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A fundamental problem in medicine and biology is to assign states, e.g., healthy or

diseased, to cells, organs or individuals. State assignment or making a diagnosis is often

a nontrivial and challenging process and, with the advent of omics technologies, the

diagnostic challenge is becoming more and more serious. The challenge lies not only in

the increasing number of measured properties and dynamics of the system (e.g., cell or

human body) but also in the co-evolution of multiple states and overlapping properties,

and degeneracy of states. We develop, from first principles, a generic rational framework

for state assignment in cell biology and medicine, and demonstrate its applicability

with a few simple theoretical case studies from medical diagnostics. We show how

disease–related statistical information can be used to build a comprehensive model

that includes the relevant dependencies between clinical and laboratory findings (signs)

and diseases. In particular, we include disease-disease and sign–sign interactions and

study how one can infer the probability of a disease in a patient with given signs. We

perform comparative analysis with simple benchmark models to check the performances

of our models. We find that including interactions can significantly change the statistical

importance of the signs and diseases. This first principles approach, as we show,

facilitates the early diagnosis of disease by taking interactions into accounts, and enables

the construction of consensus diagnostic flow charts. Additionally, we envision that our

approach will find applications in systems biology, and in particular, in characterizing the

phenome via the metabolome, the proteome, the transcriptome, and the genome.

Keywords: symptoms–disease network, statistical inference, stochastic optimization, Bethe approximation,

belief-propagation algorithm, message passing, state assignment problem, cellular diagnostics

1. INTRODUCTION

Human body as a whole or in part may adopt various states, like a Rubik’s Cube. Homeostatic
mechanisms, medical interventions and aging all involve evolution from certain body states to
others. Similarly, evolution of states is commonly seen in cells that constitute our bodies. Immune
cells for example can manifest substantial plasticity and develop into distinct phenotypes with
different functions [1, 2]. Identifying dysfunctional states in cells is in many ways similar to
identifying diseases in organisms and is confronted by similar difficulties. State assignment, as
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we describe below, is often a nontrivial and challenging process
and in many cases it is hard to “diagnose” the state of a cell
or conditions of a patient. The progress in systems biology
and availability of large data has made diagnostics even more
challenging. For instance, mass cytometric analysis of immune
cells has led to identification of many new cell subtypes (states)
[3]. Metabolomic analysis of cells and body fluids revealed a large
number of biomarkers and disease subtypes [4]. There is a huge
need in the fields of cell biology, immunology, clinical sciences
and pharmaceutical sciences for approaches to identify states,
assigning states and characterizing co-emerging or co-existing
states. Moreover, it is often important to be able to identify
emerging states even before they are fully evolved. From physics
point of view, it is interesting to yield a generic understanding
of the state assignment problem in cell biology or medicine
(although specific details might be crucial in each context in
practice). Without loss of generality, in what follows we focus on
medical diagnostics and draw a simple picture that capturesmany
generic aspects of assignment problems in medicine and systems
cell biology.

Decision-making is at the heart of medicine. Decisions are
made at various stages in clinical practice, particularly during
diagnostic investigations and when assigning the findings to
a disease [5, 6]. Diagnostic strategies are typically available in
the form of clinical algorithms and flow charts that define
the sequence of actions to be taken to reach a diagnosis. The
diagnosis itself is typically made based on consensus diagnostic
criteria [7, 8]. In addition, there are a number of clinical
decision support systems and software systems that are used
to assign findings (symptoms and signs) to disease conditions.
The most commonly used technologies are WebMD Symptom
Checker, Isabel Symptom Checker, DXplain and Internist [9].
These algorithms compute the most likely disease that is
associated with a given set of findings by using only a small
part of the existing probabilistic data on findings and diseases.
Internist, which is one of the most sophisticated systems,
relies on two parameters, the probability of a finding given
a disease and the probability of a disease given a finding
[10]. These technologies inform us if a patient satisfies the
criteria of a disease but do not provide guidance on how to
approach a patient and mostly ignore the interactions between
diseases.

Currently, we lack a solid conceptual framework for medical
diagnostics. As a consequence, there is no consensus on the
diagnostic flow charts available today, and clinicians differ widely
in their approaches to patients. Here, we take a step toward
solving this problem by formulating first principles medical
diagnostics. We evaluate the performance of the platform and
discuss how one can optimize it. Using simple theoretical
examples, we show how including relevant statistical data
and often-ignored inherent disease-disease linkages significantly
reduces diagnostic errors and mismanagement and enables the
early diagnosis of disease.

The problem of associating a subset of observed signs
(clinical signs/symptoms and laboratory data) with specific
diseases was easy if we could assume the findings originate
from a single disease, we had clear demonstrations for the

diseases, and inter-sign and inter-disease interactions were
negligible. In practice, however, we typically have no certain
relationships that connect signs to diseases, and one often must
address interference effects of multiple diseases; in the early
stages of a disease, we do not even have sufficient findings
to make a definite decision [11–13]. There are a number of
studies that have attempted to quantify such dependencies
under uncertainty and obtain estimations for the likelihood of
diseases given a subset of findings [10, 14–19]. An essential
simplifying assumption in these studies was that only one
disease is behind the findings (exclusive diseases assumption),
otherwise, the diseases act independently on the symptoms
(causal independence assumption). Among recent developments,
we should mention Bayesian belief networks, which provide
a probabilistic framework to study sign-disease dependencies
[20–23]. These models are represented by tables of conditional
probabilities that show how the state of a node (sign or disease)
variable in an acyclic directed graph depends on the state of
the parent variables. Here, it is usually assumed that the signs
are conditionally independent of one another given a disease
hypothesis and that diseases are independent of one another after
marginalizing over the sign variables (marginally independent
diseases). In other words, there exist no causal dependencies or
interactions (directed links in the graph) that connect two signs
or diseases. Then, starting from the conditional probabilities of
the sign variables, the posterior disease probabilities are obtained
by the Bayes’ rule using the above simplifying assumptions
[21].

In this study, however, we shall pursue a more principled
approach to highlight the significance of direct disease-disease
and sign-sign interactions (dependencies). Evidences are rapidly
growing to support the existence of such interactions [24–
31]. We construct a probabilistic model of interacting sign
and disease variables which goes beyond the assumptions that
mentioned in the previous paragraph; specifically, here the effects
of the diseases on the symptoms can be correlated, and more
than one disease can be involved in the study. In addition,
in the presence of the sign-sign interactions, the value of one
observed sign can affect the belief on the value of another
unobserved sign. The price we pay in return is to deal with the
techniques of model learning, to obtain the model parameters
from statistical relations of the sign and disease variables. And,
we have to employ more sophisticated inference algorithms,
to estimate the marginal sign and disease probabilities from
the model. Our approach is of course computationally more
expensive than the previous approaches, but it shows how
different types of interactions could be helpful in the course
of diagnosis. Additionally, because of recent developments in
related fields [32–35], we now have the necessary concepts
and tools to address difficulties in more sophisticated (realistic)
problems of this type. This study does not involve usage
of real medical data, which is by the way fundamentally
incomplete at this moment for such modeling; however, it
provides a rationale as to why certain often-neglected statistical
information and medical data can be useful in diagnosis and
demonstrates that investments in collecting such data will likely
pay off.
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2. PROBLEM STATEMENT

Consider a set of ND binary variables D = {Da = 0, 1 : a =
1, . . . ,ND}, where Da = 0, 1 shows the absence or presence
of disease a. We have another set of NS binary variables S =
{Si = ±1 : i = 1, . . . ,NS} to show the values of sign (symptom)
variables. A sign here could stand for a medical test, history, or
the state of a biomarker (e.g., protein, metabolite, gene).

Suppose we have the conditional probability of symptoms
given a disease hypothesis, P(S|D), and prior probability of
diseases P0(D). Then, the joint probability distribution of sign
and disease variables reads as P(S;D) ≡ P(S|D)P0(D). We
shall assume, for simplicity, that the probability distributions
describe the stationary state of the variables. The distributions
may be subject to environmental and evolutionary changes and
may also change in the course of the disease. Here, we limit
our study to the time scales that are smaller than the dynamical
time scale of the model and leave the temporal dynamics for a
future study. In addition, we assume that we are given sufficient
statistical data, e.g., the true marginal probabilities Ptrue(Si, Sj|D),
to reconstruct simple models of the true probability distribution
[36]. This is indeed the first part of our study: In Section
3.1, we propose statistical models of sign and disease variables,
and employ efficient learning algorithms to compute the model
parameters, given the appropriate data. Fortunately, recent
advances in machine learning and inference techniques enable us
to work with models that involve very large number of variables
[35, 37–44].

Let us assume that a subset O = {i1, i2, . . . , iNO} of the sign
variables has been observed with values So, and size NO = |O|.
We will use U for the remaining subset of unobserved signs with
values which are denoted by Su. Then, the likelihood of disease
variables given the observed signs is:

L(D|So) ≡
∑

Su

P(S;D). (1)

The most likely diseases are obtained by maximizing the above
likelihood:

DML = argmax
D

logL(D|So). (2)

Here, we are interested in the posterior probability marginals
P(Da = 0, 1) of the disease variables. The marginal probability
P(Sj = ±1) of an unobserved sign, and the most likely signs, are
obtained from the following distribution:

M(Su|So) ≡
∑

D

P(S;D), SML = argmax
Su

logM(Su|So). (3)

The main task in the second part of our study is computation of
the sign and disease marginal probabilities

P(Da) ∝
∑

{Db:b6=a}
L(D|So), P(Sj) ∝

∑

{Sk:k∈U\j}
M(Su|So) j ∈ U.

(4)

In general, computing the exact values of thesemarginals is a hard
problem. However, one can find highly accurate approximation
methods developed in the artificial intelligence and statistical
physics communities to address such computationally difficult
problems [32, 33, 45–48]. In Section 3.2, we propose an
approximate message-passing algorithm for inferring the above
information in a large-scale problem.

Finally, the last and main part of our study is devoted
to the problem of choosing a finite sequence of unobserved
signs for observation, which maximizes an appropriate objective
functional of the sequence of observations. In principle, the
objective function should be designed to approach the right
diagnosis in a small number of observations. To this end, we
assign larger values to the objective function if the observations
result to larger polarization in the disease probabilities; obviously,
it is easier to decide if disease a is present or not when
the marginal probability P(Da) is closer to 0 or 1 (more
polarized). Computing such an objective functional of the disease
probabilities for a given sequence of observations is not an
easy task. We have to consider also the stochastic nature of the
observations; we know the sign probabilities P(Sj), but, we do
not know a priori the value Sj of an unobserved sign, which is
chosen for observation. To take into account this uncertainty,
we shall work with an objective function which is averaged over
the possible outcomes of the observation. More precisely, the
above diagnosis problem is a multistage stochastic optimization
problem, a subject that has been extensively studied in the
optimization community [34, 49–51].

Suppose we are to observe T ≤ NS − NO signs with an
specified order OT ≡ {j1, . . . , jT}; there are (NS −NO)!/(T!(NS −
NO − T)!) different ways of choosing T signs from NS − NO

ones, and T! different orderings of the selected signs to identify
such a sequence of observations. Therefore, the number of
possible sequences grows exponentially with T. Add to this
the computational complexity of working with an objective
functional of the sequence of observations, which has to be also
averaged over the stochastic outcomes of the observations. In
Section 3.3, we present simple heuristic and greedy algorithms
to address the above problem, and leave a detailed study of the
multistage stochastic optimization problem for future.

3. RESULTS

A complete description of a collection of stochastic variables, like
the sign and disease variables, is provided by the joint probability
distribution of the variables P(S;D). Having the probability
distribution (model) that describes a system of interacting
variables does not, however, mean that one can readily extract
useful statistical information from the model. In fact, both the
model construction and the task of extracting information from
the model are computationally hard, with computation times
that in the worst cases grow exponentially with the number of
involved variables [52–56]. In the following, we address the above
sub-problems in addition to the main problem of optimizing an
appropriate objective functional of observations, which are made
during the course of diagnosis.
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3.1. Learning the Model: Maximum Entropy
Principle
Let us assume that we are given the marginal probabilities
Ptrue(Si, Sj|D) of the true conditional probability Ptrue(S|D); we
consider at most the effects of two-sign interactions, which
is expected to capture a significant part of the behavior that
arises from interactions between the sign variables. Moreover,
the strength of the higher order interactions is expected to
be smaller than one-sign and two-sign interactions. And, it
would be much more difficult to obtain clinical data of good
statistical quality to reconstruct such interactions. Given the true
marginal probabilities, we use the maximum entropy principle
to construct an appropriate model P(S;D) ≡ P(S|D)P0(D)
of the sign and disease variables [57–59]. Here, P0(D) is the
prior probability of the diseases depending on the age, gender,
and other characteristics. Here, we simply take a product prior
distribution, P0(D) =

∏

a P0(Da). In the absence of any prior
information, the above probability distribution is uniform.

The conditional probability P(S|D) represents all the
sign/disease interactions that are allowed by the maximum
entropy principle,

P(S|D) =
1

Z(D)
exp





∑

i

hi(D)Si +
∑

i<j

Jij(D)SiSj



 . (5)

Here Z(D) is the normalization (or partition) function.
In practice, we are given only a small subset of the

conditional probabilities, for instance, Ptrue(Si, Sj|onlyDa) and
Ptrue(Si, Sj|onlyDa,Db). The former is the probability that signs
i and j take values (Si = ±1, Sj = ±1) conditioned to the
presence of disease a and the absence of all other diseases. The
latter conditional probabilities are defined similarly. Therefore,
we have to consider only interactions between a small number of
disease variables. To this end, we expand the model parameters,

hi(D) = h0i +
∑

a

hai Da +
∑

a<b

habi DaDb + · · · , (6)

Jij(D) = J0ij +
∑

a

JaijDa +
∑

a<b

Jabij DaDb + · · · , (7)

and keep only the leading terms of the expansion. Putting all
together, given the above information, we rewrite

P(S|D) =
1

Z(D)
φ0(S)×

∏

a

φa(S|Da)×
∏

a<b

φab(S|Da,Db). (8)

Here, φ0 is responsible for the leak probabilities P(S|nodisease),
to account for the missing disease information and other sources
of error [21, 23]. In the following, we assume that local sign
fields are sufficient to produce an accurate representation of the
leak probabilities, i.e., φ0 = exp(

∑

i K
0
i Si). The other interaction

factors, φa and φab, are present only if the associated diseases are
present; they are written in terms of local sign fields and two-sign

interactions:

φa = exp(Da[
∑

i

Ka
i Si +

∑

i<j

Ka
ijSiSj]), (9)

φab = exp(DaDb[
∑

i

Kab
i Si +

∑

i<j

Kab
ij SiSj]). (10)

Figure 1 shows a graphical representation of the model with
Ma = 3 one-disease andMab = 2 two-disease interaction factors,
each of which is connected to ka = 3 and kab = 2 sign variables,
respectively. From the above model, we obtain the simpler one-
disease-one-sign (D1S1) model in which we have only the one-
disease interaction factors (i.e., Mab = 0) and local sign fields
(i.e., Ka

ij = 0). In a two-disease-one-sign model (D2S1), we have

both the one- and two-disease interaction factors, but only the
local sign fields. In the same way, we define the one-disease-
two-sign (D1S2) and two-disease-two-sign (D2S2) models. In
the following, unless otherwise mentioned, we shall work with
the fully connected graphs with parameters: Ma = ND, ka =
NS for the D1S1 and D1S2 models, and Ma = ND,Mab =
ND(ND − 1)/2, ka = kab = NS for the D2S1 and D2S2 models.
Moreover, the interaction factors in the fully connected D1S2
and D2S2 models include all the possible two-sign interactions
in addition to the local sign fields. In general, an interaction
factor α = a, ab which is connected to kα signs can include all
the possible multi-sign interactions. In this paper, however, we
consider only the one-sign interactions with local fields and the
two-sign interactions.

To obtain the model parameters (K0
i ,K

a,ab
i , and Ka,ab

ij ), we

start from the conditional marginals Ptrue(Si|nodisease). This
information is sufficient to determine the couplings K0

i from the
following consistency equations:

Ptrue(Si|nodisease) =
∑

{Sj:j 6=i}
P(S|D = 0) ∀i. (11)

FIGURE 1 | The interaction graph of disease variables (left circles) and sign

variables (right circles) related by Ma = 3 one-disease and Mab = 2

two-disease interaction factors (middle squares) in addition to interactions

induced by the leak probability (right square) and the prior probability of

diseases (left square). An interaction factor α = a, ab is connected to kα signs

and lα diseases.
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If we have Ptrue(Si, Sj|onlyDa), then in principle we can find Ka
i

and Ka
ij from similar consistency equations, assuming that we

already know the K0
i . Note that P(Si, Sj|onlyDa) is different from

P(Si, Sj|Da), which is conditioned only on the value of disease
a. In the same way, having the Ptrue(Si, Sj|onlyDa,Db) allow us

to find the couplings Kab
i and Kab

ij , and so on. In general, the

problem of finding the couplings from the above conditional
probabilities is computationally expensive. However, there are
many efficient approximate methods that enable us to find good
estimations for the above couplings given the above conditional
probabilities [35, 37–40, 42, 44]. The reader can find more details
about the models in Supplementary Material (Section 1), where
we provide a very simple learning algorithm, which is based on
the Bethe approximation, for estimating the model parameters,
given the above marginal probabilities.

3.2. Computing the Marginal Probabilities:
An Approximate Inference Algorithm
Let us consider a simple benchmark model to check the
performances of the above constructed models. As the
benchmark, we take the true conditional probability

Ptrue(S|D) =
1

Ztrue(D)
e−H(S,S∗(D)), (12)

where S∗(D) gives the most probable symptoms of hypothesisD.
We choose these symptoms randomly and uniformly from the
space of sign variables. That is, the value of each sign S∗i (D) (for
i = 1, . . . ,NS) is chosen to be positive or negative with equal

probability 1/2. Moreover, H(S, S∗(D)) ≡
∑NS

i=1(Si − S∗i (D))2/4
is the Hamming distance (number of different signs) of the two
sign configurations. Note that there is no sign-sign interaction
in the above true model. Therefore, given the true conditional
marginals, we can exactly compute the model parameters, as
described in Supplementary Material (Section 1).

For small numbers of sign/disease variables, we can use an
exhaustive inference algorithm to compute the exact marginal
probabilities. Figure 2 displays the root-mean-square (RMS)
errors in the disease probabilities (compared with the true
values), and the accuracy of the model predictions for the
present diseases identified by themost probable diseases. Here we
consider the cases in which only one or two diseases are present
in the selected disease patterns. We compare the results that are
obtained by the one-disease-one-sign (D1S1) and two-disease-
one-sign (D2S1) models, with those that are obtained by the
Bayes’ rule assuming the conditional independence of the signs
and causal independence of the diseases as computed in Shwe et
al. [21]. The statistical information we need to obtain the model
parameters and compute the disease probabilities are extracted
from the exponential true model. As the figure shows, the D2S1
model results in much smaller errors and better predictions
when two diseases are responsible for the observed signs. This
computation is intended to exhibit the high impact of two-disease
interactions on the behavior of themarginal probabilities.Wewill
soon see that these large effects of interactions can indeed play a
constructive role also in the process of diagnosis.

To infer the marginal probabilities of the models for
larger number of sign/disease variables, we resort to the
Bethe approximation and the Belief-Propagation algorithm
[33, 46]. First, we suggest an approximate expression for the
normalization function Z(D), which appears in the denominator
of the conditional probability distribution P(S|D). In words,
we consider this non-negative function of the diseases to be
a probability measure, and we approximate this measure by
a factorized probability distribution, using its one- and two-
variable marginal probabilities (see Supplementary Material,
Section 2). This approximation enables us to employ an
efficient message-passing algorithm such as belief propagation
for computing statistical properties of the above models. As
mentioned before, we shall assume that the prior probability
P0(D) can also be written in an appropriate factorized form.
The quality of our approximations depends very much on the
structure of the interaction factors and the strengths of the
associated couplings in the models. The Bethe approximation
is exact for interaction graphs that have a tree structure.
This approximation is also expected to work very well in
sparsely connected graphs, in which the number of interaction
factors (Ma,Mab) and the number of signs associated with an
interaction factor (ka, kab) are small compared with the total
number of sign variables. In Supplementary Material (Section 2)
we display the relative errors in the marginal signs/diseases
probabilities that were obtained by the above approximate
algorithm. The time complexity of our approximate inference
algorithm grows linearly with the number of interaction factors
and exponentially with the number of variables that are involved
in such interactions; with ND = 500,NS = 5,000,Ma =
500,Mab = 1,000, ka = 10, kab = 5, the algorithm takes
∼1 min of CPU time on a standard PC to compute the local
marginals. We recall that the INTERNIST algorithm works
with 534 diseases and ∼4,040 signs (or manifestations), with
40,740 directed links that connect the diseases to the signs
[21].

3.3. Optimization of the Diagnosis Process:
A Stochastic Optimization Problem
Suppose that we know the results of NO observations (medical
tests), and we choose another unobserved sign j ∈ U for
observation. To measure the performance of our decision, we
may compute deviation of the disease probabilities from the
neutral values (or “disease polarization”) after the observation:

DP(j) ≡
(

1

ND

∑

a

(

P(Da = 1)−
1

2

)2
)1/2

. (13)

One can also add other measures such as the cost of observation
to the above function.

In a two-stage decision problem, we choose an unobserved
sign for observation, with the aim of maximizing the averaged
objective function E(j) ≡ 〈DP(j)〉O. Note that before doing
any real observation, we have access only to the probability of
the outcomes P(Sj); the actual or true value of an unobserved
sign becomes clear only after the observation. That is why
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FIGURE 2 | (Top) The RMS error in the disease probability and (Bottom) the accuracy of the disease predictions, true positive (TP) and false positive (FP), for cases

in which only one (|D| = 1) or two diseases (|D| = 2) are present in the disease hypothesis. We compare the results obtained by the D1S1 and D2S1 models with the

(CI) results obtained by the Bayes’ rule assuming the conditional independence of the signs and causal independence of the diseases. The model parameters are

obtained from the conditional marginals of the exponential true model. Here ND = 5, NS = 20, and NO is the number of observed signs with the true values. The prior

probabities are chosen such that NDP0(Da = 1) = |D|. The data are results of averaging over 1,000 independent realizations of the true model and the true disease

pattern.

here we are taking the average over the possible outcomes,
which is denoted by 〈·〉O. One can repeat the two-stage problem
for T times to obtain a sequence of T observations: each
time an optimal sign is chosen for observation followed by a
real observation, which reveals the true value of the observed
sign.

In a multistage version of the problem, we want to
find an optimal sequence of decisions OT = {j1, · · · , jT},
which maximizes the following objective functional of the

observed signs: E[OT] ≡
∑T

t=1〈DP(jt)〉O. Here, at each
step, the “observed” sign takes a value that is sampled from
the associated marginal probability P(Sj). This probability
depends on the model which we are working with. Note
that here we are interested in finding an optimal sequence
of observations at the beginning of the process before
doing any real observation. In other words, in such a
multistage problem, we are doing an “extrapolation” or
“simulation” of the observation process without performing
any real observation. In practice, however, we may fix the
sequence of observations by a decimation algorithm: i.e.,
we repeat the multistage problem for T times, where each
time we observe the first sign suggested by the output
sequence, and reduce the number of to-be-observed signs
by one.

In the following, we consider only simple approximations of
the multistage problem; first we reduce the difficult multistage
problem to simpler two-stage problems. More precisely, at each
time step, we choose an unobserved sign jt , which results
to the largest disease polarization 〈DP(jt)〉O, for observation
(greedy strategy). Then, we consider two cases: (I) we perform
a real observation to reveal the true value of the suggested sign
for observation, (II) we treat the suggested sign variable for
observation as a stochastic variable with values that are sampled
from the associated marginal probability.

Let us start from the case in which we observe the true values
of the signs chosen for observation. Once again, we take the
exponential benchmark model given by Equation (12) as the true
model. We use the conditional marginals extracted from this true
model to construct the simple one-disease-one-sign (D1S1) and
two-disease-one-sign (D2S1) models. Suppose that we are given
a disease hypothesis D and the associated symptoms S∗(D). We
start from a few randomly chosen observed signs from the set of
symptoms. Then, at each time step t, we compute the inferred
sign probabilities P(Sj), and use the greedy strategy to choose an
unobserved sign for observation. The observed sign at each step
takes the true value given by S∗(D). To see how much the disease
probabilities obtained from the models are correlated with the
true (or maximum likelihood) hypothesis D, we compute the
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following overlap function (or “disease likelihood”):

DL(t) ≡
1

ND

∑

a

(2Da − 1)

(

P(Da = 1)−
1

2

)

. (14)

Besides the magnitude, our decisions also affect the way that the
above quantity behaves with the number of observations.

In Figure 3 we see how the above overlap function, DL(t),
behaves for cases in which only one or two diseases are
present in D (see also Supplementary Material, Section 3). For
comparison, we also show the results obtained by a random
strategy, where an unobserved sign is chosen for observation
randomly and uniformly from the subset of unobserved signs.
The number of sign/disease variables here is small enough to
allow for an exact computation of all the marginal probabilities.
It is seen that both the D1S1 and D2S1 models work very
well when only one disease is present and all the other
diseases are absent. The D1S1 model already fails when two
diseases are present in the hypothesis, whereas the other
model can still find the right diseases. However, we observe
that even the D2S1 model gets confused when there are
more than two diseases in the hypothesis; in such cases,
we would need to consider more sophisticated models with
interactions involving more than two diseases. Moreover, we
observe that the difference in the performances of the greedy
and random strategies decreases as the number of involved
diseases increases. In Supplementary Material (Section 3), we
observe similar behaviors for a more complex benchmark model
Ptrue(S|D) ∝ 1/(1 + H(S, S∗(D))), including also the sign-sign
interactions.

Next, we consider the case of simulating the diagnosis
process without doing any real observation. Here, we assume
that an observed sign takes a value which is sampled from
the associated marginal probability P(Sj) at that time step.
For comparison with the greedy strategy, we also introduce
two other strategies for choosing an unobserved sign for
observation. A naive strategy is to choose the most positive
(MP) sign jmax = argmaxj{P(Sj = +1)} for observation
(MP strategy); jmax is the sign with the maximum probability
of being positive. In the early stages of the diagnosis, this
probability is probably close to zero for most of the signs. So, it
makes sense to choose the most positive sign for observation to
obtain more information about the diseases. A more complicated
strategy works by first computing the conditional probabilities
P(Sj|DML) for the maximum likelihood hypothesis DML, and
then selecting the most positive sign for observation (MPD
strategy).

To have a more general comparison of the constructed
models, in the following, we assume that the model parameters

(Ka,ab
i , and Ka,ab

ij ) are iid random numbers uniformly distributed

in an appropriate interval of real numbers. The leaky couplings
are set to K0

i = −1, which correspond to small sign probabilities
P(Si = 1|nodisease) ≃ 0.1. We assume that all the possible
one-disease and two-disease interaction factors are present in the
models. Moreover, inside each factor we have all the possible two-
sign interactions in addition to the local sign fields. As before,
the prior disease probabilities P0(Da) are uniform probability

FIGURE 3 | Overlap of the inferred disease marginals with the true hypothesis

for the exponential benchmark model. The data are for the cases in which only

one (A) or two (B) diseases are present. The model parameters are obtained

from the conditional marginals of the true model. There are ND = 5 diseases,

NS = 20 signs, and the algorithm starts with NO = 3 observed signs for a

randomly selected hypothesis D. An unobserved sign is chosen for

observation by the greedy (G) or random strategy using the inferred

probabilities, and the observed sign takes the true value given by S∗(D). The
data are results of averaging over 1000 independent realizations of the true

model and the observation process.

distributions. Figure 4 shows the performances for different
models and strategies with a small number of sign/disease
variables. Here, the “disease likelihood” gives the overlap of the
disease probabilities with the maximum likelihood hypothesis
DML of the models. Moreover, all the quantities are computed
exactly. We see that in this case the average performance of
the greedy strategy is close to that of the MPD strategy at the
beginning of the process. For larger number of observations, the
greedy performance degrades and approaches that of the MP
strategy.

The models with disease-disease and sign-sign interactions
exhibit larger polarizations of the disease probabilities
and larger overlaps of the disease probabilities with the
maximum-likelihood hypothesis (see also Supplementary
Material, Section 3); we find that already the D2S1 model
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FIGURE 4 | Diagnostic performance of the models vs. the number of observations for a small number of sign/disease variables. (Top) The exact disease-polarization

(A) and disease-likelihood (B) obtained by the MP strategy in the one-disease-one-sign (D1S1), two-disease-one-sign (D2S1), one-disease-two-sign (D1S2), and

two-disease-two-sign (D2S2) models. There are ND = 5 diseases, NS = 20 signs, and the algorithm starts with NO = 4 observed signs with positive values. The

couplings in the interaction factors are iid random numbers distributed uniformly in the specified intervals: K0
i
= −1,Ka,ab

i
∈ (−1,+1),Ka,ab

i,j ∈ (−1,+1)/
√

NS.

(Bottom) Comparing the exact polarization (C) and likelihood (D) of the diseases obtained by the MP, greedy (G), MPD, and random strategies, for the D2S2 model.

The data are results of averaging over 1,000 independent realizations of the model parameters.

works considerably better than the D1S1 model for disease-
disease interactions of relative strengths |Kab

i /Ka
i | ≃ 0.3. A

larger polarization means that we need a smaller number of
observations (medical tests) to obtain more definitive disease
probabilities. A larger disease likelihood, here means that we

are following the direction that is suggested by the most likely

diseases. In this sense, it appears that the two-sign/disease

interactions could be very helpful in the early stages of the

diagnosis.
We checked that the above picture also holds if we start

with different numbers of observed signs, and if we double the
magnitude of all the couplings. Similar behaviors are observed
also for larger problem sizes (see Supplementary Material,
Section 3). However, we see that for strongly interacting
models with much larger higher-order interactions, e.g.,

K0
i = −1, and Ka,ab

i ∈ (−2,+2),Ka,ab
ij ∈ (−2,+2)/

√
NS,

the MP strategy gets closer to the random strategy. The
fact that the MP strategy does not work well in this
strongly correlated regime was indeed expected. Here, the
greedy strategy is working better than the MPD strategy,
and both are still performing better than the random
strategy.

4. DISCUSSIONS

In summary, we showed that considering the sign-sign
and disease-disease interactions can significantly change
the statistical importance of the signs and diseases. More
importantly, we found that these higher-order correlations
could be very helpful in the process of diagnosis, especially in
the early stages of the diagnosis. The results in Figures 3, 4
(and similar figures in Supplementary Material) also indicate
the significance and relevance of optimization of the diagnosis
procedure, where a good strategy could considerably increase
the polarization and likelihood of the diseases compared to
the random strategy. In addition, we devised an approximate
inference algorithm with a time complexity that grows linearly
with the number of interaction factors connecting the diseases to
the signs, and exponentially with the maximum number of signs
that are associated with such interaction factors. For clarity, in
this work, we considered only algorithms of minimal structure
and complexity. It would be straightforward to employ more
accurate learning and inference algorithms in constructing the
models and inferring the statistical information from the models.
The challenge is, of course, to go beyond the heuristic and
greedy algorithms that we used to study the multistage stochastic
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optimization problem of deciding on the relevance and order of
the medical observations.

In this study, we considered very simple structures for the
prior probability of the diseases P0(D) and the leak probability of
the signs P(S|nodisease). Obviously, depending on the available
statistical data, we can obtain more reliable models also for
these probability distributions. Alternatively, we could employ
the maximum entropy principle to construct directly the joint
probability distribution of the sign and disease variables using
the joint marginal probabilities P(Si, Sj;Da,Db). Note that,
in practice, it is easier to obtain this type of information
than the stronger conditional probabilities P(Si, Sj|onlyDa) and
P(Si, Sj|onlyDa,Db). However, these measures are easier to model
(or estimated by experts), in the absence of enough observational
data, because they present the sole effects of single (or few)
diseases.

The emphasize, in this study, was more on the diagnostic
performances of the models than on the statistical significance
of the selected models for a given set of clinical data. In
other words, we assumed that we have access to the true
marginal probabilities Ptrue(Si|nodisease), Ptrue(Si, Sj|onlyDa)
and Ptrue(Si, Sj|onlyDa,Db) of the true probabilistic model
describing the statistical behavior of the sign and disease
variables. Then, the model structure is determined by the
maximum entropy principle depending on the nature of the
provided local probability marginals. A more accurate treatment
of the model selection, for a finite collection of data, accounts
also the complexity of the models to avoid the over-fitting of the
data. Here, it is the statistical quality of the available data that
determines the best model which results to smaller prediction
errors. We note that including the sign-sign and disease-disease
interactions in the models is indeed more natural than ignoring
such correlations. The results obtained in this study in fact
highlight the necessity of collecting the relevant clinical data
to benefit from such informative correlations. Finally, to take
into account the role of noises in the model parameters, one
should take the average of the objective function over the
probability distribution of the parameters, which is provided by
the likelihood of the model parameters.

Our proposed framework can be adapted to address
assignment problems in cell biology, immunology, and
evolutionary biology [60–63]. In contrast to clinical problems,
here data availability might be less of a problem in near
future. Advances in genomics, transcriptomics, proteomics
and metabolomics promise high resolution molecular
characterization of cells. Intensive research has also been directed
toward live single cell analysis which allows characterization of
pathways from an initial state to a final state [64]. Our approach
can be used to do early assignments and thus not only provides
accuracy but also an improved sensitivity for diagnostics at the
cellular level.

5. MATERIALS AND METHODS

To construct the models we need the statistical
information that connect the sign and disease variables

Ptrue(Si|nodisease), Ptrue(Si|onlyDa), . . . . In the absence of the
sign-sign interactions, we can easily obtain the model parameters
by the following expressions,

K0
i =

1

2
ln

(

Ptrue(Si = +1|nodisease)
Ptrue(Si = −1|nodisease)

)

, (15)

Ka
i =

1

2
ln

(

Ptrue(Si = +1|onlyDa)

Ptrue(Si = −1|onlyDa)

)

− K0
i , (16)

Kab
i =

1

2
ln

(

Ptrue(Si = +1|onlyDa,Db)

Ptrue(Si = −1|onlyDa,Db)

)

− K0
i − Ka

i − Kb
i .

(17)

The partition function here reads as follows,

Z(D) =
∏

i

(

2 cosh(K0
i +

∑

a

DaK
a
i +

∑

a<b

DaDbK
ab
i )

)

. (18)

In general, however, we have to use approximation methods to
obtain the parameters and the partition function (Supplementary
Material, Sections 1, 2). In particular, the latter is a nonnegative
function and can be considered as a probability measure over
the disease variables. Then, within the Bethe approximation, the
partition function can be approximated by

Z(D) ∝
∏

a

µa(Da)
∏

α

(

µab(Da,Db)

µa(Da)µb(Db)

)

. (19)

where µa(Da) and µab(Da,Db) are the associated marginal
probabilities.

The above factorization allows us to compute the marginal
sign and disease probabilities by a message-passing algorithm
(Supplementary Material, Section 2),

P(Si) ∝ eK
0
i Si
∏

α∈∂i

9̃α→i(Si), (20)

P(Da) ∝ P0(Da)
∏

α∈∂a

9̃α→a(Da). (21)

Here ∂i and ∂a stand for the subset of interaction factors α =
a, ab that are connected to sign i and disease a, respectively.
Similarly, we use ∂Sα and ∂Dα for the subset of sign and
disease variables which appear in interaction factor α. The cavity
messages 9̃α→i(Si) and 9̃α→a(Da) satisfy the Belief Propagation
Equations [33],

9̃α→i(Si) ∝
∑

{Da:a∈∂Dα}

∑

{Sj:j∈∂Sα\i}
φ̃α(S

α|Dα)

∏

a∈∂Dα

νa→α(Da)
∏

j∈∂Sα\i
νj→α(Sj), (22)

9̃α→a(Da) ∝
∑

{Db:b∈∂Dα\a}

∑

{Sj:j∈∂Sα}
φ̃α(S

α|Dα)

∏

b∈∂Dα\a
νb→α(Db)

∏

j∈∂Sα

νj→α(Sj). (23)
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and

νi→α(Si) ∝ eK
0
i Si

∏

β∈∂i6=α

9̃β→i(Si), (24)

νa→α(Da) ∝ P0(Da)
∏

β∈∂a 6=α

9̃β→a(Da). (25)

The rescaled disease factors are given by

φ̃a ≡
φa

µa(Da)
, φ̃ab ≡ µa(Da)µb(Db)

φab

µab(Da,Db)
. (26)

These equations are solved by iteration; we start from random
initial messages, and update the cavity marginals according to the
above equations until the algorithm converges.

At each step of the diagnostic process we need the marginal
sign and disease probabilities, which can be estimated by the
above approximation algorithm. For sparse interaction graphs,
the computation time of this algorithm grows linearly with the
number of interaction factors Ma,Mab ∝ ND. Then, the time

complexity of the greedy strategy is proportional to TNSND,
where T is the number of observations. In the MP strategy,
we do not need to check every unobserved sign to see what
happens after the observation, therefore the computation time
is ∝ TND. This is true also for the MPD strategy, if we use the
most probable disease values instead of the maximum-likelihood
valuesDML.
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