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Analysis of Cell Size Homeostasis at
the Single-Cell and Population Level
Philipp Thomas*

Department of Mathematics, Imperial College London, London, United Kingdom

Growth pervades all areas of life from single cells to cell populations to tissues. Cell

size often fluctuates significantly from cell to cell and from generation to generation.

Here we present a unified framework to predict the statistics of cell size variations

within a lineage tree of a proliferating population. We analytically characterize (i) the

distributions of cell size snapshots, (ii) the distribution within a population tree, and (iii)

the distribution of lineages across the tree. Surprisingly, these size distributions differ

significantly from observing single cells in isolation. In populations, cells seemingly grow

to different sizes, typically exhibit less cell-to-cell variability and often display qualitatively

different sensitivities to cell cycle noise and division errors. We demonstrate the key

findings using recent single-cell data and elaborate on the implications for the ability

of cells to maintain a narrow size distribution and the emergence of different power laws

in these distributions.

Keywords: stochastic individual-based modeling, cell size control, size distributions, homeostasis, lineages,

power laws

1. INTRODUCTION

Cells decide when to divide based on their size. A key question is therefore why cells grow
to a certain size, how they maintain their sizes within a narrow distribution and what are the
dominant sources of size variations. Recent experiments investigate this issue by taking snapshots
of populations [1], trapping single cells [2] or recording movies of growing populations [3, 4].
Currently, we lack the tools with which to compare these different data.

It is known that timing divisions independently of cell size, a so-called timer control, does not
lead to a stable size distribution when cells grow exponentially [5, 6]. Since exponential growth
is ubiquitously observed in microbes [2, 3, 7–9], cells must control their division sizes to achieve
homeostasis [10–12]. A possible strategy for such a control, called a sizer, is to set a stochastic
threshold. Manymicrobes, however, rather grow by a constant size from birth to division, called the
adder control [3, 13–15]. Other mixed strategies may be described by sizer- or timer-like controls
[9, 15, 16].

Identifying which strategy cells employ is essential to understand how cells compensate for
errors in size control and cell division. Early theory focussed on the distribution of cell size
snapshots across a growing population, mainly due to the experimental limitations of tracking
many cells over time [17–20]. These initial studies formulated sizer models based on the population
balance equation, an integro-differential equation that is notoriously difficult to solve in practice
[21–24]. With the advent of single-cell traps such as the mother machine [2], the theoretical focus
moved toward describing single cells over many divisions [13, 25–27]. This path is more amenable
to analysis because it considers only a single individual described by a discrete-time stochastic
process or stochastic map [28]. It does not, however, apply to time-lapse movies monitoring cell
growth in populations. A quantitative investigation of this issue is essential for our understanding
of cellular physiology.
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Thomas Analysis of Cell Size Homeostasis

Here, we develop a comprehensive quantitative framework
to predict single-cell and population statistics from models of
cell size control. We focus on a stochastic branching process
that produces a lineage tree (Figure 1A). We analyse (i) the
size distributions of single dividing cells followed over time, (ii)
the distribution in lineages across a population tree, (iii) the
distribution across all cells in the tree, and (iv) the distributions of
snapshots. Although these measures stem from the same lineage
tree and the same underlying stochastic process, we find that they
can give quantitatively and qualitatively different results when
size varies from cell to cell. Our findings highlight the significance
of population dynamics for the analysis of cell size control and
size homeostasis.

2. ESTIMATION OF CELL SIZE
DISTRIBUTIONS FROM
TREE-STRUCTURED DATA

Estimation of cell size from snapshots samples all cells at a given
instance in time. Time-lapse microscopy, however, offers various
statistical analyses based on the underlying tree-structure of the
data. A tree corresponds to an experiment starting from a single
cell that resolves all ancestral relationships between cells in the
population (see Figure 1A). A lineage is a subset of the tree
representing a line of descent between the ancestral cell (root of
the tree) and a cell of the final population (leave).

To estimate the tree and lineage statistics, we use the lineage
counting method proposed by Nozoe et al. [29]. We denote by

s
ij
0 the size measurements at cell birth of the ith of Dj cells in
the jth of NL lineages of NT trees and by Dj the number of cell
divisions in the jth lineage. There are several ways in which these
data can be pooled to represent either tree or lineage statistics.
The corresponding distributions and their moments therefore
generally represent weighted averages of the form

ḡ =

NL
∑

j=1

Dj
∑

i=1

wijg
(

s
ij
0

)

,

where wij are the weights and the function g denotes the desired
summary statistic. Choosing, for instance, g to be the Dirac delta
function (or an appropriate binning function) gives a weighted
cell size distribution. Similarly, choosing g(x) = xn we estimate
its nthmoment. In this article, we consider the distributions that
correspond to the following weights:

Forward lineage: wij =
2−Dj

NTDj
, (1a)

Backward lineage: wij =
1

NLDj
, (1b)

Tree distribution: wij =
1

3ij
. (1c)

The forward lineage is a random path in a tree traversed
from root to leaves in which each daughter cell is chosen with
equal probability. The weights (1a) follow from the fact that the

probability of choosing such a lineage from NT binary trees is
2−Dj/NT and there are Dj measurements in the jth lineage (see
[9, 29] for details). A similar lineage would be observed in the
mother machine [2] assuming mother and daughter cells are
statistically indistinguishable.

The backward lineage gives equal weight to each lineage and
thus characterizes a typical lineage in a tree. The weights (1b)
follow because there are Dj measurements in the jth lineage and
NL lineages. Such a lineage can be thought of choosing a random
cell of the final population and traversing the tree from leave to
root as described in Nozoe et al. [29], Wakamoto et al. [30], and
Thomas [31].

Finally, the tree distribution gives equal weight to each birth
event in the tree. Consequently, the factor 3ij denotes the

number of occurrences of the values s
ij
0 in the NL lineages. Note

that in practice this measure is computed easily by averaging all
birth sizes in the trees. In the following, we develop an analytical
framework to obtain these distributions from models of cell size
control.

3. SIZE DISTRIBUTION OF A SINGLE CELL
OVER TIME

As explained in the previous section, the forward lineage samples
either daughter cell with equal probability. We can model such
paths as stochastic maps with respect to the number of cell

divisions D [28]. Denoting the birth size by s
(D)
0 , division size by

s
(D)
d

and inherited size fraction by p(D), we have

s
(D)
d

= f (s
(D)
0 )+ η(D), (2)

s
(D+1)
0 = p(D)s

(D)
d

. (3)

Here the deterministic function f determines how division size
depends on birth size and the stochastic part η(D) is independent
of birth size. An equivalent formulation is the one in terms of
probabilities. In the limit of long times, the birth size distribution

ψfw(s) = limN→∞
1
N

∑N
D=1 δ(s − s

(D)
0 ) is stationary and satisfies

the integral equation

ψfw(s) =

∞
∫

0

dp

∞
∫

0

ds0
π(p)

p
ϕ(s/p|s0)ψfw(s0). (4)

The distribution ϕ(s|s0) = ϕη(sd − f (s0)) can be written in terms
of the distribution of the birth-size independent part of division
size η and π(p) is the distribution of inherited size fractions p.
Because we follow each daughter cell with equal probability, the
latter can be written in terms of the marginal distributions of the
two daughter cells

π(p) =
1

2
π1(p)+

1

2
π2(p). (5)

Because the mother’s size is split between the daughters, we
have π1(p) = π2(1 − p) which implies that E[p] = 1/2 and
also models the situation of asymmetric cell divisions. Hence on
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Thomas Analysis of Cell Size Homeostasis

FIGURE 1 | Characterization of cell size statistics from tree-structured data. (A) Lineage tree resulting from cell growth and division. The snapshot distribution

characterizes the final state of the tree (gray). The distribution of birth sizes resulting from all cell divisions in the tree (black nodes) is the tree distribution. Forward

lineages (red lineage) traverse the tree from root to leaf and follow randomly each daughter cell after division. Backward lineages start a randomly chosen cell in the

final population and traverse the tree from leaf to root. (B) The snapshot distribution (gray) for the case of small division errors shows a maximum for newborn cells

and decreases progressively toward larger cell sizes. Forward (red), backward lineage (blue) and tree distributions (green) of birth size are qualitatively similar. (C) For

large fluctuations in cell size controls (CVη = 0.75) the snapshot distribution broadens significantly (gray). Distributions of forward and backward lineages are almost

indistinguishable, while the tree distribution (green) shows that cells are typically smaller compared to the lineage statistics. (D) For large division errors (CVp = 0.5),

forward, backward lineage and tree distributions appear all significantly different showing cells in forward lineages are typically smaller than in backward and tree

distribution. The analytical results (solid lines) are verified using stochastic simulations in all cases (dots). Theory and simulations use adder rule (a = 1),

gamma-distributed cell cycle noise with E[η] = 1 and CVη = 0.1, and division errors following a symmetric beta distribution with CVp = 0.07 unless stated otherwise.

average a daughter cell inherits precisely half of the mother’s size,
as expected.

4. SIZE DISTRIBUTIONS IN GROWING
CELL POPULATIONS

While the theory of a single dividing cell is well-established,
individual-based frameworks of growing cell populations are less
commonly considered but date back to Koch and Schaechter
[17]. We go on to develop this theory by deriving the governing
equations for the population statistics. Assuming that cell
division occurs at a rate γ (τ , s) that depends on the present cell
age τ and size s, the rate of change in the number of cells with
that age and size n(τ , s) is

d

dt
n(τ (t), s(t), t) = −γ (τ (t), s(t))n(τ (t), s(t), t).

We further assume that cells grow exponentially with growth rate
α

s(τ ) = s0e
ατ ,

as has been reported for many microbes such as Escherichia coli
[2], Caulobacter crescentus [3], B. subtilis [7], M. smegmatis [9]

and S. cerevisiae [8]. Using this dependence we can expand the
total derivative to obtain

[

∂

∂t
+
∂

∂τ
+
∂

∂s
αs

]

n(τ , s, t) = −γ (τ , s)n(τ , s, t). (6)

To account for cell births the cell density must obey the boundary
condition

n(0, s, t) = 2

∞
∫

0

dsd

∞
∫

0

dτ K(s|sd)γ (τ , sd)n(τ , sd, t). (7)

The condition implements the fact that the number of newborn
cells in the population must equal twice the number of
dividing cells. The division kernel K(s|sd) denotes the transition
probability for a cell of size sd to inherit size s after cell division.
Most conveniently, we can write it in terms of the inherited size
fraction via

K(s|sd) =

∫ 1

0
dpπ(p)δ(s− psd), (8)

where π(p) is defined as in Equation (5) and also takes into
account a possible asymmetry between the daughter cells. Similar
formulations have been used to characterize distributions of size-
structured populations [21, 23, 32]. In the following, we derive
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a strategy of how to obtain the various population statistics
analytically. We will do this iteratively by writing the snapshot
distribution in terms of the tree distribution, and writing the tree
distribution in terms of the backward lineage distribution that
can be efficiently solved.

4.1. Snapshot Distribution
In balanced growth conditions the total number of cells increases
exponentially, a condition which dramatically simplifies the
analysis. In this limit, the cell density follows

n(τ , s, t) ∼ eλt5(τ , s). (9)

The distribution 5(τ , s) is the probability density of observing
a cell with age τ and size s in a snapshot, which is independent
of time. It can further be shown that the asymptotic population
growth rate λ equals the rate of cell-growth α [31]. Using
this ansatz in Equation (6) and employing the method of
characteristics, we find that the snapshot density satisfies

5(τ , s) = 5(0)5(se−ατ |0)e−2ατ

∫ ∞

τ

dτd ϕ(τd|se
−ατ ), (10)

where5(s0|0) is the distribution of birth sizes and

ϕ(τd|s0) = γ (τd, s0e
ατd )e

∫ τd
0 dτγ (τ ,s0e

ατ )

is the distribution of division times for a cell of given birth size.
Integrating Equation (6) and using the boundary condition (7)
shows that5(0) = 2α.

To make the dependence on birth size explicit, we change
variables from τ to s0. The result is the snapshot distribution of
cell size and birth size, which reads

5(s, s0) = 25(s0|0)φ(s|s0)
s0

s2
, (11)

where φ(s|s0) = 1 −
∫ s
s0
ds′ϕ(s′|s0) is the probability that a cell

born with size s0 has not divided before reaching size s. The
snapshot distribution (11) depends explicitly on the distribution
of birth sizes, which we characterize in the following. In the
absence of cell division errors and cell cycle noise, the birth
size s0 is deterministic and the snapshot distribution reduces to
5(s) = 2s0/s

2 for s0 ≤ s ≤ 2s0 as shown by [17].

4.2. Tree Distribution
In balanced growth conditions, the fraction of cells with a certain
size is constant. Hence, the birth size distribution in a snapshot is
also the distribution of birth sizes in the population tree

ψtree(s0) = 5(s0|0). (12)

To characterize this measure, we substitute Equations (9) and
(10) into the boundary condition (7) to find

ψtree(s0) = 2

∞
∫

0

dsd

∞
∫

0

dτ K(s|sd)e
−2ατϕ(τ |sde

−ατ )ψtree(sde
−ατ ).

(13)

Changing the integration from τ to s0 = e−ατ sd and using
ϕ(τ |s0)dτ =

sd
s0
ϕ(sd|s0)ds0, we finally arrive at

ψtree(s) = 2

∞
∫

0

ds0

∞
∫

s0

dsd K(s|sd)

(

s0

sd

)

ϕ(sd|s0)ψtree(s0), (14)

which characterizes the tree distribution. The distribution
ϕ(sd|s0) is the distribution of division sizes that describes the cell
size control as in Equation (4).

4.3. Backward Lineage Distribution
The equation for the tree distribution has no intuitive stochastic
process interpretation. However, we notice that substituting

ψbw(s0) = s0ψtree(s0)Ebw[s
−1
0 ], (15)

where Ebw[s
−1
0 ] is a normalizing factor, transforms Equation (14)

into

ψbw(s) =

∞
∫

0

dp

∞
∫

0

ds0
πbw(p)

p
ϕ(s/p|s0)ψbw(s0), (16)

with

πbw(p) = 2pπ(p). (17)

This equation provides such a simple stochastic interpretation
because it is of the same form as the forward lineage equation (4),
except that πbw replaces π . In fact, it describes the distribution
of birth sizes in a backward lineage. Interestingly, the inherited
size fraction in backward lineages πbw is skewed toward cells
inheriting larger size fractions. It thus appears as if cells are
dividing asymmetrically in backward lineages. The impact of this
phenomenon on the cell size distributions is explored in the
following.

4.4. Comparison of Cell Size Distributions
A phenomenological linear relation between birth and division
size has been observed in experiments [9, 15, 28]

sd = as0 + η. (18)

To incorporate these dependencies into our stochastic
framework, we set ϕ(sd|s0) = ϕη(sd − as0). The parameter
a denotes different models of cell size control and ϕη the size
control distribution. For a = 0 division size is independent of
birth size, called the sizer mechanism. For a = 1 the size added
from birth to division varies independently of birth size, an adder
mechanism that is commonly observed in bacteria [3, 10, 13].
For a = 2 division size is directly proportional to birth size,
which resembles cell-size control based on division timing.
Intermediate values would behave either sizer- (0 < a < 1) or
timer-like (1 < a < 2).

Equation (16) could in principle be solved by sampling the
stochastic maps given in section 3. More effective, however, is
to discretise it and solve the resulting set of linear equations
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numerically. This procedure can in principle be used for arbitrary
distributions of division errors and size control. In Figures 1B–D
we show the result of this procedure for beta-distributed division
errors and gamma-distributed cell size control. The snapshot
distribution is obtained using the numerical result for ψbw

together with Equation (16) in (11).
When errors in cell division and size control are small

(Figure 1B), the snapshot distribution displays a maximum
at newborn sizes and a long decaying shoulder toward the
division size consistent with the fact that in populations
the number of newborn cells must equal twice the number
of dividing cells. The numerical results for the backward
distribution ψbw shown in Figure 1B are qualitatively very
similar to the tree distribution obtained via Equation (15)
and also to the lineage distribution computed by solving
Equation (4).

As the fluctuations in size control increase (Figure 1C), the
snapshot distribution broadens and the birth size distributions
become skewed. The distributions of forward and backward
lineage are nearly indistinguishable, but the tree distribution
leans toward significantly smaller sizes. For large division errors
but small fluctuations in size control (Figure 1D), the snapshot
distribution also broadens, but the size distributions in forward
(red), backward lineages (blue) and population trees (green) all
differ significantly in this condition. Cells in backward lineages
are typically bigger than in the population tree and these are
bigger than in forward lineages.

We verify the accuracy of our predictions by agent-based
simulations. To this end, we stochastically sample division
sizes using Equations (18), calculate the interdivision times
τd = ln(sd/s0)/α, determine the birth size after division from
Equation (3) and assign the remaining size to the other daughter.
The distributions from the simulated population trees (dots in
Figure 1) are in excellent agreement with the theory (solid lines)
in all cases.

The predicted differences in the birth sizes can be understood
intuitively from the associated interdivision times of cells. In the
presence of division errors, cells born larger have shorter division
times, and they are hence over-represented in the population tree
and the backward lineages when compared to forward lineages.
On the contrary, when only cell size control fluctuates, cells
dividing at smaller sizes are over-represented in the population
tree. Curiously, our theory predicts that the latter phenomenon
affects only the tree statistics but not the backward lineage.
This is because the lineage statistics have the same division size
controls ϕ (cf. Equations 4, 16). In the following, we provide
a quantitative analysis of these effects based on the cell size
moments.

5. CONDITIONS FOR CELL SIZE
HOMEOSTASIS

5.1. Mean Cell Size and Cell-To-Cell
Variability
To obtain expressions for the cell-size moments in a
forward lineage, we multiply Equation (4) by sn, perform

the integration and employ the binomial theorem. The
result is

Efw[s
n
0] = E[pn]

n
∑

k=0

(

n

k

)

E[ηk]an−kEfw[s
n−k
0 ], (19)

which depends on the moments E[ηk] of the birth-size
independent part of the division size (cf. Equation 18). Solving
this relation for the nthmoment Efw[s

n
0] allows to express the cell

size moments recursively in terms of lower order moments

Efw[s
n
0] =

E[pn]

1− anE[pn]

n
∑

k=1

(

n

k

)

an−kE[ηk]Efw[s
n−k
0 ]. (20)

Using the above equation, we have explicit expressions for the
mean cell size and its fluctuations. Similarly, the moments in
backward lineages Ebw[s

n
0] are obtained by replacing E[pn] with

Ebw[p] = 2E[pn+1] (cf. Equation 17), and the moments of the
tree distribution follow from Etree[s

n
0] = Ebw[s

n−1
0 ]/Ebw[s

−1
0 ] (cf.

Equation 15). In summary, the mean size and its coefficient of
variation (CV2

x = Var[s0]/E
2[s0]) are given by

Forward lineage:

Efw[s0] =
E[η]

2− a
,

CV2
fw[s0] =

(a− 2)2CV2
η

(

CV2
p + 1

)

+ 4CV2
p

4− a2(1+ CV2
p)

, (21a)

Backward lineage:

Ebw[s0] =
E[η]

(

CV2
p + 1

)

2− a(1+ CV2
p)

,

CV2
bw[s0] =

4CV2
p

(

CV2
p − 1

)

− CV2
η

(

3CV2
p + 1

) (

aCV2
p + a− 2

)

2

(

CV2
p + 1

)

2
(

3a2CV2
p + a2 − 4

) ,

(21b)

Tree distribution:

Etree[s0] = E−1
bw

[s−1
0 ],

CV2
tree[s0] =

(1+ CV2
p)

(

a+ E[η]Ebw[s
−1
0 ]

)

− 2

2− a(1+ CV2
p)

. (21c)

These expression are exact but provide exact analytical insights
only to the forward and backward lineage statistics, because
the tree mean cannot be obtained in closed form and has to
be approximated. In what follows, we provide a discussion of
quantitative differences between these different statistics, analyse
their sensitivities to different noise sources, and compare our
findings to experimental single-cell data.
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5.1.1. Quantitative Differences of the Cell-Size

Statistics
We first compare the lineage statistics. Interestingly, the mean
cell size in a forward lineage is independent of the division
error CVp while it increases with CVp in backward lineages
confirming our previous findings (Figure 1D). We illustrate
this dependence for the sizer (a = 0), adder (a = 1)
and a timer-like size control (a = 1.5) in Figure 2A. It is
seen that the mean cell size in backward lineages is more
sensitive to the cell size control parameter a. In Figure 2B

we compare the dependence of the coefficient of variation of
size fluctuations for different size controls and division errors.
Importantly, despite the sensitivity of the mean cell size to
division errors, for sizer and adder the coefficient of variation
is always smaller in the backward than in the forward lineage.
It can be shown using Equations (21) that this holds whenever
a ≤ 1.

In the tree statistics, cells are expected to be smaller in the tree
statistics than in backward lineages

Etree[s0] ≤ Ebw[s0], (22)

which follows using Jensen’s inequality in Equation (21c).
To compare the tree statistics with the forward statistics, we
approximate the tree mean assuming small fluctuations by
expanding Equation (21c) about Ebw[s0] and substituting the
backward moments. A straight-forward calculation including
also the skewness skew[η] of the size control distribution gives

Etree[s0] ≈ Efw[s0]

(

1+
2a

4− a2
CV2

p −
2− a

a+ 2
CV2

η

+
(2− a)2skew[η]

a2 + 2a+ 4
CV3

η

)

, (23a)

CV2
tree[s0] ≈

4

4− a2
CV2

p +
2− a

a+ 2
CV2

η −
(2− a)2skew[η]

a2 + 2a+ 4
CV3

η.

(23b)

Note that by Equation (8) division errors do not posses skewness
and hence there is no corresponding term.

By inspecting the second and third term in the approximation
of the tree mean, we observe that division errors increase
the mean while errors in the size control decrease it relative
to the forward lineage average. Interestingly, the tree mean
of the sizer control (a = 0) decreases with size control
errors but is insensitive to division errors, while a timer
control (a = 2) amplifies division errors (Figure 2A).
For the adder control (a = 1), the tree mean can
either be smaller or larger than the forward lineage average
depending on the relative the relative size of the noise sources
(Figure 2A).

The differences in the coefficients of variation of the tree
statistic and the forward lineage are determined by the skewness
skew[η] of the size control distribution. This follows because
the first two terms in Equation (23b) equal the linearized
coefficient of variation in forward lineages. Negative skewness
hence increases the noise levels in the tree statistics, while

positive skewness decreases it. The latter case is shown in
Figure 2B where we find that noise levels are smaller than
forward lineage ones. Considering the fact that backward lineages
also have smaller noise levels than forward lineages for a ≤ 1,
this suggests a possible mechanism for noise reduction in
populations.

5.1.2. Sensitivity Analysis
To investigate the different lineage statistics further, we
compute the sensitivities of the coefficient of variation given in
Equations (21) to the different noise sources

Sp(CV
2
η) =

∂CV2[s0]

∂CV2
p

∣

∣

∣

∣

∣

CV2
p=0

, Sη(CV
2
p) =

∂CV2[s0]

∂CV2
η

∣

∣

∣

∣

∣

CV2
η=0

.

(24)

We find that the sensitivity to division errors Sp(CV
2
η) shown

in Figure 2C increases with noise in cell size control in
forward lineages (red lines) for all size controls. However,
in backward lineages, the sensitivity increases only for the
sizer, it is constant for the adder and decreases for the timer
control.

The sensitivity of size variation to noise in cell size control
Sη(CV

2
p) shown in Figure 2D increases for the sizer mechanism

with small division errors both in forward and backward
lineages, but exhibits opposite dependencies for the adder and
timer-like controls in the respective lineage statistics. We also
observe that an instability occurs for timer-like mechanisms
as described previously [25, 27]. Interestingly, this instability
occurs for smaller values of a in the backward lineages
than those previously reported for forward lineages. This
suggests that different conditions for cell size homeostasis
apply to forward and backward lineages but also to the tree
distribution. Before analyzing these conditions in section 5.2,
we compare the predictions of our theory to single-cell
data.

5.1.3. Application to Single-Cell Experiments
To validate the predictions of our theory, we analyse a
recent dataset acquired using time-lapse microscopy of the
mycobacterium S. smegmatis [9]. Its rod-shape allows us
to use of cell length as a proxy for cell size. Figure 3

summarizes the lineage-weighted statistics of mean lengths
and the corresponding coefficients of variation as introduced
in section 2. We find that mean length is higher in the
tree statistic and backward lineages than in forward lineages
(Figure 3A). Similarly, we observe smaller cell-to-variability in
the tree and backward lineages (Figure 3B). The noise reduction
in the backward lineage noise is roughly 10%. These findings
qualitatively confirm the predicted differences in the cell size
statistics of populations.

To quantitatively compare these measurements with the
proposed theory, we fit the expressions in Equations (21a),
(21b) and (23) using nonlinear least squares. Because cells
grown in glycerol follow the adder rule, we fix a = 1
[9]. The best-fit (see caption of Figure 3 for parameters)
provides reasonable agreement with the measured quantities
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FIGURE 2 | Cell size statistics and their sensitivities differ between single cells and populations. (A) Mean birth size increases with division errors in backward lineages

(blue) but not in forward lineages (red). In the tree statistics, mean birth size can be smaller or larger than in forward lineages depending on partition errors. Predictions

for various modes of cell size control are shown: sizer (a = 0, solid), adder (a = 1, dashed) and timer-like (a = 1.5, dotted). We chose E[η] = (2− a), CVη = 0.3 and

skew[η] = 1 such that the mean cell size in forward lineages is independent of the cell size control. (B) Comparison of coefficients of variation of birth size in forward

(blue), backward lineages (red) and lineage tree (green). For the sizer and adder mechanisms the size fluctuations in backward lineages and the tree statistic are

always smaller than in forward lineages. (C) Sensitivity of the coefficient of variation of cell size to division errors in forward and backward lineages. Sensitivity increases

with noise in cell size control in forward lineages (red lines) for all size controls. However, in backward lineages the sensitivity increases for the sizer, is constant for the

adder and decreases for the timer-like control. (D) Sensitivity of the coefficient of variation of cell size to noise in size control. For small division errors, sensitivity of the

sizer increases both in forward and backward lineages and the sensitivities of adder and timer-like controls display opposite behaviors in forward and backward

lineages. Note that sensitivities diverge for the timer-like controls with large division errors.

considering the experimental error bars. We expect that
higher sample sizes and developed models of the size
control accounting for the known asymmetric growth of
old and new pole cells [9] could improve the quantitative
agreement.

5.2. Moment Conditions for Cell Size
Homeostasis
Next, we investigate the conditions for cell size homoeostasis on
the basis of the existence of certain cell size moments. From the
recursive relation in Equation (20) we observe that if a certain
moment is bounded, all lower order moments must be finite
as well. Specifically, we can deduce the condition for the nth
moment in forward lineages to be bounded by inspecting the
denominator in Equation (20). Conditions for the backward
lineages follow from substituting E[pn] → 2E[pn+1] and

subsequently n → n − 1 for the tree distribution. In summary,
the conditions for the existence of the nthmoment are:

Forward lineage: 1 > anE[pn], (25a)

Backward lineage: 1 > 2anE[pn+1], (25b)

Tree distribution: 1 > 2an−1E[pn]. (25c)

We make three important observations: (i) The above conditions
are independent of the noise in size control but are identical only
when the divisions are perfect p = 1/2; (ii) a < 1 guarantees all
moments to be finite; and (iii) there exists a hierarchy between the
different conditions. A finite moment of tree distribution implies
the same moment to be finite in the forward lineage. A finite
moment in the backward lineage implies the same moment to be
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FIGURE 3 | Cell-size statistics of the mycobacterium S. smegmatis. Analysis

of the time-lapse microscopy data for cells grown in glycerol reported in [9]. (A)

Mean cell length estimated using lineage-weighted statistics of backward

lineages (blue) and tree statistics (green) is lower than in the forward lineage

(red dots). (B) The corresponding coefficient of variation of cell size of

backward lineages (blue) and tree statistics (green) is lower than in the forward

lineage (red dots). Error bars denote 95%-confidence intervals obtained from

bootstrapping using the sample weights (1). Diamonds denote model

predictions for a adder sizer control (a = 1) using Equations (21a), (21b), and

(23). Best-fit parameters obtained from non-linear least-squares are

E[η] = 4.19, CVp = 0.17, CVη = 0.10, skew[η] = 2.

finite in both the forward lineage and the tree distribution. This
hierarchy follows because 2anE[pn+1] ≤ 2an−1E[pn] ≤ anE[pn].

We will briefly discuss the marginal case of the adder rule
(a = 1) because it models the size control of many microbes. Its
moments are always finite in the forward lineage but not in the
backward lineage and tree distribution. This extreme situation
(CV2

p = 1) appears, however, only when one daughter inherits
all of the mother’s size resulting in a non-growing cell and one
that grows without bound. Such a situation has been observed in
minicell-producing mutants of E. coli, but these cells also allow
for divisions at mid-cell reinforcing their overall viability [33].
In the following, we investigate in more detail the conditions for
finite mean and variance.

5.2.1. Conditions for Finite Mean Size and

Cell-To-Cell Variability
The conditions for the cell size distributions having finite mean
values are found by letting n = 1 in Equations (25a), which leads
to

Forward lineage: a < 2, (26a)

Backward lineage: a <
2

1+ CV2
p

, (26b)

Tree distribution: a < e−2Eπ [p ln p]. (26c)

The first and second conditions are obtained from noting that
E[p] = 1/2 and E[p2] = 1

4 (1 + CV2
p). The third condition is

not immediately obvious since condition (25c) does not provide
direct information about the mean. The result can be obtained by
perturbing (25c) by n → 1 + ǫ and requiring its leading order
term to be positive.

Note that the condition for the forward lineage depends only
on the cell size control. Interestingly, this is not the case for the
backward lineage and tree distributions, which depend intricately

on the distribution of division errors. We summarize these
findings in Figure 4A, which shows the regions in parameter
space a and CV2

p for which the first two moments are finite. We
observe that a finite mean in the backward lineage implies a finite
mean in the other measures. Similarly, a finite mean of the tree
distribution implies the same for the forward lineage but not for
the backward lineage, as discussed in the previous section.

Similarly, the conditions for existence of the second moments
can be investigated, which hold identically for the coefficients of
variation of cell size. The result is given by

Forward lineage: a2 <
4

1+ CV2
p

, (27a)

Backward lineage: a2 <
4

1+ 3CV2
p

, (27b)

Tree distribution: a <
2

1+ CV2
p

. (27c)

These conditions are obtained using E[p2] = 1
4 (1 + CV2

p) and
noting that π(p) is symmetric about the mean and hence has
no skewness leading to E[p3] = 1

8 (1 + 3CV2
p). In Figure 4A we

illustrate the resulting regions where forward, backward lineages
and tree variance are bounded.

5.3. The Distributions of Timer-Like
Controls Display Different Power Laws in
Single Cells and Populations
Divergent moments can be indicative of rare cell sizes and
distributions with power law tails. To investigate the emergence
of power laws in the different statistical measures, we assume that
for large cell sizes the distributions follow ∼ s−α0 with power-
law exponent α. The case α = ∞ corresponds to exponential
tails while finite values of α indicate a power law. These can
be deduced from the moments conditions because for a given
power-law exponent α all moments of order α − 1 and above
are unbounded. Thus from the conditions (25), we find that the
power-law exponents satisfy the following equations

Forward lineage: 1 = aα−1E[pα−1], (28a)

Backward lineage: 1 = 2aα−1E[pα], (28b)

Tree distribution: 1 = 2aα−2E[pα−1], (28c)

for α > 1. Because of the inequality given after Equation (25), it
follows that

αfw ≥ αtree ≥ αbw, (29)

independently of the distribution of division errors. Note that the
exponents are equal when divisions are perfect (p = 1/2).

However, it is difficult to give an explicit expression for the
exponents without assuming a particular distribution π(p) of
the division errors. In Figure 4B, we study the dependence of
the power-law exponent α on the cell size control parameter a
for small and large division errors following a symmetric Beta-
distribution. We find that the tails are exponential (α = ∞)
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FIGURE 4 | Distributions of timer-like mechanisms display different power laws in single cells and populations. (A) Regions in parameter space a (cell size control) and

CV2p (division error) under which cell-size homeostasis is established in terms of first and second moments. Lines separate the regions above which forward lineages

have infinite mean (light gray) and variance (dark gray), the population tree has infinite mean (very light green) and variance (light green) and similarly for the backward

lineages (light and medium green). Also shown is the line above which the 100th tree moment is infinite (dark green) computed for a symmetric beta distribution. Note

that for a ≤ 1 all moments are finite. (B) Power law exponent of size distribution in dependence of the size control parameter a. The exponents are higher for low

division errors (light colors, symmetric beta distribution with CV2p = 0.005) than for large division errors (full colors, CV2p = 1/3) but are generally different for forward

(red), backward lineages (blue) and tree distributions (green). (C) Comparison of power laws obtained from theory [a = 1.5, compare dots in (B)] show excellent

agreement with stochastic simulations. The power law exponent is α ≈ 5 in forward lineages (first three moments exist). In contrast, α = 3 (finite mean but infinite

variance) for the tree distribution and α = 2 (infinite mean and variance) for the backward lineage distribution.

whenever a < 1. For a > 1, however, the exponents of forward,
backward lineages and tree distributions are similar only for small
division errors and they deviate substantially for large division
errors.

To study this case in more detail, we focus on the timer-
like case a = 1.5 with large division errors. In Figure 4C we
compare the predicted power laws with stochastic simulations.
The power law exponent of the forward lineage distribution is
α ≈ 5 meaning that only the first 3 moments exist. In contrast,
the tree distribution shows the exponent α = 3, which translates
to finite mean cell size but unbounded variance. Interestingly,
the backward lineage distribution has exponent α = 2, which
does not admit a finite mean cell size. In all cases, the simulations
(dots) are in excellent agreement with the theoretical exponents
(lines).

6. DISCUSSION

Cell size has been traditionally quantified by snapshots, but
recent advances in time-lapse microscopy allow to track the

growth of hundreds to thousands of cells in a microcolony.
These techniques allow to construct entire lineage trees and
resolve genealogies and thus offer various statistics with which
to quantify individual cell sizes. We presented a unified modeling
framework to quantify and compare size distributions in these
populations.

We demonstrated that cells in populations exhibit different
cell size, often exhibit lower cell-to-cell variability and display
different sensitivities to division errors and cell cycle noise
compared to cells in isolation. Specifically, we found that positive
skewness in the size control distribution decreases cell-to-
cell variability in the population tree. In fact, many bacteria
implementing the adder control such as E. coli, B. subtilis [7], and
S. smegmatis [9], show positively skewed length increments. We
also observed that whenever a ≤ 1, the coefficient of variation
of cell size in backward lineages is smaller than in forward
lineages. Since backward lineages represent typical lineages in
a population tree, we speculate that populations implementing
adder or sizer controls, which are ubiquitously found in
microbes, could exploit these differences to narrow their size
distributions.
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A general requirement for size homeostasis, regardless of the
model, is that cells born small grow proportionally more than
cells born with larger sizes [11]. These larger cells proliferate
quicker and are therefore over-represented in populations, which
explains the discrepancies we found between different size
distributions, their associated moments and power laws in the
presence of division errors. We hence expect our conclusions to
hold also for developed models of cell size control. We found
that these differences are particularly sensitive to division errors,
which can be extremely heterogeneous when cells respond to
stress [4]. Conversely, we found that cells dividing at smaller
sizes are over-represented in the population tree when division
size is highly variable. We anticipate that this effect will be
important when cell size control is modulated by time-dependent
environments [34].

Finally, we elucidated that isolated cells tracked over many
generations and cells in populations exhibit different sensitivities
to division errors and noise in cell cycle control. Experimental
devices such as mother machines and agar pads may thus give
qualitatively different conclusions about a cell’s ability to control

its size and the resulting population heterogeneity. Similar effects
have been described for stochastic gene expression [35]. However,
our findings raise a more fundamental question: what type of size
distribution cells may have evolved to control?
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