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Neuronal and glial projections can be envisioned to be tubes of infinitesimal

diameter as far as diffusion magnetic resonance (MR) measurements via clinical

scanners are concerned. Recent experimental studies indicate that the decay of the

orientationally-averaged signal in white-matter may be characterized by the power-law,

Ē(q) ∝ q−1, where q is the wavenumber determined by the parameters of the pulsed field

gradient measurements. One particular study by McKinnon et al. [1] reports a distinctively

faster decay in gray-matter. Here, we assess the role of the size and curvature of the

neurites and glial arborizations in these experimental findings. To this end, we studied

the signal decay for diffusion along general curves at all three temporal regimes of

the traditional pulsed field gradient measurements. We show that for curvy projections,

employment of longer pulse durations leads to a disappearance of the q−1 decay, while

such decay is robust when narrow gradient pulses are used. Thus, in clinical acquisitions,

the lack of such a decay for a fibrous specimen can be seen as indicative of fibers that are

curved. We note that the above discussion is valid for an intermediate range of q-values

as the true asymptotic behavior of the signal decay is Ē(q) ∝ q−4 for narrow pulses

(through Debye-Porod law) or steeper for longer pulses. This study is expected to provide

insights for interpreting the diffusion-weighted images of the central nervous system and

aid in the design of acquisition strategies.

Keywords: diffusion, magnetic resonance, anisotropy, Stejskal-Tanner, curvature, curvilinear, power-law, powder

1. INTRODUCTION

Diffusion-sensitized magnetic resonance acquisitions have been employed to recover
the microscopic building blocks of complex nervous tissue. Simplified models exploiting the
compartmentalized structure of the tissue are instrumental in this endeavor.Watermolecules in the
intra- and extra-cellular spaces have been envisioned to form separate compartments with different
signal characteristics [2]. The intracellular signal is also thought to represent the superposition of
contributions from cells of different types, shapes, and orientations [3]. The same argument has
been employed even for a single neuron wherein each neurite has been considered to comprise
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a collection of straight compartments [4]. Such representation of
neurites as slender cylinders distributed in random orientations
within the voxel is perhaps themodel most relevant to the current
study.

The diameter of neurites, and in fact all neural projections, is
so small that diffusion in the transverse plane may be negligible.
More explicitly, a cylinder with the same diameter as a neurite
would not suffer any signal loss in a typical clinical diffusion
MRI measurement when the diffusion gradients are applied in
the direction perpendicular to the cylinder’s axis. This justifies
assigning zero value to transverse diffusivity for molecules
confined in the cylinder. Such behavior [5] was indeed observed
for N-acetyl-L-aspartate (NAA) diffusion in the brain [6] and
have been employed for water in recent models [7].

In this work, we consider the pulsed field gradient
measurement introduced by Stejskal and Tanner [8] featuring
diffusion encoding gradients G of duration δ, whose leading
edges are separated from each other by duration 1 (see
Figure 1A for the effective gradient waveform). We define
q = γ δG, where γ is the gyromagnetic ratio and note that
for sufficiently small values of q = |q|, the signal for each
compartment can be approximated with a Gaussian, i.e.,

E(q) ≈ e−q⊺Vq . (1)

Considering the form (Equation 1) of the signal, V can be
referred to as the signal decay tensor1. The geometric parameters
of the compartment have typically a complicated relation to
V ; the exact form of such relation is dictated by the temporal
parameters (δ and 1) of the diffusion encoding pulse sequence.
For axially symmetric V , we shall denote by v‖ and v⊥
the eigenvalues of V associated with directions parallel and
perpendicular to the symmetry axis, respectively.

Our focus in this work is the orientationally-averaged signal,
which can be obtained by computing the “isotropic component”
of the signal, as was referred to in Özarslan and Basser [10]
and actually estimated as a byproduct of the q-space signal
representation in Özarslan et al. [11]. Alternatively, the signal
values measured over all gradient directions at a particular
q-value can be averaged [12, 13] so that any dependence on
the direction of the gradient vector is lost. Repeating this
procedure for all q-values reduces the data collected over the
three-dimensional q-space into a one-dimensional profile, which
does not contain any information on ensemble (macroscopic)
anisotropy2. The estimated signal profile represents the decay
for the so-called “powdered” specimen, which contains an
isotropic distribution of each and every compartment in the
original specimen [19, 20]. The orientationally-averaged signal
for axisymmetric compartments, each of which contributes

1We note that the decay tensor is closely related to an apparent diffusion tensor
(ADT) whose time-dependence has been shown to be sufficient for describing
(approximately-)Gaussian diffusion via general gradient waveforms [9]. In this
study, it proves convenient to employ the V-tensor, which encapsulates all
dependencies other than that on the q-vector.
2Yet another approach would involve employing alternative gradient waveforms
for isotropic diffusion weighting [14–18]. However, we do not discuss such
sequences here because of the complicated dependence of the signal intensity on
the gradient waveform.

FIGURE 1 | (A) Stejskal and Tanner’s pulsed field gradient experiment features
a pair of rectangular gradient pulses of duration δ whose leading edges are
separated by 1. (B) The timing parameters of this experiment lie on or above
the dashed line since the separation of the two pulses (1) has to be at least as
long as the duration of each of them (δ). Thus, the experiment has three distinct
regimes (labeled A, B, and C) based on whether these timing parameters are
short or long. These are the three regimes that exhibit all interesting features of
the signal. The same features are expected to be observed to various degrees
in the intermediate region between these three regimes.

according to Equation (1), is thus the same as the signal for
an isotropic ensemble of such compartments, and is given by
[6, 21, 22]

Ē(q) =
√

πe−q2v⊥ erf(q
√
v‖ − v⊥)

2q
√
v‖ − v⊥

. (2)

This expression predicts a squared exponential decay in general.
However, if signal loss is limited to only the fiber direction
(v⊥ = 0), a much slower decay emerges. A power law of the
form Ē ∝ q−1, to be specific. Therefore, the appearance
of this particular power-law can be used as an indicator of
vanishing transverse diffusivity, in other words, the signal decay
tensor V being of rank 1. We note that the problem of
characterizing the orientationally averaged signal is considerably
more complicated when Equation (1) cannot be used to represent
the compartmental signal; addressing this issue is one of our goals
in this study.

The Ē ∝ q−1 decay alluded to above was recently reported
in white matter [1, 23]. These studies have found that in
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white-matter-dominated regions of the brain, the orientationally
averaged signal exhibits a decay ∼ q−c with an exponent c close
to 1, in support of cylindrical neural projections as remarked
above. In gray-matter-dominated regions, McKinnon et al. [1]
have observed a larger exponent c ≈ 1.8 ± 0.2. They proposed
that the apparent breakdown of the cylinder model may indicate
a significantly larger permeability of the cellular membranes in
gray matter vs. white matter. Here, we investigate an alternative
hypothesis. Namely, the departure of the exponent c from 1 can
well be due to impermeable but curved projections. To assess this
point, we studied the influence of neural projections’ size and
shape on the orientationally-averaged diffusion MR signal. Due
to the large variability in the geometric features of the neural
cells, all temporal regimes of the Stejskal-Tanner sequence were
considered, and the problem was studied both in the small-q
regime as well as at larger q-values for which Equation (1) and
thus Equation (2) are inaccurate.

Investigation of power-like tails in the diffusion MR signal
goes back to Köpf et al. [24], where large values of the wave
vector were achieved using a fringe field method. A range of
exponents (roughly between −1.8 and −4.6) were observed
across various nonneural tissue types, as well as stretched
exponential behavior, which was ascribed to fractional Brownian
motion. In a subsequent study, Yablonskiy et al. [25] predicted
an exponent of −2 for specimens featuring compartments with
a distribution of diffusivities. Jian et al. [26] considered a
parametric tensor distribution, which suggested a signal decay
with a general power-law tail. These studies, however, observe
or predict the signal decay for measurements along a single
direction. As for the orientationally (powder) averaged signal, a
quite general statement regarding an asymptotic power-law decay
in the diffusion MR signal is the Debye-Porod law [27]. Here, the
orientationally averaged signal measured using narrow pulses is
predicted to follow a q−4 tail under quite general considerations.
In our discussion, we take up apparent violations of this.

Although the influence of fiber curvature on theMR signal has
been considered [28–33] in various contexts, to our knowledge,
this is the first study to provide explicit expressions for the signal
decay for diffusion along a general parametrized curve and study
its effect on the orientationally averaged signal.

In the next section, we provide explicit expressions for the MR
signal for diffusion on curves in three distinct temporal regimes
of the Stejskal-Tanner measurement. In the subsequent section,
we discuss the implications of our theoretical findings as they
relate to the morphology of neural cells and recent experimental
observations. The article is concluded following a brief discussion
of what observed power-law tails in the powder averaged signal
may represent in that context, as well as from the perspective of
the Debye-Porod law.

2. COMPARTMENTAL AND
ORIENTATIONALLY-AVERAGED SIGNAL
FOR DIFFUSION ALONG CURVES

The effective gradient waveform of a traditional Stejskal-Tanner
measurement is shown in Figure 1A. In this work, we consider

FIGURE 2 | The relevant size parameters of a simplified neural projection
(ignoring branchings and other features such as beading patterns [34]) are: its
contour length denoted by ℓ, its radius of gyration Rg, the characteristic radius
of curvature Rc, and the radius of the projection’s cross-section R0.

three distinct regimes of this pulse sequence based on whether δ

and1 are short or long. These regimes are indicated by the letters
A, B, and C on the δ-1 plane in Figure 1B. We note that the
essential features of the signal at these three extreme situations
are exhibited to some extent for more general timing values, i.e.,
within the interior of the triangle whose vertices are at A, B,
and C.

The relevant size parameters of a simplified neural projection
(ignoring branchings and other features such as beading patterns
[34]) are: its contour length denoted by ℓ, its radius of gyration
Rg, its characteristic curvature radius Rc, and the radius of the
projection’s cross-section R0. These parameters are illustrated
for a representative projection in Figure 2. As mentioned in
Introduction, R0 is typically so small that qR0 ≪ 1 for clinical
MRI; this justifies representing the neurites and glial projections
via one-dimensional curves. Thus, we shall consider diffusion
taking place on a curve r(s) = (r1(s), r2(s), r3(s))⊺ parameterized
by its arclength s, where 0 6 s 6 ℓ.

2.1. Regime A: Short Diffusion-Time
In the first case, diffusion is observed for such a short time
that the hindrances have not been encountered. This condition
implies that the pulse durations are short as well. In fact, when
D1 ≪ R2c , spins spread so little that even the most curved point
along the projection seems like a straight segment3. Thus, the

3The “most curved point” should be taken with a grain of salt. Even though,
mathematically, the approximations in this regimewould require a diffusion length√
D1much smaller than the smallest radius of curvature along the curve, Rc is not
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compartmental signal occurs as the average, over the curve, of
the signals originating from the tangents of the curve:

E(q) = 1

ℓ

∫ ℓ

0
ds e−D1q⊺ t̂(s)t̂

⊺
(s)q , (3)

where

t̂(s) = dr(s)

ds
(4)

is the unit tangent to the curve.
As shown in Appendix A (see the Supplementary Material),

the very small-q behavior of the orientationally-averaged signal

(q2D1 ≪ 1) is given by Ē(q) ≈ e−q2D1/3. Thus, the decay rate is
determined solely by the (intracellular) diffusivity, and bears no
geometric feature of the neural arborization in this regime.

For a more general analysis involving larger q-values, one can
still employ Equations (1, 2) as follows. We are interested in the
orientational average of the compartmental signal in Equation
(3), i.e.,

Ē(q) = 1

ℓ

∫ ℓ

0
ds

〈

e−D1q⊺ t̂(s)t̂
⊺
(s)q

〉

, (5)

where the order of integration and orientational averaging,
indicated by the angular brackets, was changed. However, the
expression within the angular brackets is of the Gaussian form
(Equation 1) with a rank-1 decay tensor whose non-vanishing
eigenvalue is D1. Consequently, the signal for the powdered
specimen is given through Equation (2) by setting v⊥ = 0, and
v‖ = D1 to be

Ē(q) =
√

π erf(q
√
D1)

2q
√
D1

. (6)

Clearly, for larger q-values, the orientationally-averaged signal
decay in regime A is proportional to q−1 irrespective of the shape
of the curve as long as R2c ≫ D1. It can be observed that Equation
(5) has the form of a signal arising from a uniform orientational
distribution of “sticks”. Hence the emergence of q−1 at large q-
values can be justified alternatively by Veraart et al.’s arguments
[23].

2.1.1. Incorporating Curvature Effects
The above expression holds when the diffusion distance is much
smaller than Rc as pointed out earlier. Here, we would like to
generalize this expression to larger timing parameters, 1 and δ,
to allow for the possibility that the diffusion distance during the
course of the experiment is long enough for the molecules to
traverse an approximately circular arc along the curve. Moreover,
we assume that there is a single characteristic radius of curvature
that represents the effective curvedness of the entire projection.
This characteristic curvature is denoted by Rc.

Let Earc(n̂,ϕ, q) denote the signal for a single such arc, where n̂
is the unit vector normal to its plane and ϕ is the polar coordinate

such a strict measure. Rather, it is the minimal radius of curvature that the curve
exhibits along a portion of it significant enough to influence the signal.

of the center of the arc in a cylindrical reference frame oriented
along n̂. The orientationally averaged signal can then be written
as the average of Earc(n̂,ϕ, q), over all possible realizations of a
single arc, i.e.,

Ē(q) = 1

4π

∫

S2

dn̂
1

2π

∫ 2π

0
dϕ Earc(n̂,ϕ, q) , (7)

where S2 denotes the unit sphere. The second average simply
defines the signal for a full circle of radius Rc. If we denote by
Ecirc(n̂, q) the signal for such a circle whose plane has the normal
vector n̂, the orientationally averaged signal can be expressed as

Ē(q) = 1

4π

∫

S2

dn̂Ecirc(n̂, q) . (8)

Due to its axial symmetry, the signal for the circle has the
functional dependence Ecirc(n̂ · q̂, q), where q̂ = q/q. Since n̂ · q̂
is invariant under exchange of the unit vectors n̂ and q̂, one is
free to replace the integration variable above with q̂ and fix n̂

instead [19] .With the variable θ defined through n̂·q̂ = cos θ , we
moreover note that since there is no motion and hence no signal
attenuation in the direction along n̂, the integrand’s functional
dependence may further be reduced to Ecirc(q sin θ), namely, the
signal obtained when a q-vector of magnitude q sin θ is applied
in the plane of the circle. Upon taking these observations into
account, we obtain

Ē(q) =
∫ π/2

0
dθ sin θ Ecirc(q sin θ) . (9)

2.1.1.1. Narrow Pulses
First, we shall consider the scenario involving narrow pulses, i.e.,
Dδ ≪ R2c , but allow for the possibility that D1 ≈ R2c . For
arbitrary 1, the signal for a full circle is given by Özarslan et al.
[28]

Ecirc(q) = J0(qRc)
2 + 2

∞
∑

n=1

e−n2D1/R2c Jn(qRc)
2 , (10)

where Jn denotes the nth order Bessel function. This expression
yields, via Equation (9), the orientationally-averaged signal to be

Ē(q) = J0(2qRc)+
π

2

[

J1(2qRc)H0(2qRc)− J0(2qRc)H1(2qRc)
]

+ 2
∞
∑

n=1

e−n2D1/R2c
(qRc)2n

(2n+ 1)!

1F2

(

n+ 1

2
; n+ 3

2
, 2n+ 1;−q2R2c

)

, (11)

where Hα is the Struve function of order α and 1F2 represents
the generalized hypergeometric function. We note that this
orientationally averaged signal in the narrow pulse regime has the
asymptotic behavior

Ē(q) ∼
√

π erf(q
√
D1)

2q
√
D1

+ (D1)2q2e−D1q2

6R2c
−O(R−4

c ) . (12)
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This expression contains the curvature-related correction to
Equation (6), which is valid for straight fibers, and suggests that
curvature induced effects are rather limited for the case of narrow
pulses, as the Ē(q) ∝ q−1 dependence is unaffected at larger
q-values.

2.1.1.2. Longer pulse durations
To investigate the influence of longer pulse durations, we
numerically evaluated the integral in Equation (9) using
Simpson’s rule [35]. We adapted the multiple correlation
(MCF) framework to the problem of diffusion on a circle. The
details of this procedure are provided in Appendix B (see the
Supplementary Material).

In Figure 3, we illustrate the signal decay curves at different
pulse durations. In these simulations, the D1 value was set
equal to R2c ; during a time interval of duration 1, the spread of
molecules on the circle is about 80◦. When the pulse duration
is short, we verified that the decay obeys the expressions in
Equations (11) and (12) (results not shown). The power-law,
E(q) ∝ q−1, which is valid in the narrow pulse regime does not
prevail when the pulses are prolonged.

2.2. Regime B: Long Diffusion-Time and
Narrow Pulses
When diffusion is probed via a pair of impulses (or, when Dδ ≪
R2c) separated from each other by a duration long enough for the
molecules to reach all points within the curve, i.e., D1 ≫ ℓ2, the
signal is given simply by the expression E(q) = |ρ̃(q)|2, where
ρ̃(q) is the Fourier transform of the density

ρ(r) = 1

ℓ

∫ ℓ

0
ds δ(r − r(s)) , (13)

which is uniform along the curve. The orientationally averaged
signal decay is thus obtained by averaging |ρ̃(q)|2, and is given by

Ē(q) = 1

ℓ2

∫ ℓ

0
ds

∫ ℓ

0
ds′

sin
[

q |r(s)− r(s′)|
]

q |r(s)− r(s′)| . (14)

This expression is referred to as the Debye scattering equation
[36], which is widely utilized in studies employing small
angle scattering experiments for characterizing the structure
of polymers. The essential features of the resulting Ē(q) curve
are well-understood [37, 38]. As shown in Appendix A (see
the Supplementary Material), the small-q regime (qRg ≪ 1,
the “Guinier regime” of scattering experiments) is described

by the relationship Ē(q) ≈ e−(qRg)2/3. As for larger q-values,
such studies indicate that depending on the structure of the
polymer, different sections of the curve could be characterized
by different power-laws. For example, Gaussian chains undergo
q−2 decay, while fractional exponents are obtained for curves
exhibiting fractality. Perhaps the most relevant finding, however,
is that wormlike structures (i.e., those characterized by a so-called
persistence length over which the polymer is likely to retain its
direction) are characterized by a decay ∝ q−1 at q-values about
the reciprocal of the chain’s persistence length [39]. Thus, even a
class of non-straight structures exhibit q−1 decay in Regime B.

FIGURE 3 | Signal attenuation curves for different values of the pulse duration.
The separation of pulses was taken so that D1 = R2c . The q

−1 decay, visible
at short pulse durations, disappears as the pulses are prolonged.

2.3. Regime C: Long Pulse-Duration
For the traditional Stejskal-Tanner measurement utilizing a pair
of identical pulses in opposite directions, the compartmental
signal has the form

E =
〈

e−iq·(ξ2−ξ1)
〉

paths
, (15)

where the averaging is performed over all trajectories, with

ξn = 1

δ

∫ tn+δ

tn

r(t) dt (16)

being the center of mass coordinate [40] of the fragment of
trajectory coinciding with each pulse (t1 = 0 and t2 = 1).
Therefore, the MR signal (Equation 15) elicited by flat gradient
pulses is not sensitive to the Brownian trajectories instant by
instant but only in a time averaged sense.

In the limit Dδ/ℓ2 → ∞, the two random variables lose
correlation and the explicit dependence on 1 disappears, leading
to the signal intensity [40]

E =
∣

∣p̃cm(q, δ)
∣

∣

2
, (17)

where

p̃cm(q, δ) =
∫

pcm(ξ , δ)e
−iq·ξ dξ (18)

is the Fourier transform of the center of mass distribution.
Moreover, in this limit, the distribution for the random variable
ξ approaches a Gaussian due to the central limit theorem
[41]4. Consequently, the signal (Equation 17) also approaches
a quadratic exponential form, encoding no more structural
information than the variance of pcm(ξ , δ). Whether the domain

4This non-obvious statement, whose rigorous proof can be found in mathematics
literature [42], was instrumental in our identification of an effective potential for
restricted diffusion [43].
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is an irregularly curved fiber or a much more regular shape like
a sphere, its fine structural features will find no representation in
the signal acquired this way, since the length of the time averaging
(pulse) has suppressed all short-scale (high q) variation encoded
in the cumulants higher than the second.

Hence, the compartmental signal has the form Equation (1).
Here, though, V is the variance tensor for the center of mass
coordinate (Equation 16) for a trajectory of (long) duration δ.
This variance can be calculated for diffusion along a general
continuous curve following Mitra and Halperin’s [40] derivation
in the case of slab geometry, with slight modifications. One finds

Vij =
2

Dδ

∫ ℓ

0
ds ri(s)

∫ ℓ

0
ds′ rj(s

′)

{

B2

( |s− s′|
2ℓ

)

+ B2

(

s+ s′

2ℓ

)

+ ℓ2

3Dδ

[

B4

( |s− s′|
2ℓ

)

+ B4

(

s+ s′

2ℓ

)]}

, (19)

where Bn(·) denotes the nth order Bernoulli polynomial, and
Dδ/ℓ2 ≫ 1. Here, the exponentially decaying terms are ignored
as their contribution is negligible at even moderate durations.
The details of the derivation of the above expression is provided
in Appendix A (see the Supplementary Material). We note that
alternative representations of the final result (Equation 19) can
be given in terms of polylogarithmic or Hurwitz zeta functions.
We verified that Equation (19) correctly reproduces Mitra and
Halperin’s expression [40] in the same regime for the slab
geometry, i.e., for a straight line.

As were in the previous cases, the signal decay tensor for long
pulse duration is not rank-1 for a general curve. However, unlike
in previous regimes, the compartmental signal decay is truly
Gaussian. Consequently, the orientationally averaged signal in
this regime suffers q−1 decay if and only if the fibers are straight.

3. RESULTS AND DISCUSSION

3.1. Summary
The above findings can be summarized as follows: For narrow
pulses (Dδ ≪ R2c , ℓ

2) in regimes A and B, the orientationally
averaged signal exhibits a slow q−1 tail for large q for diffusion
along curved as well as straight 1 dimensional structures. As the
pulse duration is prolonged, as we have studied for regime A, the
slow q−1 tail gives way to a steeper drop for substantially curved
fibers, by which we mean Rc .

√
Dδ. Indeed, the signal may be

expected to bear less features of diffusion along a 1D structure
and more of diffusion in a 3D domain (i.e., a steep decay), since a
long pulse serves to average the motion of the spin carriers over
a length ∼

√
Dδ along the path curved in 3D space. Fibers much

shorter than the averaging length (ℓ ≪
√
Dδ) fall into regime C

and may contribute to an exponent of −1 in the orientationally
averaged signal only if they are straight (Rc ≫ ℓ).

3.2. Clinical Relevance
An important question to ask is:What regime is themost relevant
for clinical MR examinations of the brain? There is no clear
answer to this question, essentially because of the extremely wide

variability in the size and shapes of cells within the brain [44]5.
Consequently, it is impossible to suggest that diffusion within
all neural cells takes place in a single experimental regime. We
can, nonetheless, argue that regime B is the least relevant one as
it is impossible to meet the narrow pulse condition along with
the long diffusion time condition when δ ≈ 1 as in clinical
acquisitions performed at larger (in a practical sense) b-values,
where b = q2(1−δ/3). The diffusion distance

√
2D1 is expected

to be about 10–20 µm in such acquisitions, which will place
longer (ℓ ≫

√
D1) arborizations toward regime A while the

shorter (ℓ ≪
√
D1) ones will tend to exhibit features of regime

C. If the longer structures furthermore exhibit curvature radii
safely above the “averaging length” (Rc≫

√
Dδ), the q−1 signature

will be possible to observe over a range of large q-values without
requiring strict straightness, as demonstrated in Figure 3. For
structures whose radii of curvature are small (Rc .

√
Dδ) the

appearance of the slow decay q−1 becomes sensitive to curvature,
and is not retained for as wide a range of q-values (see Figure 4).
At the extreme end of the spectrum, for structures so short that
ℓ≪

√
Dδ, entering into regime C, no curvature is tolerated if the

tail q−1 is to appear. These considerations will have to be revisited
if one measures the diffusion of molecules other than water, due
to differences in their diffusion characteristics [48–50].

3.3. On Experimental Findings
In light of the above deliberations, we can revisit the experimental
observations of McKinnon et al. [1] who have reported the
powder averaged signals stemming from various brain regions
dominated by white- or gray-matter. In white-matter regions,
they have measured a decay q−c for large q with c values in
the neighborhood c ≈ 1.1 ± 0.1, whereas in gray-matter
regions, the decay was significantly faster, with c ≈ 1.8 ±
0.2. Concerning the faster decay observed in gray-matter, they
propose an explanation based on permeability differences in
white and gray-matter regions. If one assumes impermeable
membranes, as we did in this study, the following alternative
interpretation seems adequate: In white-matter, the observation
of the tail q−1 is compatible with regimes A and C, suggesting
a substantial presence of fibers that fall into these regimes. The
former implies long fibers (ℓ ≫

√
D1) that could in fact be

modestly curved (as long as Rc ≫
√
Dδ remains valid). The

latter implies short fibers (ℓ ≪
√
Dδ) that are straight. In gray-

matter regions, the loss of the slow q−1 decay suggests that
the signal originates predominantly from fibers that fall outside
these descriptions, i.e., exhibiting strong curvature (Rc .

√
Dδ).

Indeed, gray-matter is rich in dendrites and unmyelinated axons,
which will exhibit a fair amount of bending distributed across
any voxel. The gray box in Figure 4 depicts roughly the q range
used in McKinnon et al.’s study, where it is seen that while
modest curvatures do exhibit the exponent−1 for a while, strong
curvature yields a steeper decay for most of the range.

5A collection of neuron images for various species and anatomical regions can be
found in the Neuromorpho database, which can be accessed through its web site,
http://www.neuromorpho.org. For a recent review on the findings based on this
database, see Parekh andAscoli [45].We also note [46] wherein the authors employ
the approach taken in Jespersen et al. [47] on this database to relate the neuronal
morphology in gray-matter to the MR signal at very low diffusion sensitivity.
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FIGURE 4 | Simulation of the orientationally averaged signal for diffusion along
an arc of various curvature radii. The contour length was taken to be infinite so
that the results for Regime A are employed. The timing parameters were taken
to be clinically realistic for high b-value acquisitions (δ = 50 ms and
1 = 60 ms), and the diffusion coefficient was set to D = 3 µm2/ms. The gray
box depicts roughly the range of b-values between 1 and 10 ms/µm2. It is
seen that the larger the curvature radius, the wider the range over which the
exponent −1 can be observed. Conversely, below a cutoff determined by the
averaging length

√
Dδ, a steeper decay of the signal becomes very prominent.

Another potential explanation involves glial cells, which
constitute a substantial portion of all neural cells. Similar to
neurons, glial cells exhibit an extraordinary level of diversity
in their size and shape throughout the brain. Their relative
number and distribution is the subject of ongoing debate [51].
Thus, an accurate assessment of their influence on the detected
diffusion MR signal is infeasible at this time. It is known,
however, that the glial cells tend to be smaller than neurons,
they lack axons, and many of them are star-shaped [52]. These
structural features tend to disfavor the emergence of a q−1 decay.
However, recent studies have suggested that the glial cells are
significantly more prevalent in cerebral white-matter compared
to gray-matter [53]. Thus, it can be argued that their contribution
to the overall MR signal must be rather limited. We note that
the vast variation in neuronal and glial morphology along with
the reported regional differences justify future studies performed
at high spatial resolutions, for understanding the influence of
compositional variations on the diffusion MR signal.

3.4. Immobile Water
The detected orientationally-averaged signal would typically
include contributions frommany different compartments besides
the neural projections, including extracellular matrix, cell bodies,
and molecules trapped within very small regions (e.g., within
certain organelles, between myelin layers, etc.). Among these,
molecules diffusing relatively freely (for instance, between the
neural processes) are expected to yield a decay rate faster than
q−1 so that much of their contribution is expected to disappear
at larger q values. Conversely, there would be no significant loss
of signal for truly restricted particles. Presence of a substantial
portion of signal originating from such compartments as well as
noise-induced bias associated with employing magnitude-valued

data would make the decay appear slower [54, 55] than q−1 .
The decay exponent c ≈ 1.1 ± 0.1 reported by McKinnon et al.
[1] suggests that contributions from such immobile spins could
be negligible in their acquisitions. This can be attributed [23] to
the relatively short transverse relaxation times those spins are
expected to have, along with the long echo times employed at
larger q-value acquisitions via clinical scanners.

3.5. A Possible Error
One may be tempted to employ Equation (1) for the
compartmental signal, as it always has a Gaussian form for
sufficiently small q values, and then to attribute the emergence of
the q−1 behavior of the orientationally averaged signal through
Equation (2) to the rank of the decay tensor V being 1.
However, this may be permissible for large q only in regime
C. This attribution would therefore be erroneous for large q
in regimes A and B. Specifically, in regimes A and B, the q
range in which Equation (1) applies is similar to the q range
in which the orientational average (Equation 2) exhibits a
Gaussian tail no matter the rank of the tensor V (see Appendix
A in the Supplementary Material). Thus, the q−1 behavior is
not a consequence of the signal decay tensor having rank 1.
Importantly, such behavior naturally emerges at larger q-values
in regimes A and B for reasonable shapes of neural projections.

3.6. Debye-Porod Law
The powder averaged signal may be envisioned as having
originated from a porous specimen which is macroscopically
isotropic, in which case one expects an asymptote of the form
q−4 due to the Debye-Porod law [27] (see Appendix C in the
Supplementary Material), while a steeper decay is predicted for
longer pulses as the process approaches a Gaussian (Regime C).
Since this behavior arises from quite general considerations, the
observation of a tail of q−1 appears questionable. Indeed, the
observed power is most likely valid only in an intermediate range,
as opposed to the strict q → ∞ limit. The asymptotic expansion,
whose leading term gives the Debye-Porod law, contains terms
that decay faster than any pure power (e.g., exponential). These
terms may very well exhibit decays slower than q−4 over a certain
stretch of q-values, before the Debye-Porod asymptote takes over,
which happens when q begins to compete with the inverse length
of the smallest dimension of the pore geometry. Alas, the q values
used in McKinnon et al.’s experiments are of the order 0.1µm−1

which is far from large enough compared to the inverse length
scale of 1µm−1 afforded by the axon diameter.

3.7. Unaccounted Factors
One of the hallmarks of neuronal morphology is the axonal
and dendritic branchings [56], which are not accounted for
in our treatment of diffusion on curves. Although an accurate
assessment of the influence of branchings could be achieved
via careful numerical studies [57], the insight gained from
our description above can be employed to some extent for
making some predictions. For long structures, each branch can
be considered a separate segment along which diffusion takes
place. Thus, the presence of branchings would not impact the
formulation for projections in regime A. However, since the total

Frontiers in Physics | www.frontiersin.org 7 March 2018 | Volume 6 | Article 17

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Özarslan et al. Neural Projections and Diffusion MRI

contour length can be considerably increased in the presence
of branchings, it may be more difficult to satisfy the long pulse
duration condition of regime C. When this condition is met,
however, the rank of the signal decay tensor would almost
certainly be greater than one. In other words, detecting q−1

decay in regime C would be nearly impossible for smaller cells
unless most arborizations run parallel within a narrow cylindrical
region.

The detected MR signal is known to be dependent on factors
other than those accounted for in this work. Among these, spatial
heterogeneity of magnetic susceptibility within the tissue have
been reported to influence the diffusion decay [58, 59] as well. In
fact, suppressing [60] or taking advantage [61, 62] of effects due
to susceptibility variations is an active area of research. We note
that the presence of internal gradients could be investigated as
yet another mechanism that could explain the reported features
in the orientationally averaged signal; doing so would require an
extension of existing studies relating the diffusion MR signal to
microscopic perturbations in susceptibility [63, 64].

4. CONCLUSION

In an attempt to interpret new experimental findings, we
studied the influence of diffusion along parameterized curves
on orientationally-averaged diffusion MR signal. We examined
the problem in three distinct temporal regimes of the Stejskal-
Tanner experiment and investigated the appearance of a slow
decay. We have found that for smaller cells, the q−1 decay of
the orientationally-averaged signal is predicted only for straight
fibers. This decay ismore general for cells with longer projections,
while it fades away for curvy structures as the pulse duration

of the gradient sequence increases. Finally, we stressed that the
q−1 decay could represent an intermediate range as the true
asymptotic behavior is governed by a steeper attenuation. The
findings of this paper are expected to provide insight into the link
between the diffusion weighted MR acquisitions and geometry of
the neural cells.
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