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BACKROUND

As argued in part I [1], our scientific descriptions of the world inevitably contain some subjective
“beliefs” weaved into the “knowledge” that stems from what we consider to be “objective
experimental evidence”—hence our off-the-wall term “beliefedge” introduced therein. Besides
being important drivers of science, our hidden or “unmanaged” beliefs are also a major source
of the “mental traps” that can all too easily derail human judgment even in the most eminent minds
[2]. Indeed, despite the solid—or apparently solid—and well-accepted theoretical foundations
of natural sciences, there are a number of traps that notoriously and secretly keep hijacking
scientists’ reasoning when designing and running experiments as well as during data processing and
interpretation. In part II we aim to illustrate these ideas, with a touch of personal flair, through a few
examples that we deem to be instructive and relevant in various fields of analytical nuclear magnetic
resonance (NMR), magnetic resonance spectroscopy (MRS) and magnetic resonance imaging
(MRI) or functional magnetic resonance imaging (fMRI) applications. First, we shall consider some
basic steps to ensure that data quality is sufficient for reliable scientific work employing magnetic
resonance (MR)—based measurement techniques. When discussing various examples in some
detail below, we shall also mention related artifacts and how to avoid or reduce them. We will
finish by summarizing some important aspects of practical belief-management.

SOME NOTES CONCERNING QUALITY CONTROL IN (F)MRI,
MRS, AND NMR STUDIES

In science, and here we are not considering quality control (QC) in routine, medical applications
of (f)MRI or MRS performed by technicians, each scientist is personally responsible for the
QC of the various aspects of an ongoing experiment. This includes hardware performance; the
function and quality of developed or modified measurement sequences; the estimation of sample-
specific parameters; the quality of the data acquired and processed; the quality and performance
of data analysis tools whether taken from a software library or developed in the laboratory. It
goes without saying that any in vivo experiment—animal or human—requires appropriate ethics
approval obtained from the local ethics committee. However, quite often neither the need for such
QC, nor the personal responsibility associated with it is recognized, because the issue is concealed
by the strong and very comforting belief that the NMR/MRI system is running at a constant level
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of performance which should make it eminently suitable for any
research done on the system. This belief-based assumption is
simply wrong. Let us expand on these points in a little more
detail.

The QC of the hardware components includes the basic
performance of the MRI scanner as well as all radio-frequency
(RF) coils employed in the particular experiment for various
nuclei and sample sizes. This is typically tested via appropriate
phantoms, usually provided by the manufacturer and/or vendor
of the scanner, or specifically manufactured in the laboratory
[3]. Such tests include not only signal-to-noise ratio (SNR)
measurements, but also, particularly in larger, inhomogeneous
RF coils, the SNR homogeneity across the sample volume [4–12].
Even more challenging would be the QC of hybrid systems like,
e.g., PET/MRI [13].

TheQC ofmeasurement sequences includes all aspects relevant
to a particular experiment, such as slice thickness, slice warp, the
homogeneity of the RF field, spatial resolution, relaxation times
T1 and T2–whether for contrast-to-noise ratio (CNR) or absolute
quantification of parameters, diffusion, perfusion, metabolite
concentrations, etc., depending on the type of study and protocol.
QC protocols should also be adapted to the requirements, e.g.,
accuracy and precision, of the study in planning [4, 14].

Data QC should not only be performed on phantom data,
but also on real (in vivo) data, as they may contain not
only technical artifacts but additional sample-specific artifacts
coming from magnetically inhomogeneous regions and/or
physiological motions (e.g., breathing, heartbeat, involuntary
bowel movements, etc.—and mixtures of those [15–20]. Only
if the data quality obtained from healthy volunteers seems to
be sufficient for the study statistics to enable valid patient data
and group statistics, should the measurements be continued
with patient groups [21]. Otherwise, QC measurements should
be repeated after improving the hardware and software
performance. This may be done by the manufacturer’s service
personnel or, if possible, by the scientists themselves [22].

The QC of pre- and post-processing software should be
performed by using mathematical phantoms (with varying noise
levels) and in vivo data taken from international databases [23–
26]. The latter typically also provides results from established data
analyses performed by experienced scientists using established
software packages [27–29]. However, be aware that specific
features of the data structure and quality may lead to different
results even if using commercial software packages.

Finally, we would like to add that the scanner hardware should
not change during the whole study, and performance should be
tested at least three times, i.e., at the beginning, in themiddle, and
at the end of the study (assuming a sufficiently stable hardware).
This implies that in vivo studies should not take much longer
than 6–8 months, posing a limit to longitudinal studies (be aware
that regular service checks by the vendor may also change the
performance). Of course, prolonged longitudinal studies may
be performed, however, only with caution and by carrying out
extra QC experiments to document any severe performance
changes (note: in addition to hardware replacements by the
service personnel, do not assume that any technical device, even
if regularly serviced, performs exactly the same way over time).

Much of what has been said about the quality of data-
measurement and data-processing for MRI and MRS is also valid
for the analytical use (meaning, in the present context, molecular
structure determination and quantitation) of high-resolution
liquid-state NMR. As for structure elucidation, experimental
data that is ambiguous or misleading in a way that goes
unnoticed, but is believed to be correct by the spectroscopist, can
lead to structural misassignments or (often hidden) structural
uncertainties in both small molecules and biomolecules [2, 30].
Similarly, ensuring the proper data quality brings up extremely
subtle issues having a major impact on the deduced results in
quantitative NMR applications, which are increasingly employed
in many areas such as in the determination of the purity of the
marketed drug substances [31–35].

EXAMPLES

Structure Determination by NMR
As already noted in part I, reference 2 contains several
sophisticated examples of the mental traps “in action,” in both
the physical theory behind NMR and in the application of
liquid-state high-resolution NMR in small-molecule structure
determination, so the reader is referred to that source for some
in-depth discussions along those lines. Herein, however, as a
case in point I (CS) wish to provide an almost outrageously
simple example of a structure determination problem involving a
similarly simple mental trap that I encountered quite a long time
ago. In fact, it is probably the apparent easiness of this problem
that makes it especially instructive, because, on the one hand,
it illustrates how simplicity itself can be deceptive, and on the
other hand it foreshadows the potential difficulties of identifying
mental traps in much more complicated situations. Historically,
this particular example was one of the first mental traps that I
encountered in the field of structure determination (which was
later followed by much more subtle ones), and it had a huge
influence on my views about, and my conduct of, the “scientific
method” (besides teaching me a lesson about humility—probably
one of themost important traits of a scientist). Although the story
is old, it involves essentially the same NMR and MS methods as
would be used today, and conceptually it is as relevant now as
ever. Also, the story being somewhat personal, I am taking the
liberty of using the first-person singular in this short and in many
ways sketchy narrative.

In the mid-1990s, a synthetic chemist colleague of mine
carried out the reaction shown in Figure 1, with the specific aim
of preparing compound 1.

The chemistry involved was thought to be robust with no
expected surprises, so the obtained substance was submitted
to our department for routine structure verification by NMR,
MS, and IR spectroscopy. As an operative NMR spectroscopist
I recorded the usual routine spectra (1H, 13C, COSY, HSQC),
which all proved to be in eminent agreement with the expected
structure 1. Having had already acquired a significant experience
in the NMR structure determination of vastly more complicated
structures, I regarded the interpretation of the NMR data as
a purely routine and unchallenging “job,” the only slightly
interesting feature being the fact that the amide protons gave
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FIGURE 1 | A chemical reaction aimed at obtaining compound 1. Ph = phenyl.

separate 1H signals—which of course can well be expected due
to slow amide rotamerism. The MS and IR data also fully agreed
with this structure, so I returned the official structural report to
the chemist with our approval of structure 1. However, parallel
to the spectroscopic investigation, the chemist also submitted the
substance for classical analysis, which at that time was done by a
dedicated analytical expert in a separate department. It appeared
to me that the use of that analytical service was cultivated
only by very few “old-school” chemists who were somewhat
uncomfortable with, and also skeptical about, modern NMR
and MS methods. Surprisingly, the chemist and the classical-
analytical expert came back to me with the news that the
pertinent substance could be titrated with AgNO3, indicating
that the compound must have an imide (-CO-NH-R) instead of
an amide (-CO-NH2) moiety as in 1. They therefore posed the
question if I was absolutely certain that we had structure 1 in
hand? Since the question triggered in me a reflexive, reputation-
protective, NMR-chauvinistic self-defense mechanism which was
further boosted by the notion that the reliability and structural
resolving power of classical analysis is clearly a million miles
below that of NMR spectroscopy, my passionate, indignant, but
firm answer was: yes! The case seemed to have been settled, but
after a few days the chemist returned again with the following
idea. What if, he said, the reaction had not stopped where he had
expected (i.e., at structure 1), but as a result of a spontaneous
ring cleavage occurring in 1 as indicated but the dotted lines i
or ii in Figure 1, it had progressed via a rearrangement to yield
either compound 2 or 3, which both happen to be imides? I was
stunned! It was immediately obvious that all three constitutional
isomers 1, 2, and 3 must have extremely similar NMR spectra
(the same number of 1H and 13C resonances, the same type of
1H spin systems, etc.), and it came as a shock to realize that
all of my (quite detailed!) NMR data obtained so far were in

fact entirely consistent with all three structures, so I could not
rule out the possibility of 2 or 3, i.e., I could no longer be
certain about 1! Having thus gained an entirely new (and quite
embarrassingly so) perspective of the problem, I could apply
somemore special NMR experiments involving themeasurement
of selective 13C{1H} NOEs and long-range 13C-1H coupling
correlations that could unambiguously prove that the structure
in hand was in fact 3, in agreement with the results of classical
analysis. If it hadn’t been for the titration experiments, this error
might have very easily gone unnoticed—a humbling realization
for an NMR spectroscopist!

Note that no deductive mistake had been made as far as the
interpretation of the initial set of NMR data is concerned, and
yet a mental trap involving confirmation bias yielded the wrong
structure which was even further entrenched in my mind by an
instinctual response to a status-quo-threatening and apparently
inferior piece of experimental evidence. In hindsight, this may
be called a typical example of poor belief management. At the
end of the day, this little affair with compounds 1–3 gave me
the shocking revelation that no matter how much I knew about
NMR, that technical knowledge did not prevent me from making
this kind of mistake, and averting such error requires a different
kind of skill, a competency that we are not typically “trained” for.
By reflecting again on the film “The Matrix” already alluded to in
part I, the whole scenario is perhaps best represented by the single
sentence that Morpheus tells Neo when the latter is learning
Kung Fu and is repeatedly failing in fights in spite of having
already acquired all the necessary technical proficiencies: “Your
weakness is not your technique.” In other words, possessing the
required technical skills is a necessary but insufficient condition
for being a good practitioner of the “scientific method.” To
avail in the latter, one also has to develop a competence that
we might call an attitude-skill involving belief-management—an
aspect of being a scientist which is largely ignored by the scientific
community.

Since (and partly as a result of) this early story, by
constantly striving to develop an acute awareness of the mental
traps, me and my team have experienced numerous similar
situations within our own laboratory as well as in the literature.
Quite intriguingly, although most of such NMR structural
misassignments prove to stem not from a lack of technical
methodology or human technical expertise, but from a lack of
such attitude-skill, except from rare examples the latter issue is
almost never addressed in the NMR scientific literature, in NMR
educational material, or at NMR conferences.

31P MRS In Vivo During Exercise in Skeletal
Muscle
Early metabolic studies of human skeletal and heart muscle
were performed using 31P-MRS as this technique was available
already in the early 1980s and provided more specific data
than proton-based MRI [36]. However, due to the limited
sensitivity of the instrument (B0 = 1.5T−2T), simple surface
coils were used to collect data from muscle tissue during
rest and exercise. Despite its early success, this led to partial
volume effects reducing the specificity (also, it was assumed
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erroneously that mechanical exercise, e.g., plantar flexion, would
activate the m. gastrocnemius only, and other muscles would be
metabolically silent). Only after localization techniques (STEAM,
PRESS, LASER), higher field strengths (i.e., 3T and now 7T),
and more sensitive RF-coils [37] became available, did sensitivity
and specificity increase [38, 39]. Based on these improvements,
Fiedler and co-workers applied localized 31P-MRS with sufficient
temporal resolution (ca. 30 s) to investigate differences in m.
gastrocnemius and m. soleus during and after mechanical
exercise [40, 41]. This clearly revealed that the originally assumed
splitting of the Pi peak into intra- and extracellular components
was just an artifact due to leg motion and partial volume
effect (m. gastrocnemius and m. soleus). Also, testing established
models was only possible after significant improvements in both
SNR and temporal resolution. Additional improvements include
simultaneous and interleaved acquisition of various NMR signals
[42, 43] enabling data collection of pH, lactate, T∗

2 and muscle
perfusion after a single exercise bout [44–46], i.e., without
averaging several exercise sessions.

Why So Many fMRI Studies Are Flawed? An
Example From Emotion Research
Although it was obvious from the early days of blood-oxygen
(BOLD)-based fMRI that contributions of large, draining veins
may dominate in data collected with gradient-echo based MRI
sequences [47–50] at 1.5T, or later 3T, this has been largely
ignored by neuroscientists and clinicians running a multitude
of fMRI studies during the last 25 years. Although increasing
the nominal spatial resolution and brain coverage did help to
reduce the number of voxels contaminated by large veins, this did
not solve the problem. Furthermore, simple correlation of signal
fluctuations in various brain voxels combined with statistical
thresholds to extract “significantly” activated brain regions even
worsen the problem. In addition, a multitude of different data
processing strategies exist which severely reduce comparability
and reliability [51–55]. Here we discuss the application of fMRI
in emotion research, specifically involving the amygdalae. As
the amygdalae are small (ca. 1 cm3 each), symmetrically placed
structures located in a brain region prone to be affected by
strong susceptibility changes as well as a strong motion of the
nearby brainstem, it took quite some time before significant
amygdala activation could be published at all. However, it turned
out that results were quite variable so further improvements
had to be awaited [56]. More recently, we found that the
assumed amygdala activation due to visual stimulation with
emotional faces was heavily contaminated by strong stimulus-
correlated signals from a draining vein [57], the so-called vein
of Rosenthal. This particular vein drains the temporal lobe,
i.e., brain regions where face processing is performed, and
runs down toward and around the amygdalae. The distance
between the origin of the stimulus-specific signal fluctuations,
i.e., fusiform face area in the temporal lobe, and the amygdalae
amounts to several centimeters, questioning the specificity of
stimulus-correlated signal fluctuations near the amygdalae as
being related to emotion processing (of course, it cannot be ruled
out that a certain amount of the signal fluctuations detected

may stem from the amygdalae itself). However, using standard
EPI protocols at 3T, the stronger component definitely arises
from the draining vein. Therefore, based on such data it is not
possible to differentiate between face processing and emotion
processing, both resulting from the photos of (emotional) faces
presented to the subjects during the fMRI experiment. There are
several strategies to reduce the contribution of large, draining
veins to specific brain regions and even cortical layers. This
includes the use of higher magnetic field strengths and dedicated
pulse sequences [58], but most of the MRI systems used in
neuroscience operate at 3T. Therefore, fMRI protocols should
be optimized for 3T [59, 60], reducing various artifacts (e.g.,
physiological motion, flow, susceptibility related) and dedicated
analyses could help to identify contaminated voxels [61, 62].
In summary, it should be clear that in order to reduce or
eliminate false inferences made from the experimental data due
to belief-based mental traps, such as the confirmation bias, only
a full package of optimized, dedicated strategies may help to
improve the data quality and reliability of fMRI applications in
neurosciences in general [63], and particularly in certain regions
such as the frontal lobe and the ventral brain.

MAIN BELIEF-MANAGEMENT POINTS
(SUMMARY)

Our “beliefedge” is that the ideas put forward in both parts of
the present opinion paper should be of interest to all researchers
active in natural sciences, irrespective of whether they are
seasoned scientists or are just starting their research careers. At
the very least, for those in the former category who may already
be harboring similar thoughts wemay have been able to show that
they are not alone. As for those who have not yet contemplated
such “darker” aspects of science and human thinking, we hope
that by guiding them through a process of “endarkenment,” we
have also facilitated their “enlightenment” about how to become
advanced practitioners of the “scientific method.” In order to
maintain that mental state, here is a quick summary of the main
points of our theme.

1) Be aware of the nature and magnitude of your in-process
beliefs and the belief components in your “beliefedges.”

2) Make a clear mental distinction between your pre- and post-
conclusion beliefs.

3) When solving a problem by using a set of input information,
make sure to distinguish between unambiguous data and
belief-based data.

4) Be meticulous about considering all possibilities before
coming to a conclusion.

5) Learn to live with leaving some questions open (i.e., to extend
the pre-conclusion process) without jumping to conclusions.
However, reasons for why a question should be left open
should be explicitly stated if possible.

6) Become flexible about revising your “beliefedges” if new ideas
or evidence require a change.

In other words, whatever your personal instructor, supervisor,
or professor is telling you, or whatever you read in the literature,
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regard this as an opinion which should be either verified by
yourself, or treated with creative skepticism until you judge
it to be true. Be capable of modifying that judgment in the
face of subsequent new information. Also, be perceptive of
instances when you do not have adequate information to make
such judgment. Develop the faculty of not arriving at strong
conclusions in such situations, and of being comfortable with that
kind of uncertainty in your mind.

Furthermore, be always aware that perhaps your scientific
achievements will not solve open issues, but will contribute to a
“higher level of confusion”—which is a very natural way of how
science progresses. Also, in case there are two (different) schools
or theories, accept that, at the end of the day, neither of themmay
win over the other, but both may have their merits under certain
circumstances.
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