solution of Einstein gravity in the
vacuum (f1(r) = f2(r)) is also a solution of the vacuum
equations of QG (i.e., in the absence of matter) [12, 97, 98].
Also, Lu et al. [98], Holdom [99], Lü et al. [100, 103], Cai
et al. [101], Lin et al. [102], Goldstein and Mashiyane [104],
Kokkotas et al. [105], and Stelle [106] found numerically and
studied new black hole solutions (not present in Einstein gravity)
and Holdom and Ren [107] identified a new class of static

spherically symmetric solutions without horizon (called the 2-2-
hole), which can, nevertheless, mimic the Schwarzschild solution
outside the horizon, with interesting implications for the black
hole information paradox.

Keeping in mind the Ostrogradsky theorem, an important
question is whether a stable black hole (or pseudo black hole, such
as the 2-2-hole) exists in the theory. Lü et al. [103] pointed out
that the Schwarzschild solution is stable for large horizon radius
rh, but becomes unstable (see also [108]) when rh is taken below
a critical value set basically by the inverse ghost mass ∼ 1/M2

(see also [106]). The endpoint of the instability is conjectured
to be another black hole solution, which is not present in
Einstein gravity and may be stable when rh is small. Holdom
and Ren [107] considered the creation of a static spherically
symmetric solution generated by a thin spherically symmetric
shell of matter; when the shell radius l . rh the new 2-2-hole
is found.

Once again in all these works the classical equations (valid as
h̄ → 0) of QG are taken to be those generated by the starting
action in (2.8), which is what we expect, but as pointed out in
section 4.3, a proof is still missing in the literature.

5. REACHING INFINITE ENERGY

Given that QG (coupled to a general renormalizable matter
sector) is renormalizable, one can hope that the theory remains
valid up to infinite energy. However, soon after the calculation of
the gravitational β-functions of Avramidi and Barvinsky [13] it
was realized to be a major obstacle to UV-completeness: the β-
function of f 20 in (3.16) is not negative for f 20 > 0 and, therefore,
the theory features a growth of f0 as the energy increases, until
perturbation theory in f0 cannot be trusted anymore26.

Then, a number of authors [15, 109–113] explored the case
f 20 < 0 claiming that asymptotic freedom can be achieved
for all couplings (both the gravitational and matter couplings)
if the matter sector is chosen appropriately. Although such
programme can lead to mathematically consistent asymptotically
free theories, there is a big phenomenological problem when one
chooses f 20 < 0.

Let us consider for simplicity the case where the scalar ζ
(corresponding to the R2 term and introduced in section 2.2)
does not mix with other scalars (if any). Then, the squared
mass of ζ equals M2

0 = f 20 M̄
2
P/2 (see Table 1), which clearly

indicates that for f 20 < 0 the scalar ζ is tachyonic. One way to
obtain M2

0 = f 20 M̄
2
P/2 is to use the Einstein frame Lagrangian

in (2.17) and (2.18) and compute its quadratic approximation
for the small fluctuations around the flat spacetime. Another way
is to calculate (directly in the Jordan frame) the propagator of
hµν ≡ gµν − ηµν , a procedure that was originally performed in
Stelle [8], which obtained precisely the masses given in Table 1.
This confirms that f 20 < 0 leads to a tachyonic instability27. Yet

26Different statements in the literature (even recent) appear because some results

for the β of f0 (obtained before the correct results of [13]) contained wrong signs.
27Similarly, f 22 < 0 leads to a tachyonic instability in the ghost sector and,

therefore, this case is commonly avoided as not even consistent with asymptotic

freedom (for a discussion of the tachyonic case see, however, [115–117]).
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another way to see why f 20 < 0 is phenomenolgically problematic
is to look at the Newtonian potentialVN(r) due to the Lagrangian
(2.8) [12, 114],

VN(r) = −GNM

r

(

1− 4

3
e−M2r + 1

3
e−M0r

)

, (5.1)

where GN is Newton’s gravitational constant and M is the
mass of the point particle generating the potential. As noted
even in the original article [12] by Stelle, this expression only
gives an acceptable Newtonian limit for real M2 and M0 (i.e.,
for positive f 22 and f 20 ): otherwise one would obtain oscillating
1/r terms.

One could hope that a phenomenologically viable f 20 < 0 is
achieved by introducing more scalars (besides ζ ). However, a
general argument, which we now describe, indicates that this is
not the case. Consider the Einstein frame potential U (defined in
Equation 2.18) along the ζ -direction, which can be conveniently
parameterized as

U = 1

ζ 4

[

a1 + a2(ζ
2 − a3)

2
]

(5.2)

where a1, a3 are suitable coefficients, which depend on the other
scalar fields, whereas a2 = 3f 20 M̄

4
P/8 < 0 (having assumed f 20 < 0

here). A necessary condition for the existence of a minimum of
U is that

∂U

∂ζ
= 0, that is ζ 2 = a1 + a2a

2
3

a2a3
. (5.3)

Notice that, if the solution for ζ 2 exists, that is (a1+a2a
2
3)/a2a3 >

0, then it is unique. Moreover, note that a2 < 0 implies that U
goes to a negative value as ζ → ∞. Therefore, there are only
three possibilities:

• There is no acceptable solution to (5.3) (no solution with ζ 2 >
0).

• The solution to (5.3) is a maximum of the potential (or at most
a saddle point once the other scalars are included).

• The solution to (5.3) is a point of minimum of U, but occurs
for a negative value of U (in contradiction with the positive
value of the observed cosmological constant). Indeed, if it
corresponded to a positive value of U then there would also be
a maximum (or a saddle point) given that U goes to a negative
value for ζ → ∞ and this would contradict the uniqueness of
the solution in (5.3).

The conclusion is that a minimum ofU (if any) must haveU < 0.
This argument generalizes the situation illustrated in Figure 1,
where only the field ζ was considered.

5.1. Conformal Gravity as the Infinite
Energy Limit of Quadratic Gravity
Given that the experiments lead us to take f 20 > 0, what happens
when f0 grows and leaves the domain of validity of perturbation
theory? In Salvio and Strumia [14] (see also references therein),
by using a perturbative expansion in 1/f0, it was shown that,
when f0 grows up to infinity in the infinite energy limit, the

scalar due to the R2 term decouples from the rest of the theory
and f0 does not hit any Landau pole, provided that all scalars
have asymptotically Weyl-invariant couplings (see below) and
all other couplings approach fixed points. Then, QG can flow
to a Weyl-invariant theory, a.k.a. conformal gravity, at infinite
energy. Given the importance of Weyl invariance for the high-
energy limit of QG, let us give some more details on this topic.
A Weyl transformation acts as follows on the various fields (the
metric gµν , the scalars φa, the fermions ψi, and the vectors
VA
µ ):

gµν(x) → e2σ (x)gµν(x), φa(x) → e−σ (x)φa(x),

ψi(x) → e−3σ (x)/2ψi(x), VA
µ → VA

µ , (5.4)

where σ is a generic function of x. A scalar has Weyl-
invariant couplings when all dimensionful parameters vanish
and ξab = −δab/6. This precise value of ξab emerges because
in this case the non-invariance of the kinetic term of the
φa precisely cancels the non-invariance of the non-minimal
couplings, Equation (2.12).

The idea that one can approach a Weyl-invariant theory at
large energy has been investigated in a number of articles [78,
118–124]. We do not reproduce the proof of Salvio and
Strumia [14] because it is described in detail there, but
some remarks are in order regarding the implications of this
result.

It is important to note that the condition to have a UV
fixed point guarantees not only the UV-completeness of the
QFT part28 but also of the gravitational part of the theory
(when all parameters flow to their conformal value). This opens
the road to the construction and study of relativistic field
theories of all interactions that are fundamental, i.e., hold up
to infinite energy. This scenario leads to several extra fields
(in addition to those present in the SM) as the study of
the one-loop β-functions of the SM reveals the presence of
Landau poles. These new fields can then be used to explain in
an innovative way the current pieces of evidence for physics
beyond the SM (such as neutrino oscillations, dark matter, and
baryon asymmetry of the universe). This nearly unexplored
field of research represents a very important target for future
research.

5.2. RGEs for Conformal Gravity and Matter
Although flowing to conformal gravity at infinite energy can be
consistent, at finite energy, conformal invariance is broken by the
scale anomaly and the R2 term as well as a non-vanishing value of
δab + 6ξab are generated. However, this is a multiloop effect (see
[14, 130–132] and references therein). The full set of one-loop

28Some SM extensions including gauge fields, fermions and scalars can feature a

UV fixed point for all couplings and their corresponding phenomenology have

been studied [125–129].
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FIGURE 3 | Schematic behavior of the gravitational couplings as functions of the energy in a possible interesting scenario. At high energies the theory is

approximately given by conformal gravity, with small corrections (which include the UV irrelevant Einstein-Hilbert and cosmological constant terms). Both 1/f0 and

δab + 6ξab remain very small for the reasons given above. The coupling f2 associated with the W2 term is also chosen to be small both to maintain perturbativity and

thus calculability and to provide interesting and potentially observable effects at the inflationary scales. The running of f2 is depicted only up to the mass of the

corresponding degrees of freedom, M2 = f2M̄P/
√
2. A large coupling f0 influences physics only at energies much above the Planck mass as its role compared to the

Einstein-Hilbert term is suppressed by E2/(f20 M̄
2
P
), where E is the typical energy of the process under study. Below M2 the gravitational theory resembles Einstein

gravity plus small corrections. The energy flows from the scale below which strong interactions are non-perturbative, 3QCD, up to infinite energy (passing through the

mass of the W-boson MW , the ghost mass M2 and the Planck mass MPl ).

RGE in conformal gravity are given by,

df 22
dτ

= −f 42

(

199

15
+ NV

5
+ NF

20
+ NS

60

)

(5.5)

dYa

dτ
= 1

2
(Y†bYbYa + YaY†bYb)+ 2YbY†aYb +

+Yb Tr(Y†bYa)− 3{C2F ,Y
a} + 15

8
f 22 Y

a, (5.6)

dλabcd

dτ
=

∑

perms

[

1

8
λabef λefcd +

3

8
{θA, θB}ab{θA, θB}cd

−TrYaY†bYcY†d ++ 5

288
f 42 δabδcd + λabcd

[

∑

k=a,b,c,d

(Yk
2 − 3Ck

2S)+ 5f 22

]

(5.7)

for f0 → ∞ and ξab → − 1
6δab. We do not show the

RGE of the gauge couplings because they are not modified
by the gravitational couplings (see [30–33]). The RGE of f2
was originally derived in Salvio and Strumia [14], Fradkin
and Tseytlin [30], Shapiro and Zheksenaev [133], de Berredo-
Peixoto and Shapiro [134], while those of Ya and λabcd were
obtained in Salvio and Strumia [14]. Also, Ohta and Percacci
[135] checked the RGEs of f2 with functional renormalization
group methods. This set of equations allows us to search for
fundamental theories that enjoy total asymptotic freedom/safety:
all couplings (including the gravitational ones) flow either to zero
or to an interacting fixed point in the UV.

In Figure 3, a pictorial representation of a possible resulting
gravitational scenario (described in the caption) is provided.
That behavior suggests a new paradigm of inflation based on a
quasi-conformal theory, a theory where f0 is large and ξab ≈
−δab/6, which so far has been left as a very interesting future
development.

The general RGEs in (5.5)–(5.7) can be used to address high-
energy issues in the scenario presented above, e.g., the actual
verification of a UV fixed point and vacuum stability.

6. CONCLUDING REMARKS

QG, appropriately extended to include renormalizable couplings
with and of a QFT, gives a renormalizable relativistic field
theory of all interactions, which is predictive and computable.
It has therefore attracted the interest of several researchers since
decades and continues to be an important framework in the quest
for a UV complete and phenomenologically viable relativistic
field theory.

The price to pay is the presence of a ghost and consequently of
an indefinite norm on the Hilbert space (which is implied both by
renormalizability and the requirement of having a Hamiltonian
that is bounded from below). Therefore, much of this review
has been dedicated to illustrate some possible ways to address
the ghost problem (such as the Dirac-Pauli quantization, the
Lee-Wick approach and the possibility to introduce positively
defined metrics on the Hilbert space) focusing on simple finite
dimensional quantum mechanical models. The full extension of
these techniques to the field theory case (and especially the QG
case) has not been done yet and is an important goal for future
research.

If QG is coupled to a QFT, which enjoys a UV fixed point, then
the whole theory can hold up to infinite energy29 and might still

29If a full solution of the ghost problem in quadratic gravity is found and the

theory can be made UV complete (possibly with the inclusion of matter fields) one

could also have a window on strongly coupled theories through the holographic

principle [136, 137] (in particular the AdS/CFT correspondence [138]) by using

QG as the higher dimensional theory on an asymptotically anti-de Sitter (AdS)

space. Actually, several works in this direction already appear in the literature (see

e.g., [139–142]).
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be compatible with data. So far, potentially viable theories have
only be found for f 20 > 0, given that f 20 < 0 leads to a tachyonic
instability (as is clear both in the Jordan and Einstein frame). The
explicit construction of a QFT sector that satisfies all collider and
cosmological bounds and explain the evidence for new physics
has not been achieved yet and is an outstanding target for future
research. The deep UV behavior of the theory may be the one
of a Weyl invariant theory (conformal gravity): the gravitational
coupling f0 and the non-minimal couplings of the scalar ξab reach
the Weyl invariant values f0 → ∞ and ξab → −δab/6, whereas
all other couplings approach a UV fixed point.
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